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Full-dimensional dynamic
convolution and progressive
learning strategy for strawberry
recognition based on YOLOv8
Liping Bai, Chenglei Xia, Fei Liu, Xing Yang and Tai Zhang*

Macau Institute of Systems Engineering and Collaborative Laboratory for Intelligent Science and
Systems, Faculty of Innovation Engineering, Macau University of Science and Technology,
Macau, Macao SAR, China
The growth of strawberries is influenced by environmental diversity and spatial

dispersion, which present significant challenges for accurate identification and

real-time image processing in complex environments. This paper addresses

these challenges by proposing an advanced recognition model based on

YOLOv8, tailored for strawberry identification. In this study, we enhanced the

YOLOv8 architecture by replacing the traditional backbone with an

EfficientNetV2 feature extraction network and using ODConv instead of the

standard convolution. The loss function was modified with a dynamic

nonmonotonic focusing mechanism, and WiseIoU was introduced to replace

the traditional CIoU. The experimental results showed that the proposed model

outperformed the original YOLOv8 regarding mAP50, precision, and recall, with

improvements of 16.91%, 14.92%, and 8.4%, respectively. Additionally, the

model's lightness increased by 15.67%. The proposed model demonstrated

superior accuracy in identifying strawberries of different ripeness levels. The

improvements in the proposed model indicate its effectiveness in strawberry

recognition tasks, providing more accurate results in varying environmental

conditions. The lightweight nature of the model makes it suitable for

deployment on picking robots, enhancing its practical applicability for real-

time processing in agricultural settings.
KEYWORDS

strawberries recognition, target detection, improved YOLOv8, EfficientNetv2, ODConv,
Wise-IoU
1 Introduction

The strawberry cultivation and sales market is continuously growing, and the United

States is one of the largest producers with an annual output of approximately 1.5 million

tons, accounting for one-third of the total global production. Spain and Poland are the

major producers in Europe, with annual outputs of 600,000 and 500,000 tons, respectively

(Zhang et al., 2024b). China is the world’s largest strawberry producer, with a dedicated
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cultivation area exceeding 100,000 ha, and an annual output of 3

million tons (Lei et al., 2021). Based on data from 2023, China’s

total strawberry production is expected to reach 2.2 million tons

with a cultivation area of approximately 120,000 ha. The main

growing provinces are Shandong, Sichuan, and Jiangsu, and their

market size is projected to reach 45 billion yuan, with expectations

exceeding 50 billion yuan by 2025.

Strawberry recognition faces multiple challenges in terms of

object detection. First, strawberries are typically small and often

heavily overlapped or occluded by other plant parts such as leaves

and vines, making their detection difficult. Particularly in complex

backgrounds, strawberry detection requires high precision and

robustness to effectively distinguish strawberries from the

background. Second, the appearance of strawberries changes

significantly depending on factors such as ripeness, variety, and

lighting, thereby increasing the detection complexity. Strawberries

with different ripeness levels have noticeable differences in color and

shape, transitioning from bright red to green, which raises the

demand for classification and recognition. Strawberry detection

systems are typically deployed in agricultural automation

equipment. Therefore, strawberry recognition systems must

address multiple challenges, including small-object detection,

complex backgrounds, appearance variations, and device

adaptability. It is also vital to synergize robotic technology to

implement robotic harvesting of target fruits (Jin, 2020; Jichao

and Fengzhi, 2021).

Scholars have proposed various methodologies for recognizing

targeted fruits and vegetables. These methods include traditional

image-technology-based approaches, such as color segmentation

and shape matching. Alternatively, machine vision technology-

based recognition methods such as template-based matching and

pattern-based recognition have also been employed. Kurtulmus

et al. (2011) use three different proportions of moving

subwindows to scan the entire image to locate the target fruit.

Each subwindow performs three classifications using intensity

components, saturation components, and circular Gabor textures,

and finally determines the result of the subwindow classifier. The

algorithm achieved a detection success rate of 75.3%. Restrepo-

Arias et al. (2022) introduce a target recognition method based on

texture features, which avoids classification biases caused by leaf

shape and achieves a precision of 96.31%. However, this process is

affected by inconsistent illumination.

