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Unraveling the individual
and interactive effects of climate
and competition on branch
growth dynamics in Pinus
koraiensis in Northeast China
Xuehan Zhao1, Zheng Miao1,2*, Fengri Li1,2, Yuanshuo Hao1,2,
Yumeng Jiang1 and Lihu Dong1,2*

1College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China, 2Key Laboratory of
Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast
Forestry University, Harbin, Heilongjiang, China
Introduction: The quantitative modeling of dynamic branch growth in Korean

pine (Pinus koraiensis) and the analysis of the factors influencing branch growth

are essential prerequisites for making scientifically sound management decisions

in Korean pine plantations. To date, the effects of competition, climate and their

interactions on branch growth have been insufficiently investigated. Additionally,

limited knowledge exists regarding whether these impacts vary depending on the

social status of trees. In the face of the current challenges posed by climate

change, accurate information to inform forest management and policy-making is

urgently needed.

Methods:We collected 745 branches from 54 sampled trees of Korean pine and,

we employed a mixed-effects model to assess the effects of tree variables,

competition, climate, and their interactions on branch growth. Furthermore, we

simulated branch growth under different combinations of competition and

climatic conditions to provide practical and targeted recommendations for

Korean pine plantation management.

Results: Our results demonstrate that (1) in addition to branch age, size, and tree

height growth, competition, climate, and their interactions significantly improved

the branch growth model, with the effects of interactions surpassing the

individual effects of climate, which highlights the importance of considering

interactive effects; (2) the effects of climate and competition varied depending on

the social status of the trees, with dominant and intermediate individuals showing

greater sensitivity to competition and climate than suppressed individuals,

suggesting that, for future research in this direction, prioritizing sampling of

dominant and intermediate individuals would be a cost-effective approach; and

(3) owing to the presence of interactions, the influence of climate on branch

growth was modulated by competition, suggesting that adjusting competition

levels in response to climate stress could lead to desirable branch

growth outcomes.
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Discussion: Our study underscores the importance of understanding the

different sources of variation in branch growth is crucial for advancing our

understanding of tree growth and crown dynamics, as well as for formulating

sustainable management policies amidst the uncertainties of climate change.
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1 Introduction

Korean pine (Pinus koraiensis) is a keystone species in the zonal

climax communities of Northeast China and plays a crucial role in

the restoration and protection of degraded forest areas in the

country because of its extreme cold tolerance (Jin et al., 2017; Liu

et al., 2024). Furthermore, Korean pine has significant ecological

and economic value. Its pine nuts are prized for their nutritional

and medicinal properties, and its wood, known for its strength and

decay resistance, is widely used in furniture, construction, and other

industries (Wang et al., 2019; Li et al., 2021; Zhang et al., 2021). In

the region, Korean pine plantations account for approximately 5.2%

of the total plantation area (Administration, N.F.a.G, 2019).

Optimizing pinecone production, timber yield, and quality is a

key objective in managing Korean pine forest ecosystems (Jin et al.,

2017). Branches serve as the framework for the tree crown, directly

affecting wood quality and cone production. Knots from dead

branches can degrade timber quality, causing defects such as

discoloration and heart rot, which affect the mechanical

properties and utilization efficiency of the wood (Hein, 2008;

Wang et al., 2015; Liu et al., 2023a). Although substantial

research has focused on the static characteristics of branches,

such as their size, number, and angle, studies on their dynamic

growth remain relatively scarce (Dong et al., 2015; Gao et al., 2022;

Zou et al., 2024). Dynamic branch growth has a direct effect on

overall tree structure and biomass distribution, especially across

different growth stages and environmental conditions (Hu et al.,

2020). Compared with static studies, these studies offer insights into

the adaptive strategies of Korean pine and provide essential data for

silvicultural practices such as thinning and pruning. For example,

research on silver birch suggests that regulating branch growth rates

through stand density changes can improve wood quality

(Mäkinen, 2002). Understanding dynamic branch growth is

crucial for more precise growth pattern quantification, supporting

forest management and resource assessment. Additionally,

integrating branch dynamics models into stand growth and yield

systems can simulate branch size at different stages, providing

valuable tools for forest management.

Accurate measurement of branch growth requires both

precision and ecological relevance; however, the best assessment

method is still unclear (Gleason et al., 2018). Branch growth
02
generally occurs in two steps: initiation and biomass accretion

(Cline, 1997; Cline et al., 2009). Both qualitative (e.g., new annual

shoots) and quantitative (e.g., biomass increase) approaches are

often used (Rahman et al., 2014). Qualitative methods focus on

detecting new growth, such as bud formation and leaf unfolding

(Yuan et al., 2023). Quantitative metrics, such as branch length,

diameter, leaf area, weight (dry and fresh), and annual shoot count,

reflect resource acquisition and help predict future growth (Wilson,

2000; de Reffye et al., 2012; Kanazawa et al., 2013; Sun et al., 2019).

As critical determinants of branch size, branch elongation and

thickening are key for forest management, as they influence crown

expansion, tree health, and productivity, with monitoring helping

optimize thinning and density adjustments (Mäkinen, 2002;

Weiskittel et al., 2007; Nicolini et al., 2012; Kaitaniemi et al.,

2020; Guo et al., 2023). However, direct measurement of branch

growth is often expensive, necessitating the development of efficient

growth models. Statistical models are widely used because of their

simplicity and predictive power. For example, Deleuze et al. (1996)

predicted annual branch length growth using tree height models.

Mäkinen (1999) developed a model for branch diameter growth in

Scots pine, incorporating variables such as stem radial growth,

branch age, and the height−diameter ratio. Ishii et al. (2000)

proposed an allometric growth model for old Douglas fir

branches to explain the variability in the relationship between

branch diameter and length. Overall, these statistical models

provide high reliability in addressing growth pattern variations

across different species and habitats. Therefore, this study uses

statistical models to simulate branch length and diameter changes

in relation to tree growth, environmental factors, and competition.

