Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.

Sec. Sustainable and Intelligent Phytoprotection

Volume 16 - 2025 | doi: 10.3389/fpls.2025.1545216

A Recognition Model for Winter Peach Fruits Based on Improved ResNet and Multi-Scale Feature Fusion

Provisionally accepted
Yan Li Yan Li *Chunping Li Chunping Li Tingting Zhu Tingting Zhu Shurong Zhang Shurong Zhang Li Liu Li Liu Zhanpeng Guan Zhanpeng Guan
  • Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, China

The final, formatted version of the article will be published soon.

    With the continuous advancement of modern agricultural technologies, the demand for precision fruit-picking techniques has been increasing. This study addresses the challenge of accurate recognition and harvesting of winter peaches by proposing a novel recognition model based on the residual network (ResNet) architecture—WinterPeachNet—aimed at enhancing the accuracy and efficiency of winter peach detection, even in resource-constrained environments. The WinterPeachNet model achieves a comprehensive improvement in network performance by integrating depthwise separable inverted bottleneck ResNet (DIBResNet), bidirectional feature pyramid network (BiFPN) structure, GhostConv module, and the YOLOv11 detection head (v11detect). The DIBResNet module, based on the ResNet architecture, introduces an inverted bottleneck structure and depthwise separable convolution technology, enhancing the depth and quality of feature extraction while effectively reducing the model's computational complexity. The GhostConv module further improves detection accuracy by reducing the number of convolution kernels. Additionally, the BiFPN structure strengthens the model’s ability to detect objects of different sizes by fusing multi-scale feature information. The introduction of v11detect further optimizes object localization accuracy. The results show that the WinterPeachNet model achieves excellent performance in the winter peach detection task, with P = 0.996, R = 0.996, mAP50 = 0.995, and mAP50-95 = 0.964, demonstrating the model's efficiency and accuracy in the winter peach detection task. The high efficiency of the WinterPeachNet model makes it highly adaptable in resource-constrained environments, enabling effective object detection at a relatively low computational cost.

    Keywords: Resnet, peach, object detection, deep learning, BiFPN

    Received: 14 Dec 2024; Accepted: 24 Mar 2025.

    Copyright: © 2025 Li, Li, Zhu, Zhang, Liu and Guan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Yan Li, Faculty of Megadata and Computing, Guangdong Baiyun University, Guangzhou, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    95% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more