With the rapid development of neural network technology,

researchers have been exploring the use of neural networks for

target detection. Garcés Cadena et al. (2023) and Meng et al. (2023)

propose a spatio-temporal convolutional neural network in

combination with a Transformer fusion regional convolutional

neural network for detecting pineapple fruit. This method

achieved a recognition precision of 92.54%, with an average

reasoning time of 0.163s. Zhang et al. (2024a) ResNeXt-50 is used

as the backbone network to optimize the anchor boxes in the RPN

layer, adapting to the complex morphology of pepper branches. The

improved model achieved recognition accuracies of 92.2%, 96.3%,

and 85.6% for upright, centripetal, and competing branches,

respectively. Jia et al. (2020) combined ResNet and DenseNet to
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significantly reduce the number of input parameters. Finally, the

mask generated by the FCN is used to obtain the region where the

apples are located. This method achieved an accuracy of 97.31% and

recall rate of 95.70%. The green apple detection method proposed

by Ji et al. (2025) is based on an improved DETR model, which

combines a multidimensional feature extraction network and

transformer module to significantly enhance detection accuracy

and efficiency. The transformer module employs a multiscale

deformable attention mechanism, optimizing the model’s

convergence speed and computational efficiency. However, the

model has high computational complexity and requires

substantial computational resources, especially on embedded

platforms, which may affect the real-time performance. Fujinaga

(2024) proposed a deep-learning-based method for a

multifunctional agricultural robot designed for strawberry

harvesting and inflorescence pruning. The method utilizes the

semantic segmentation model DeepLabV3+ to identify

components, such as strawberries, inflorescences, and sepals, and

extract their relevant attributes. Based on the extracted attributes,

the robot detects the cutting points for fruit harvesting and

inflorescence pruning, while avoiding non-working areas that

may potentially damage the plants. The method demonstrated

high accuracy with F-measures of 0.93 for fruit detection and 0.86

for pruning cutting points, and it performed stably under various

lighting conditions. However, when multiple fruits are in close

proximity, especially along the vertical axis, semantic segmentation

treats them as a single large region, resulting in an inability to

accurately separate and identify them as individual fruits.

Additionally, when fruits are tilted, the sepals, which should be

positioned above the fruit, may no longer align accurately, leading

to errors in cutting-point localization. Furthermore, this method

determines fruit maturity based on a specific threshold, with only

two categories: mature and immature.

The YOLO algorithm is popular owing to its parameter-light

and deployable nature. Chen et al. (2023) proposes a YOLO-COF

lightweight occlusion target detection method for identifying

camellia fruit. The YOLOv5s model utilizes the K-means

clustering algorithm to select and automatically filter target

datasets, and the attention mechanism enhances the feature

extraction of obscured targets. The experimental data indicate an

mAP value of 94.10% and a model size of 27.1 MB. Chen et al.

(2023) propose an improved apple picking method that combines

the EF-YOLOV5s object detection network and an enhanced

DBSCAN-based picking order planning. EF-YOLOV5s

significantly improves apple recognition accuracy in complex

environments by introducing the EfficientFormer structure and

Soft-NMS algorithm, but it increases the model’s complexity,

particularly in resource-constrained scenarios. The modified

DBSCAN algorithm automatically groups apples into different

picking clusters and plans the picking sequence using Gaussian

weighting and saliency levels, thereby improving both the efficiency

and success rate. However, the effectiveness of the DBSCAN

algorithm depends on the choice of the parameters. If the density

distribution of the clusters is complex, the automatically selected

parameters may not fully adapt to all scenarios. Additionally, this
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method focuses solely on apple detection and picking-order

planning without specifically addressing the classification of

apple maturity.

However, these algorithms require significant computing

resources, which leads to performance degradation during

deployment. Consequently, they are not suitable for low-resource

devices. To address this issue, we propose a new YOLOv8 object

detection model by replacing the original backbone structure with

the EfficientNetV2 network. To maintain or enhance recognition

precision while keeping the model lightweight, we optimized the

neck structure and introduced ODConv, employing a parallel

strategy to learn attention values within the convolution kernel

across four dimensions, thus enhancing the information fusion

capabilities. In addition, we incorporated Wise-IoU to improve the

model’s generalization ability. This aids in identifying small targets

in complex environments and enhances categorization precision.