The factors influencing branch growth can be broadly categorized

into endogenous and exogenous factors. Extensive research indicates

that endogenous factors such as inherent tree characteristics (e.g.,

branch height, age, height growth) primarily control branch growth

(Mäkinen and Hein, 2006; Osada, 2006; Guo et al., 2023). Competition

and climate represent the major exogenous factors, with competition

being particularly prominent, often overshadowing climate

considerations. When branch-related models are constructed,

competition indices are frequently employed to estimate the impact

of competition on trees under constraints related to nutrient and water

availability (Yang and Huang, 2018; Gao et al., 2022). Studies have

shown that competition depends on the ability of plant canopies and
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root systems to adjust their morphology over time, suggesting that

competition is influenced not only by current growth status but also by

various factors that evolve over time (Sánchez-Salguero et al., 2015).

However, in most current research on competition indices, forest

structures are predominantly static, which limits our understanding

of dynamic competition indices and their relationships with climate-

induced branch growth responses. Hence, in our study, we utilize tree

ring data to retrospectively reconstruct dynamic competition indices

(Weber et al., 2008; Pach and Soberka, 2011), providing specific

information on competition at the individual and temporal levels. In

addition, we use annual growth increases rather than cumulative

growth as the dependent variable to analyze the effects of these

factors on branch dynamics. The objective is to assess the influence

of climate and competition on growth precisely while avoiding the

average effects of the independent variables on the results.

The branching structure of tree crowns is constructed through

the repetitive generation of distinct branch units, and multiple

studies have confirmed that climate is a key factor influencing

crown development (Wang et al., 2022a; Yan et al., 2023). From a

physiological perspective, water availability and temperature affect

the accumulation of photosynthetic products and the metabolic

rates governing branch growth (Shi et al., 2022). Aberrant water and

temperature conditions have been shown to result in leaf shedding,

branch breakage, and increased mortality rates (Scott et al., 1993;

Shao et al., 2011). Currently, there is limited research on branch

responses to climate change, with most studies focusing on

developmental processes and potential molecular regulatory

mechanisms. Although these studies enhance our understanding

of plant functional traits and ecological response mechanisms, they

do not directly support forest management practices. Therefore,

there is an urgent need to elucidate the impacts of climate change on

branch growth. Moreover, climatic factors are often incorporated

into models using averages, which overlooks deviations caused by

extreme weather events. This underscores the need to consider

temporal variability when analyzing the effects of climatic factors, as

their fluctuations can have delayed effects that extend beyond the

immediate growth period (Liang et al., 2023).

Understanding the interaction between climate and competition

is crucial for achieving sustainable management practices (Oboite

and Comeau, 2020; Liu et al., 2023b). Competition can influence the

effects of climate on tree growth at both the stand and individual tree

levels (Khansaritoreh et al., 2017; Young et al., 2017). Research on the

relationship between competition and climate enables forest

managers to adjust competition measures to facilitate long-term

forest adaptation to climate change. Previous studies have shown

that competition exacerbates drought stress across a wide range of

climates and compositional gradients within forests (Gleason et al.,

2017). Additionally, under increasingly arid conditions, performance

reversals have been observed in species under high competition levels

(Madrigal-González et al., 2018). This interaction between

competition and climate may exceed the effects of climate alone

(Oboite and Comeau, 2020; Wang et al., 2022a). To our knowledge,

there is limited research on the interaction between competition and

climate at the branch level.

Climate change has been demonstrated to significantly impact

cone production, crown structure, and stem growth in Korean pine
Frontiers in Plant Science 03
(Chen et al., 2022; Wang et al., 2022a; Tian et al., 2024). To quantify

the effects of climate change on crown dynamics at the branch level

and improve the accuracy of wood quality prediction and cone yield

estimation, we examined the branches of 54 Korean pine sample

trees and the cores of adjacent trees and aimed to (1) develop a

branch growth model to assess how overall tree growth influences

branch development, specifically by investigating allometric

relationships, and (2) explore the effects of climatic factors,

competition, and other variables on branch growth. This research

not only enhances and updates model systems for optimizing forest

management but also improves our understanding of the response

mechanisms of Korean pine plantation ecosystems in the context of

climate change, providing a scientific basis for adaptive and

resource management of plantations (Dong et al., 2015; Jin et al.,

2017; Guo et al., 2023).
2 Materials and methods

2.1 Study area and data collection

The study area is located within the Benxi Manchu

Autonomous County Qinghecheng Experimental Forest Farm,

Liaoning Province, in northeastern China, spanning from

longitude 123°34′ to 125°56′ and latitude 40°49′ to 41°35′. This
region experiences a temperate monsoon climate characterized by

long, cold, and dry winters; windy and dry springs; brief, humid,

and moderately warm summers; and early frosts and cold autumns.

The annual average temperature is 10.7°C, with an average frost-

free period of 135 days per year. There are 2379.5 annual sunshine

hours on average, and the average annual precipitation is 850

millimeters, which mainly occurs from April to September. The

predominant soil type is brown soil.

In total, the measurements were conducted in 18 sample plots

(0.06 ha in size) across sites with different conditions in 2023. The

measurements included the diameter at breast height (DBH, defined

as 1.3 m above the ground), total tree height (HT), height of the first

live branch, and crown radius in four cardinal directions for all trees

within each plot. The trees within each plot were ranked in

descending order of DBH, and the cumulative basal area of DBH

was calculated and divided into five even intervals to ensure an

approximately equal cumulative DBH area in each group. The

quadratic mean diameter for each group was separately

calculated, and trees were designated dominant, intermediate, and

suppressed trees on the basis of the first, third, and fifth intervals,

respectively. Additionally, the means DBH and HT of the dominant

and suppressed trees were calculated on the basis of the mean

diameter and height of the six thickest and thinnest trees (100 trees

per hectare) in each plot. A total of 18 dominant trees, 18

intermediate trees, and 18 suppressed trees were selected from the

aforementioned plots. A summary of branch, tree and stand

variables analyzed in this study can be accessed in Table 1.

