
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Abiotic Stress
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1544898
This article is part of the Research Topic Essence of Survival: Impact of Primary and Secondary Metabolism on Plant Acclimation to Abiotic Stress View all 5 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Heracleum moellendorffii Hance is a perennial herbaceous plant that is adaptable to cold environments and has both edible and medicinal value. Given that no reference genome for this species is available, we constructed a high-quality transcript isoform library using full-length transcriptome sequencing and conducted a comparative genomic analysis. Samples were obtained from plants that had been subjected to cold stress for 12, 24 and 36 hours (Cold_12, Cold_24, and Cold_36, respectively) and from control plants (Cold_0) that were not subjected to cold stress and used in transcriptome and nontargeted metabolome analyses. Compared with the genes expressed in CK (Cold_0), the number of differentially expressed genes (DEGs) in Cold 12, Cold_24, and Cold_36 increased gradually over time; plants subjected to 12, 24 and 36 hours of cold stress displayed 669, 6084, and 24,129 DEGs, respectively. The DEGs were clustered into 8 subclasses by k-means clustering; subclasses 2, 3, 4, and 7 were enriched in pathways related to "flavonoid biosynthesis". Nontargeted metabolome analysis revealed that 3719 annotated metabolites were shared by all four groups of samples. We identified 1186, 1087, and 1097 differentially accumulated metabolites (DAMs) in three comparisons: Cold_12 vs. CK, Cold_24 vs. CK, and Cold_36 vs. CK, respectively. The DAMs were predominantly enriched in the "flavonoid biosynthesis pathway".Through WGCNA, we obtained five modules and 29 flavonoid-related metabolites with extremely significant module-metabolite paired relationships (|correlation coefficient|> 0.9, P < 0.01). We analysed the DEGs and DAMs of the flavonoid biosynthetic pathway in H. moellendorffii Hance under cold stress and constructed a correlation network between transcription factors (TFs) and structural genes in the pathway. RT-qPCR was used to confirm the expression of four hub genes from the WGCNA, six TFs, and 15 structural genes of the flavonoid biosynthetic pathway. These data provide a foundation for functional genomics studies of H. moellendorffii Hance and contribute
Keywords: Heracleum moellendorffii Hance, cold stress, multi-omics, Flavonoid biosynthesis, transcription factor
Received: 13 Dec 2024; Accepted: 21 Feb 2025.
Copyright: © 2025 Liu, Gao, Song, Wang, Zhang, Wang, Liu, Li, Liu and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Changhua Liu, Heilongjiang University, Harbin, China
Yan Sun, Heilongjiang University, Harbin, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.