Finally, we applied the new model to a strawberry dataset to validate

these methods.

The remainder of this study is organized as follows. Section 2

presents the data collection and processing. Section 3 introduces the

proposed method and Section 4 presents the experimental results.

Finally, Section 5 provides an overview of the conclusions and

recommendations for future research.
2 Materials and methods

2.1 Experimental data acquisition

Strawberry images were collected at the Xiangyuan Strawberry

Garden in Xiangzhou District, Zhuhai City, Guangdong Province.

The collection was conducted under naturally lit, clouded conditions

to replicate the most common environmental conditions during the
Frontiers in Plant Science 03
picking season. The equipment utilized for image capture was a

HUAWEI Mate30E Pro with a 40-megapixel ultra-sensitive camera,

and all photographs were saved in JPG format.

To align with real-world scenarios of robotic harvesting, we

mounted the camera at a height and angle consistent with that of

the camera installed on the robot. We amass 1,680 original

strawberry images depicting various conditions, including

overlapping, backlighting, and occlusion (Figure 1).

The harvesting period was between February and May;

therefore, we chose it as a relevant subject for our research.
2.2 Generate data set

As deep learning models require extensive data for training, the

quality of the dataset has a significant impact on model

performance. Therefore, it is necessary to use various data

augmentation techniques to enrich existing data. In this study, we

used various image enhancement methods, including rotation,

translation, and brightness adjustment (Figure 2). All the images

were resized to a fixed size of 640 × 640 pixels. Through this data

augmentation, we significantly expanded our dataset and amass

3,500 photographs.

Strawberry ripeness can be divided into four stages: green,

white, color change, and red ripening. To ensure the local supply

of strawberries and to transport the harvested strawberries to

relatively distant areas for sale, fruit farmers must harvest not

only completely ripe red strawberries but also strawberries in the

color-changing stage. Therefore, we divided strawberry maturity

into three phases: low, medium, and high (Figure 3). Local

transportation is best for high maturity, which is also known as

red ripeness. Long-distance shipping is suitable for medium

ripeness, which corresponds to the color-changing stage. A low
FIGURE 1

Photographs taken in different environments. (A) Low ripeness strawberries; (B) Medium ripe strawberries; (C) High ripeness strawberries;
(D) Strawberries in direct sunlight; (E) A close-up shot of strawberries; (F) Strawberry shot from a distance; (G) Strawberry shot from a
longer distance.
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maturi ty indicates an immature stage that requires

additional growth.

We statistically determined and set the number of images under

different conditions based on the difficulty of training (as shown in

Figure 4). This study separately counted the number of images for

four classification methods: maturity, light intensity, degree of

occlusion, and number of strawberries in a single image. In terms

of maturity, images with medium maturity were more difficult to

identify; therefore, their number was higher than that of both the

low- and high-maturity images. Regarding light intensity, images

under natural light were easier to identify, resulting in the fewest

images, whereas images with both direct sunlight and automatic
Frontiers in Plant Science 04
light were the most numerous. The number of severely occluded

images was the highest for the degree of occlusion. Finally, in terms

of the number of strawberries per image, the number of images with

many or moderate strawberries was equal. In addition, the training,

validation, and test sets were split in an 8:1:1 ratio, meaning the

training, validation, and test sets contained 2,800, 250, and 250

images, respectively.

Labeling image annotation software was used to input all

prepared image data and establish three maturity categories: low,

medium, and high. The results were obtained after annotation.

The.txt files were used as datasets for training models in

subsequent activities.
FIGURE 3

Classification of different strawberry maturity levels.
FIGURE 2

Image data augmentation methods.
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3 Object detection model

3.1 YOLOv8 network

The YOLO algorithm is a popular object-detection method

introduced by Redmon et al. in 2016. It extracts features from an

entire image and predicts object locations and categories within a

single neural network, combining object detection and image

classification tasks. YOLO has achieved significant improvements in

its computational efficiency and detection capabilities (Liu et al., 2018).