The fixed-radius method is a widely employed technique for

identifying competitive trees. Previous research has established that

a competition radius of 8 meters or less is optimal for delineating

competitive trees (Piutti and Cescatti, 1997; Helluy et al., 2020;
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Zhou et al., 2022). Accordingly, we defined the maximum

competition radius as 8 meters, within which trees were

categorized as competitive. The size and spatial relationships of

these competitive trees to the target tree were subsequently

measured and analyzed. In our study, some plots had undergone

thinning, which made it difficult to use the current stand conditions

within an 8-meter competition radius to accurately represent

historical competition and stand density. Consequently, we

focused on branch growth data collected five years after thinning

under the assumption that, by this time, the canopy had reclosed

and the stand had stabilized. By selecting branch growth data from

this specific period, we sought to minimize the influence of previous

competition and stand density, thereby facilitating the development

of models to assess the impacts of climate and competition on

branch growth. Using increment borers, core samples were taken at

breast height from competitor trees in both east−west and north

−south orientations, and tree-ring width measurements were taken

using the WinDENDRO tree-ring analysis system (Regent

Instruments, Canada) to obtain diameter growth data of

competitor trees for calculating dynamic competition factors.

After a target tree was felled, the total tree height, crown length,

and other attributes were measured, and the trunks were segmented

at 1-meter intervals. At the stump, at each segment, and at a height of

1.3 m, 3–5 cm thick discs were extracted to obtain breast-height
Frontiers in Plant Science 04
diameter data across different tree ages on the basis of

dendrochronological data. Additionally, the attributes of each

branch within the live crown were measured: branch status; age;

diameter; length; angle; and depth of the branch into the crown

(DINC). Within each annual growth increment, a medium-sized

branch was selected to measure the number of rings, the ring width

chronology of the branch base cross-section (measured with a caliper

accurate to 0.01 mm), and the length chronology of the branch

(measured with a ruler accurate to 1 cm) (Figure 1). The growth

pattern of evergreen conifers typically involves the production of a

main stem, with growth ending annually in a new spiral (with several

lateral branches emerging from the same part of the main stem). This

indicates a strong correlation between the tree height increment

and DINC, which allows us to estimate the tree height at different

ages by using the average DINC of each branch whorl as a proxy

for the previous year’s tree height. Furthermore, the diameter at

breast height with bark was calculated using a bark coefficient,

which has a power function relationship with branch whorls

(AGE), and the early diameter at breast height for branches (at the

target tree’s breast height) was determined as follows:

BD(or  DBH0) = KB · BID(or  DBH1)

= a ·Whrol(or  AGE)b · BID(or  DBH1) (1)
TABLE 1 Symbols, descriptions, and summary statistics of the branch-, tree-, and stand-level competition variables used in the current study.

Category Variables (acronym, unit) Mean Max Min SD

Branch level Branch age (AGE, years) 8.61 34.00 1.00 5.77

(N = 745) Branch height (BH, m) 14.53 24.66 2.27 4.54

Depth of branch into crown (DINC, m) 2.80 11.79 0.01 2.05

Branch length (BL, cm) 196.39 667.00 2.00 133.71

Branch diameter over bark (BD, mm) 23.57 72.85 0.99 14.52

Branch annual length growth (DBL, cm) 20.83 66.00 2.00 9.74

Branch annual diameter growth over bark (DBD, mm) 2.52 12.94 0.01 1.32

Tree level Tree height (HT, m) 17.33 24.92 3.61 4.14

(N = 54) Annual tree height growth (Dheight, m) 0.30 0.87 0.04 0.14

Diameter at breast height with bark (DBH0, cm) 27.43 46.33 4.30 7.73

Annual diameter at breast height with bark growth (DDBH0, cm) 0.51 2.51 0.01 0.30

Tree age (TA, years) 47.98 70.00 16.00 12.75

Stand level Quadratic mean diameter (Dg, cm) 27.13 36.65 9.33 6.04

(N = 18) Dominant diameter at breast height (Ddom, m) 32.93 43.29 14.60 5.97

Dominant tree height (Hdom, m) 19.07 23.08 10.25 2.65

Site index (SI, m) 20.23 22.77 15.54 2.16

Density of trees (N, tree/ha) 1666.15 3531.25 795.77 871.74

Competition Indices Hegyi competition index (CI) 2.03 14.16 0.15 1.77

Relative diameter (RD) 1.01 1.59 0.42 0.20

Basal area of the stand (BAS, m2/ha) 27.50 48.74 3.67 8.86

Basal area of trees that were larger than the subject tree (BAL, m2/ha) 14.88 44.45 0.00 10.90
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where BD and DBH0 represent the diameters with bark of branches

and trees, respectively; BID and DBH represent the diameters

excluding the bark of branches and trees, respectively; KB is the

bark coefficient; whorl and age denote the ages of branches and

trees, respectively; and a1=1.34, b1=−0.06, R
2
1=0.99, a2=1.11, b2=

−0.01, and R2
2=0.99.

In our study, dynamic competition indices include distance-

dependent Hegyi competition indices and distance-independent

competition indices (Hegyi, 1974), namely, the common

symmetric competition index  BAik  and the asymmetric

competition index BALik, which reflect competitive relationships

(Kuehne et al., 2019).

CIik=oni
j=1

djk
dikLij

(2)

where CIik represents the Hegyi competition index of target tree i in

year k, ni  denotes the number of competitor trees within the radius

excluding the target tree, dik is the diameter of target tree i, djk is the

diameter of competitor tree j of target tree i in year k, and Lij
represents the distance between competitor trees i and j.

BAik=
p

4·Scompete
oni

j=1Djk
2 (3)

BALik=
p

4·Scompete
oni

j=1GDjk
2 (4)

where BAik and BALik denote the basal area (m²/ha) of all stems per

hectare and those greater than the sum of the target tree’s basal area

for tree i in year k, respectively; GDjk represents the diameter of the

competitor tree j that has a breast height diameter greater than the

target tree i in year k; and Scompete =
p
4 R

2, where R is the

competitor radius.

Climate AP serves as a reliable data source, providing readily

available information for baseline and future scenarios and yielding

promising outcomes in fields such as the growth modeling of forest

stands in China, demonstrating its applicability (Wang et al., 2022b;

Jiang et al., 2023). The climatic variables for each plot were
Frontiers in Plant Science 05
estimated through spatial interpolation based on longitude,

latitude, and altitude. To determine the growth characteristics of

Korean pine, annual and seasonal climatic variables (1999–2022)

were acquired to analyze their impacts on branch growth. This

means that while we conducted a retrospective analysis of branch

growth, we also retroactively estimated the climatic variables to

match the conditions. Given that tree harvesting occurred from

March–April 2023, preceding the growing season, the closest

available climate data were from 2022. Furthermore, considering

the potential “lag effects” of climate impacts on growth (Tang et al.,

2021), climate data were matched from the previous year and two

years prior.
2.2 Construction of the base model

Korean pine exhibits monopodial growth, characterized by clear

annual ring growth in its branches. Branch age is determined by

counting rings from the stem tip. As trees age, the branch increment

decreases progressively. We employed a multiple linear regression

model as the foundational model (Mäkinen, 1999) and gradually

introduced variables related to tree characteristics, competition, and

climate. Initially, variables with significance levels below 0.05 and

the lowest AIC values were selected as the first variables for the

model. Subsequently, additional variables were tested based on the

same criteria starting from the first selected variable and

sequentially adding a second variable, a third variable, and so on.

Finally, to assess multicollinearity among variables (i.e., excessive

correlation between variables), variance inflation factors (VIFs)

were employed. Variables with VIF values exceeding 5 were

further scrutinized in the selection process.

log(DBL)=a0+a1 * AGE+a2 * BL (5)

log(DBD)=a0+a1 * AGE+a2 * BD (6)

In this study, hierarchical partitioning (HP) analysis was

employed to assess the relative importance of each variable in the
FIGURE 1

Diagram illustrating annual growth in branch length and diameter.
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branch growth model (Chevan and Sutherland, 1991). Additionally,

the trees were categorized into three different levels, dominant,

intermediate, and suppressed, to examine the differential

contribution of each variable to branch growth across different

tree grades.
2.3 Construction of the mixed-
effects model

Traditional least squares methods can be used to estimate

only the average of the dependent variable, ignoring individual

differences in hierarchical data. Mixed-effects models, which

include both fixed-effect parameters and random-effect

parameters, allow for the analysis of both between-group and

within-individual variations in the data. These models have been

widely used for the analysis of nested data structures (Fu et al.,

2013; Hao et al., 2015). However, considering the practicality of

implementing branch-level mixed-effects models in forestry

production and the associated sampling costs, we established a

linear mixed-effects model for branch growth at the individual

tree level. The formula for the model is as follows:

yi=Xib+Ziui+e ij, i=1,…,n,

ui∼N(0,D)

e ij∼N(0,Mi)

8>><
>>:

(7)

where yi represents the logarithm of branch growth for the ith plot, i

denotes the known design matrix for fixed effects, Zi represents the

design matrix for random effects, b is the vector of fixed-effect

parameters, ui is the vector of random-effect parameters, eij signifies
the error vector, and n denotes the number of sample trees. D

represents the random-effects covariance matrix. Mi represents the

within-group error variance−covariance structure, which describes

the heteroscedasticity and autocorrelation present in the data. In

forestry, a common form of the Mi matrix is as follows:

Mi=s 2G0:5
i G iG

0:5
i (8)

whereMi represents the error variance−covariance matrix for the ith
plot, s 2 denotes the residual variance of the model, Gi is a diagonal

matrix describing within-group heteroscedasticity, and Gi is a

matrix accounting for the within-group autocorrelation structure

due to multiple measurements on the same tree. Initial analysis

suggests the absence of linear heteroscedasticity in the data; thus, Gi

is set as a diagonal matrix with all diagonal elements equal to 1. The

most commonly employed first-order autoregressive structure (AR

(1)) is used to describe the time autocorrelation of the branch

growth of individual trees.
2.4 Model validation and evaluation

Leave-one-out cross-validation (LOOCV) was employed to

evaluate the predictive ability and parameter estimation stability
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of the branch growth model (Dong et al., 2018). In this study, with a

total of 54 individual trees, each dataset was iteratively treated as a

validation sample, and the remaining data were used for model

building. This process yielded 54 sets of estimated model

parameters and corresponding predicted results for branch

growth across the 54 individual trees. The following metrics were

utilized to assess the model’s goodness of fit and predictive

performance: the Akaike information criterion (AIC), mean

absolute error (MAE), mean error (ME), mean percentage error

(MPE), mean absolute percentage error (MAPE), and fit index (FI).