Compared with the previously proposed YOLO series

algorithms, the YOLOv8 algorithm improves the backbone

network and neck by incorporating the extension-elan idea

proposed by the YOLOv7 network (Wang et al., 2023) and

enhancing the C3 module in YOLOv5 (Yang et al., 2020) into the

C2f module with more abundant gradient flow. It can adjust the

number of different channels for different-scale models. There were

significant changes in the head. Compared with YOLOv5, the

decoupling head structure is replaced, the classification and

detection heads are separated, and an anchor-free concept is

introduced to replace the original anchor-based one. In terms of

data enhancement, the operation of turning off the mosaic

enhancement in the last 10 generations of training in the YOLOX
Frontiers in Plant Science 05
(Ge, 2021) model is introduced, which helps to improve the

precision of the model.

In the loss function, YOLOv8 differs from previous YOLO

models by using one-hot encoding for classification loss to

determine the presence of objects instead of object loss. Both the

v5 and v8 models use binary cross entropy (BCE) as the criterion for

classification loss (Wu et al., 2022). The expression for the BCE loss

is shown in Equation 1:

L =
1
Noi

− ½yi log Pi + (1 − yi) log (1 − Pi)� (1)

The other loss is the regression loss. In the regression task, the

degree of regression was measured using the ratio of the target and

prediction frames. The IoU used by v8 was CIoU (Zheng et al.,

2020), and the aspect ratio criterion was added to the original

intersection ratio loss. The expression formula for this criterion is

shown in Equation 2:

LCIoU = 1 − IoU +
r2(b, bgt)

c2
+ av (2)

Due to the introduction of Anchor-Free in the v8 model and to

improve generalization, the DFL loss (Li et al., 2020) has been

increased. The expression for the DFL loss is shown in Equation 3:
FIGURE 4

The number of images of different types. (A) Maturity Conditions; (B) Light Conditions; (C) Obstruction Conditions; (D) Fruit Number Conditions.
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DFL(Si, Si+1) = −((yi+1 − y) log Si + (y − yi) log Si+1) (3)
3.2 Improved YOLOv8 recognition model

Because YOLOv8 detects small targets, a lightweight processing

approach is necessary for the recognition model to be deployed and

to communicate with robotic arms and autonomous vehicles.

Therefore, we propose an improved yolov8 model. We replaced

the original backbone structure with the EfficientNetV2 feature

extraction network and performed lightweight processing on the

model. We replaced the original standard convolution operation

with the ODConv convolution operation in the head part. The

model’s recognition efficiency in complex environments is

improved by using a multidimensional attention mechanism that

learns complementary attention along the four dimensions of the

kernel space via a parallel strategy. The original CIoU was replaced

withWise-IoU in the loss function using a dynamic non-monotonic

focusing mechanism.
Frontiers in Plant Science 06
3.2.1 Improvement of model structure

As the recognition model must be deployed in practical

applications, it is necessary to improve the existing model by

minimizing the number of parameters without reducing its

precision or performance. After conducting several experiments,

we proposed an improved YOLOv8 model, as shown in Figure 5.

First, we achieved model simplification by modifying the

network architecture. EfficientNetV2 is used to replace the

original network in the backbone network, such that the

parameter count is decreased and the model lighter.

However, this simplified model may lead to potential reductions

in the recognition precision, recall rates, and other performance

metrics. To address this issue, two ODConv operations were applied

in the up-sampling section of the neck stage, and the original Conv

structure in the down-sampling section was replaced with ODConv.

The ODConv model utilizes a multidimensional attention

mechanism in parallel strategies to provide flexible attention to

learning in four dimensions of the convolution kernel space. This

improves the model’s performance.
FIGURE 5

Improved YOLOv8 network structure.
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To ensure robustness when encountering objects of different

sizes and obstructed objects during the recognition process, it is

necessary to use an IoU with solid robustness. The traditional IoU is

more sensitive to the position and size of the label box and cannot

adapt to dense or sparse objects. Therefore, the model adopts wise-

IoU, which not only has good detection accuracy, but is also better

suited for overlapping and sparse targets.