These metrics were utilized to evaluate and compare the predictive

performance of the constructed baseline model and the linear

mixed-effects model. The specific formulas for calculating these

evaluation metrics are as follows:

R2=1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − yi)

2 (9)

RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi−ŷ i)
2=(n−p−1)

q
(10)

AIC=−2LL+2p (11)

ME=
1
no

n
i=1(yi−ŷ i,−k) (12)

MAE=
1
no

n
i=1 yi−ŷ i,−k

�� �� (13)

MPE=
1
no

n
i=1(yi−ŷ i,−k)=�y (14)

MAPE=
1
no

n
i=1 yi−ŷ i,−k

�� ��=yi (15)

FI=1−o
n
i=1(yi−ŷ i)

2

on
i=1(yi−yi)

2 (16)

where p represents the number of model parameters; LL

denotes the log-likelihood value; yi, ŷ i, and yi refer to the

observed, predicted, and mean values of branch growth,

respectively; ŷ i,−k represents the predicted value of branch growth

obtained through the “leave-one-out” approach; and n represents

the sample size of branches.
3 Results

3.1 Establishment of the basic model

To construct the base model, we incrementally introduced tree

characteristics, competition, and climatic variables by selecting

variables that were significant and minimized the Akaike

information criterion (AIC). There was no multicollinearity

among the variables. The parameter estimates and evaluation
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metrics of the model are presented in Table 2, where all the

parameter estimates are statistically significant. The parameter

estimation results indicate that among the branch-level variables

introduced into the model, branch age (a1) is negatively correlated

with branch growth, whereas branch dominance, represented by the

cumulative branch length and basal diameter (a2) and branch

height (a3), is positively correlated with growth. At the tree level,

the coefficient estimates for a4, which are 0.7316 for length and

0.3889 for diameter, represent the mean scaling factors used to

model the relationship between branch growth and tree height

growth, assuming a statistical allometric relationship. In accounting

for climate and competition pressure in the model, the estimates for

a5 and a6 suggest inverse relationships between branch growth and

factors such as age, competition, and climate. Furthermore, a7, the

positive coefficient for the interaction between competition and

climate, suggests that the relationships among climate, competition,

and branch growth are moderated by their interaction. The final

model form was confirmed as follows:
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Log(DBL)=a0+a1 * AGE+a2 * BL+a3 * BH+a4 * Dheight+a5 * BAS+a6 * 

CMD_MAM+a7 * BAS * CMD_MAM

(17)

Log(DBD)=a0+a1 * AGE+a2 * BD+a3 * BH+a4 * Dheight+a5 * BAS+a6 * 

Eref _MAM+a7 * BAS * Eref _MAM

(18)

To predict the increase in branch length, the model incorporated

age (AGE), accumulated branch length (BL), branch height (BH), tree

height increment (Dheight), basal area per hectare (BAS), and spring

Hargreaves climatic moisture deficit (CMD _MAM). With respect to

branch diameter growth, the model included age (AGE), accumulated

branch diameter (BD), branch height (BH), tree height increment

(Dheight), basal area per hectare (BAS), and spring Hargreaves relative

evapotranspiration (Eref _MAM). Parameters a0, a1, a2, a3, a4, a5, a6,
TABLE 2 Basic and mixed-effects parameters, variance components, and model performance of the basic and mixed-effects models of the branch
growth models.

Terms

DBL model DBD model

Basic model Mixed-effects model Basic model Mixed-effects model

Estimates Std Estimates Std Estimates Std Estimates Std

a0 2.894 7.460*10-2 1.992 1.263*10-1 1.117 1.597*10-1 9.657*10-1 1.645*10-1

a1 −1.111*10-1 2.807*10-3 −7.064*10-2 3.773*10-3 −1.321*10-1 2.236*10-3 −1.098*10-1 3.169*10-3

a2 4.118*10-1 1.206*10-2 4.667*10-1 1.542*10-2 4.023*10-2 8.644*10-4 3.701*10-2 1.054*10-3

a3 2.128*10-2 1.758*10-3 1.707*10-1 7.114*10-3 1.911*10-2 1.518*10-3 6.355*10-2 5.064*10-3

a4 7.316*10-1 5.271*10-2 8.047*10-1 6.106*10-2 3.889*10-1 4.619*10-2 3.002*10-1 5.501*10-2

a5 −9.738*10-3 2.459*10-3 −6.997*10-2 3.670*10-3 −1.355*10-2 5.638*10-3 −3.743*10-2 6.175*10-3

a6 −2.369*10-3 5.535*10-4 −1.985*10-4 5.391*10-4 −2.043*10-3 6.530*10-4 −1.871*10-3 6.559*10-4

a7 5.033*10-5 1.981*10-5 5.077*10-5 1.912*10-5 4.806*10-5 2.341*10-5 5.849*10-5 2.332*10-5

Variance and covariance

s 2 0.2018 0.1673

s 2
u 0.4013 0.0476

Fitting statistics

R2 0.3052 0.3957 0.4446 0.4824

RMSE 8.0353 7.4020 1.0235 0.9884

MAE 6.3101 5.7499 0.7262 0.6981

AIC 8369.815 7945.796 6804.498 6704.655

Validation statistics

ME 1.7667 1.5525 0.1920 0.1835

MPE 8.4825 7.4545 7.6174 7.2806

MAE 6.3817 5.8235 0.7331 0.7039

MAPE 44.5829 40.1349 37.0691 35.4550

FI 0.2909 0.3840 0.4338 0.4741
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and a7 represent model parameters. The model’s parameter estimates

and evaluation metrics are detailed in Table 2, where all the parameter

estimates are statistically significant.
3.2 Establishment of the mixed-
effects model

We attempted to incorporate random effects at the plot level into

intercept terms and each predictor variable, determining their optimal

positions based on AIC values and likelihood ratio tests (LRTs). The

final optimal mixed-effects model was identified as follows:

Log(DBL)=a0+a1 *AGE+a2 * BL+a3 * BH+a4 * Dheight+a5 * BAS+a6 * 

CMD_MAM+a7 * BAS * CMD_MAM+u0

(19)

Log(DBD)=a0+a1 * AGE+a2 * BD+a3 * BH+a4 * Dheight+a5 * BAS+a6 * 

Eref _MAM+a7 * BAS * Eref _MAM+u1

(20)

where u0 and u1 represent the random effects for branch length and

diameter growth, respectively, with other symbols defined earlier.
3.3 Model evaluation and validation

Table 2 presents the parameter estimates, fit statistics, and leave-

one-out cross-validation statistics of the model. Compared with the

base model, the mixed-effects model significantly improved various fit

indices; for example, the R-squared value for branch length growth

increased by 0.09, and that for branch diameter growth increased by

0.05. Comparative metrics indicate that the mean prediction error

(MPE) and mean absolute error (MAE) decreased by 1.03 and 0.56,

respectively, for branch length growth and by 0.42 and 0.03,
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respectively, for branch diameter growth, suggesting that the mixed-

effects model provides better predictive performance in forecasting

branch growth based on prior information. We further analyzed the

potential impact of sample size on model predictions. As depicted in

Figure 2, regardless of the sample size, the calibrated prediction

accuracy significantly surpassed the uncalibrated prediction accuracy

(sample size = 0). With increasing sample size, the accuracy of the

mixed-effects models consistently improved. The variation in

prediction accuracy stabilized when the number of branches reached

a value of approximately six. The variation in the prediction accuracy of

the branch length growth models stabilized when there were

approximately 2–3 branches, whereas for the branch diameter

growthmodels, this stabilization occurred at approximately 6 branches.
3.4 Factors influencing branch growth

Hierarchical analysis revealed that branch age was the most

significant factor influencing both branch length and diameter

growth (over 45%), followed by branch size (24.53% for length and

26.78% for diameter) (Figure 3). The increase in tree height ranked

third, affecting primarily branch length growth (18.7%). In terms of

responses to climatic and competitive variables, differences emerged in

the growth of branch length and diameter. For branch length growth,

competitive effects (4.36%) > interactive effects between climate and

competition (3.18%) > climate effects alone (0.92%). Conversely, for

branch diameter growth, the interactive effects between climate and

competition (1.6%) > competitive effects (1.42%) > climate effects alone

(0.63%). Figure 4 illustrates the variations in the contributions of

variables across trees with different social statuses (dominant trees,

intermediate trees, and suppressed trees). Branch length growth,

branch height, competition, climate, and their interactions had the

strongest correlations with branch growth in the dominant trees. For

branch diameter growth, branch height had a relatively greater

influence on suppressed trees; competition and the interaction
FIGURE 2

MAE with different subsampled branch sizes for the mixed-effects model and the fixed model (sample size = 0): calibration for the annual growth of
branch length (A) and branch diameter (B).
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FIGURE 4

Bar plots of the relative importance of variables in annual growth across trees with different social statuses in terms of branch length (A) and branch
diameter (B) trees in HP analysis. The variables in the doughnut chart are explained above.
FIGURE 3

Bar plots of the relative importance of variables such as branch age, branch size, branch height, tree height growth, competition, climate, and their
interactions on annual growth in terms of branch length (left) and branch diameter (right) via the hierarchical partitioning method. Specific
abbreviations are detailed in Table 1.
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between competition and climate had the greatest influence on

dominant trees; and climate had the greatest correlation with growth

among intermediate trees. Overall, in the dominant trees, the

independent effects of climate and competition, as well as the

interactive effects between them, appeared more pronounced than

those in the intermediate and suppressed trees.
3.5 Response of branch growth
to variables

To better illustrate the independent impacts of various

variables on branch growth, the relationships between branch

growth and branch age across three gradients of variables

(equally spaced ranges) and average values of other variables

are depicted in Figure 5. Both tree height increment and branch

height were positively correlated with branch length and

diameter growth. However, as the sum of the basal area per

hectare and climatic variables increased, both branch length and

diameter growth tended to decrease. Additionally, we examined

how the interactive effects between competition and climate

varied across different pressure gradients (Figure 6). For both

branch length and diameter growth, the maximum growth

occurred only when both climate and competition pressures

were low. When either climate or competition pressures were

high, branch growth was significantly reduced, with minimal
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distinction between the effects of climate and competition. When

climate stress was elevated, the intensity of competition had a

pronounced effect on the variation in branch growth.
4 Discussion

4.1 Development of branch growth models

Branches provide fundamental information on the

developmental patterns of tree crowns over short periods (Osada,

2011). Branch growth models can bridge the gap between traits

studied extensively at the leaf level (e.g., photosynthesis) and the

crown level (e.g., allometric growth) (Osada, 2006). Recently,

constructing biologically meaningful branch growth models based

on easily measurable stand- and tree-level variables has emerged as

a convenient and reliable approach to determine tree growth

dynamics (Dong et al., 2015; Zou et al., 2024). These static

models often assume that branches of all sizes within a whorl are

equally influenced by stand and tree factors, which may not fully

capture developmental realities. In this study, we employed

dynamic variables to reconstruct the growth patterns of branches

across different ages, aiming to link branch traits with various

limiting factors. Mixed-effects models are commonly used to

address hierarchical data structures effectively (Meteyard and

Davies, 2020). Our results show that linear mixed-effects models
FIGURE 5

Effects of gradients of different variables on the annual growth of branch length (A) and branch diameter (B).
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can be used to predict data accurately from independent datasets,

with improved precision compared with fixed-effects models. To

mitigate the challenges of measuring all branches within a crown

during model calibration, we investigated the impact of the number

of sampled branches per tree on model predictive performance. Our

findings suggest that increasing the sample size enhances model

accuracy. Notably, when the sample size for branches is 2–3, the

steep curve of the branch length growth model stabilizes, indicating

that selecting 2–3 branches for predicting branch length growth is a

cost-effective calibration strategy in practical applications.

Moreover, the predictive accuracy of branch diameter growth

consistently improves as the sample size increases, with only

marginal improvements in accuracy (less than 0.5%) when the

sample size exceeds six. Therefore, we conclude that the

measurement of 6 branches is the most cost-effective sampling

strategy, as it achieves a balance between model performance and

economic cost.
4.2 Impact of variables on branch growth

Few studies have integrated tree height growth patterns with

branch growth models. Research on vegetation height growth and

biomass allocation in tropical rainforests suggests that the optimal

strategies for maintaining tree height growth balance involve

“horizontal crown expansion for maximum light acquisition” and

“increased biomass allocation to height growth to improve light

conditions” (Matsuo et al., 2024). Furthermore, correlations between

branch growth patterns, branch quantity and tree height have been

established (Weiskittel et al., 2007). Thus, in our model, dynamic tree

height growth is introduced as a key variable that significantly explains

the influence of stand conditions on branch growth variability. The

results revealed a positive relationship between branch growth and tree

height growth, possibly because tree vigor is associated with tree height

growth (Remphrey and Powell, 1984; Mäkinen, 1999; Mäkinen and

Colin, 1999). Trees tend to allocate more resources (e.g., nitrogen) to

branches that thrive under optimal crown environments (Chen and
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Sumida, 2018). Consequently, resource exploitation competition

between shaded and sunlit branches within the same crown can

affect branch growth. Therefore, branch height, which reflects branch

position within the crown, is crucial to consider in the model. We

observed that branch height and branch growth increased positively

with branch age. From a physiological perspective, the auxins that

regulate various developmental processes in plants are predominantly

located in regions of active growth, whereas their distribution is

minimal in aging organs and tissues (Khan et al., 2024).

Additionally, as a species with prominent apical dominance, the

growth of lateral branches in red pine is regulated by the main stem,

resulting in varying growth rates of the lateral branches from top to

bottom (Kebrom, 2017). This can be attributed to the fact that taller

branches receive more light, promoting growth, whereas lower-crown

branches face intense resource competition, limiting growth (Chen and

Sumida, 2017). Previous studies have also confirmed that the hydraulic

conductivity efficiency of high branches is not reduced due to height

and gravity effects; instead, these branches can store more water for on-

demand retrieval (Burgess et al., 2006).

Competition has been demonstrated to significantly correlate

with branch growth, survival, crown structure, and functionality in

terms of nutrient transport and crown resource allocation (Labyak

and Schumacher, 1954; Sprugel, 2002; Weiskittel et al., 2007).

Unlike previous studies that focused on competitive variables in

branch growth research, this study reconstructs a retrospective

dynamic competition index as an individual-based approach,

facilitating a clear understanding of competition variations over

time and space. We primarily consider commonly used distance-

dependent and distance-independent dynamic competition indices,

where the former reflects individual competitive ability (Lorimer,

1983) and the latter quantifies competition among individuals

through the available growth space (Smith and Bell, 1983). The

results indicate that the distance-independent competition index—

the sum of stand basal area—yields better model efficacy, suggesting

a stronger correlation between stand basal area and branch growth.

This aligns with previous findings suggesting the applicability and

universality of distance-independent competition indices in
FIGURE 6

Age-based annual growth curves of branch length (A) and branch diameter (B) with different combinations of competitive and climatic variables.
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managed forests (Prévosto et al., 2000; Guo et al., 2023). The stand

basal area is a critical measure of stand density that is widely applied

in forest planning and management (Zhao et al., 2020). Compared

with other competition indices, it is easier to acquire and

computationally straightforward, justifying its inclusion in branch

growth models. The negative relationship between competition and

branch growth indicates a causal effect: increased stand density can

limit growth space for individual trees, thereby constraining crown

expansion. Studies also confirm that denser stands cause smaller

crown sizes (Mäkinen and Hein, 2006; Benomar et al., 2012).

Moreover, an increase in stand density intensifies competition for

light, water, and nutrients, potentially restricting branch growth

(Primicia et al., 2014).

Our study confirms the significant effects of seasonal climatic

variables on branch growth. Overall, branch growth in the first two

years is correlated primarily with reference evapotranspiration (Eref)

and climatic moisture deficit (CMD) in spring, which are identified as

the most significant factors through stepwise regression analysis. These

two variables not only provide multidimensional climatic information

from the perspective of water and energy cycles but also reveal how

climate factors (such as precipitation and temperature changes) affect

branch growth and development through the evapotranspiration

process (Abtew and Melesse, 2013). These findings further support

the role of Eref and CMD as core indicators in studying the impact of

climate change on branch growth. One of the harmful effects plants

commonly face is water scarcity (Haghpanah et al., 2024). Preseason

moisture plays an increasingly important role in tree growth and wood

formation during the growing season (Li et al., 2022). Specifically, Eref

and CMD in spring jointly determine the availability of water during

both spring and the growing season. The increases in evaporation,

transpiration, and moisture loss can result in rapid water depletion in

spring, which affects branch development in various ways, including

reduced cell expansion, carbon supply, and increased susceptibility to

pests and pathogens (Caldeira, 2019; Stephenson et al., 2019). Higher

Eref and CMD values increase the likelihood of drought and water

stress during the subsequent growth season. This leads to a decline in

photosynthesis, a reduction in growth-promoting hormones, and an

increase in growth-inhibiting hormones, all of which suppress branch

and tree growth (Tezara et al., 1999).

Climate and competition have been focal points in many studies

on branch growth, yet their interaction has received little attention.

For the first time, we introduce the interaction between climate and

competition into studies of branch growth and confirm the significant

effects of these interactions on branch growth and the increased

predictive accuracy of models that account for them. Studies on

hardwoods have demonstrated that the interaction between

competition and climate has a greater impact on tree growth than

does climate alone, highlighting the critical regulatory role of

competition in tree growth responses to climate (D’Amato et al.,

2013; Ford et al., 2017). Consistent with these findings, our results

demonstrate that both climate and competition negatively influence

branch growth, whereas their interaction yields a positive effect. We

suggest that this phenomenon may be attributed to resource

limitations and growth optimization mechanisms. Under typical

conditions, competition and environmental stress exacerbate
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resource scarcity, thereby inhibiting branch growth. However, the

interaction between climate and competition may, under specific

circumstances, increase branch growth by modulating resource

allocation and utilization strategies (Wang et al., 2022a).

Additionally, we present the variations in branch growth under

different combinations of competition and climatic conditions. Trees

exhibit differential responses to environmental factors, as they adapt

their growth strategies to optimize performance under varying levels

of competition and climatic stress (Albert and Schmidt, 2010). In

general, under conditions of low competition and minimal climatic

stress, branches are able to fully exploit their growth potential, as

resources are not constrained by intense competition, leading to more

vigorous growth (Carnwath et al., 2012). In contrast, under high

competition or significant climatic stress, environmental factors may

limit branch growth; however, when competition pressure is relatively

low, climatic conditions can positively influence branch growth, with

the interaction between these two factors manifesting a beneficial

effect in such contexts. Therefore, we predict that the impact of climate

change on branch growth is likely to increase growth under relatively

low-stress (i.e., adequate energy supply) conditions and is maximal in

stands with relatively low competition. Furthermore, our findings

suggest that optimal climates typically support better branch growth

but may intensify resource competition, amplifying growth disparities

among branches of different sizes. Overall, our study underscores the

intricate interplay between climate and competition in shaping branch

growth dynamics, highlighting the need for integrated approaches in

understanding forest ecosystem responses to environmental changes

(Blake et al., 1979; Yan et al., 2023).
4.3 Impact of competition and climate
mediated by social status

The results suggest that tree social status significantly influences

the sensitivity of branches to various variables. Trees of different

social statuses acquire resources in different ways through various

physiological processes. Thus, competition and climate within

stands can have differential effects on the branch growth of trees

categorized as individuals with different social statuses. Specifically,

for dominant trees, the contributions of competition, climate, and

their interaction are greater than those for intermediate and

suppressed trees. This suggests that dominant trees are more

sensitive to symmetric competition driven by stand density and to

growth inhibition or promotion caused by climatic constraints. In

contrast, the growth of branches in intermediate and suppressed

trees is more influenced by internal competitive dynamics, such as

the competitive status of the branches within the crown (reflected in

age and cumulative size) and the vitality of the trees under

competitive pressure (reflected in height growth). However, the

independent effect of climate appears to have the least impact on

suppressed trees (Yan et al., 2023), with less impact from

competition. Dominant and intermediate-sized individuals, which

are in more active growth phases, require more resources,

increasing their susceptibility to competitive pressures (Arzac

et al., 2021). The varying responses of individuals at different
frontiersin.org

https://doi.org/10.3389/fpls.2025.1545892
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1545892
social statuses to climate may reflect differences in microclimatic

conditions and differences in light and resource availability.

Suppressed individuals experience less radiation, lower vapor

pressure deficits, and less storm impact, fostering microclimates

that buffer these trees against climatic stresses. Conversely,

dominant and intermediate-sized individuals, which are more

exposed to direct climate environments, may exhibit greater

sensitivity to climate variability (Mérian and Lebourgeois, 2011;

Wang et al., 2022a; Yang et al., 2022). Furthermore, studies suggest

that suppressed individuals have shorter growing seasons and

delayed growth initiation, which reduces their exposure to

extreme climatic events, making them less vulnerable to climate-

induced stress. These findings underscore the differential impacts of

competition and climate on branch growth across trees with

different social statuses, underscoring the complexity of forest

dynamics in response to environmental factors (Liu et al., 2018).
4.4 Insights for adaptive
management practices

As global climate issues intensify and the area of natural forests

rapidly declines, plantations are playing an increasingly critical role in

addressing climate change and ecological conservation (Roy, 2024).

Plantations are designed to provide various ecosystem services,

primarily timber and other wood products (Pawson et al., 2013).

However, while focusing on timber yield, i.e., tree growth, it is also

important to consider the balance between the benefits (such as

carbon sequestration, oxygen release, and providing habitats for

wildlife) and drawbacks (such as reduced wood quality) associated

with branch growth (Brockerhoff et al., 2017; Kellomäki, 2022). In this

study, we analyzed the correlations between tree growth and branch

growth, as well as the factors that impact these variables, such as

climate and competition, and revealed that trees of different statuses

respond differently to environmental factors. Therefore, to increase the

resilience and adaptability of forests to climate change, we propose the

following recommendations for future forest management. First, the

demonstrated importance of the interaction between competition and

climate in branch growth models reinforces the need to focus on this

interaction in future models to increase model reliability. This

interaction should be better understood and integrated into models

to improve their predictive capacity. Second, the greater branch

growth observed under low climatic stress and low competition

levels suggests that stand competition should be adjusted to mitigate

climate stress. Adjusting competition appropriately (such as by

increasing the planting density or implementing selective thinning

measures) based on climate conditions and management objectives

can improve branch growth. Finally, our study highlights that the

sensitivity of branch growth to competition and climate is mediated by

tree social status. Suppressed individuals exhibit lower sensitivity to

competition and climate. Therefore, in future research into the

dynamics of branch growth in relation to climate–competition

sensitivity, selective sampling based on tree social status should be

considered to obtain more valuable insights. These insights provide

guidance for implementing adaptive forestry management practices

that consider the complex interplay between competition, climate, and
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tree social status to optimize branch growth and enhance forest

resilience in the face of changing environmental conditions.
5 Conclusions

This study provides the first comprehensive analysis of how tree

variables, climate, competition, and their interactions affect branch

growth dynamics. We emphasize the importance of not overlooking

the interaction between competition and climate, as its relative

significance can even surpass that of the individual effects of climate.

Moisture stress emerges as a key variable influencing branch growth,

with its effects regulated by competition intensity (stand basal area).

Additionally, the differences in variable importance resulting from

varying tree social statuses suggest that sampling dominant and

intermediate-sized individuals may provide insights into the

relationships among competition, climate, and branch growth.

Although our study represents limited-scale research based on a

specific tree species and forest stand type, the findings offer useful

insights for forest management. Although direct applicability to other

species or stand types requires caution, the identified interactions,

especially those between competition and climate, are likely relevant

across diverse forest ecosystems. The focus on moisture stress and

competition intensity lays a foundation for adaptive management

strategies in varying forest conditions. This study provides

management recommendations for addressing climate stress on

branch growth, aiding both short- and long-term forest management

goals, and offering new directions for climate change adaptation.
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