3.2.2 EfficientV2 backbone architecture
Owing to the use of deep convolution in the shallow layers of

the network, the EfficientNetV1 model (Tan, 2019) experiences a

slowdown in training speed when the size of the training images

increases significantly. In addition, the depth and width of each

model stage were equally enlarged, further contributing to the slow

running speed. However, each stage contributes differently to the

training speed and number of parameters of the network. Therefore,

it is not reasonable to directly use the strategy of equal scaling.

To address these issues, Tan and Le (2021) propose the

EfficientNetV2 model. The original model ’s depth wise

convolutions are not able to fully utilize the accelerators available

in the current hardware, leading to slower practical application

compared to the theoretical performance. A new fused-MBConv

architecture (shown in Figure 6) is introduced to enhance the

computational efficiency and leverage existing hardware

capabilities, thereby achieving faster real-world performance.
Frontiers in Plant Science 07
The structure was updated to combine the 1 × 1 and deep

convolutions of the MBConv module into a 3 × 3 convolution.

Additionally, both structures incorporate the SE channel attention

mechanism (Hu et al., 2018), which adjusts the weight value of each

channel on the short-cut branch to improve or depress the

importance of different channels during the training process. A

schematic of this process is shown in Figure 7.

The SE module uses global average pooling to compress the

two-dimensional features of each feature map into a single value.

This stage involves a structure with two fully connected layers,

where the first layer compresses the channels and reduces their

number to decrease the computational load. After activation by the

ReLU activation function, the dimension was restored to the input

dimension at the beginning of the branch following the second fully

connected layer. Finally, the weight coefficient is activated by the

sigmoid activation function.

To achieve the correct combination of the two modules, we used

a NAS search to replace the first four MBConvs in the network with

fused-MBConv modules. This combines the precision, efficiency,

and training speed of the modern accelerators.

During the initial training phase, it is essential to increase the

image size using smaller images and weak regularization. It also

makes it more challenging to add regularization learning. Thus, the

network enhanced progressive learning and introduced adaptive

regularization, as shown in Algorithm 1. The training process is
FIGURE 6

The structure of MBConv and fused-MBConv.
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divided into M stages. During the first M-1 stages, the model was

trained using the image size and regularization amplitude, and then

linear interpolation was used to determine the value of each stage.

The final stage, M, uses the target image size and regularization.
Fron
Require: Initial image size S0 and regularization fk
0

Require: Final image size Se and regularization fk
e

Require: Number of total training steps N and stages M

1: for i = 0 to M − 1 do

2: Image size: Si ←S0 + (Se − S0)
i

M−1

3: Regularization: Ri ← fk
i = fk

0 + (fk
e − fk

0 )
i

M−1

4: Train the model for N
M steps with Si and Ri

5: end for
Algorithm 1. Adaptive regularization progressive learning.

Table 1 lists the proposed backbone architecture. The first stage

consists of standard 3×3 convolutions. Stages 2–6 stack fused-

MBConv structures, stages 7–12 are composed of MBConv

structures, and the final stage uses the SPPF structure.
tiers in Plant Science 08
3.2.3 Omni-dimensional dynamic convolution
Conventional convolution utilizes a single static convolution kernel

and is not affected by the input sample. However, the weight values

depend on the input, leading to input dependency. CondConv, the

pioneering work on dynamic convolution proposed by Yang et al.

(2019), utilizes various convolution kernels for different inputs and

weights multiple convolution kernels linearly. However, the weighted

value depends on the input situation, thus making the dynamic

convolution dependent on the input. Based on this model, Chen

et al. (2020) improved the attention mechanism in DyConv and

allocated the extracted attention to different convolution kernels

using the SENet method.

While the previous models only considered the dynamic

characteristics of convolutional cores for the number of convolutional

cores, they ignored the space size of each convolutional kernel, the

number of input channels, and the number of output channels. This

limitation leads to lower performance of such convolutions in large

networks. This study employs omni-dimensional dynamic convolution

to address the limitations of previous models.

ODConv uses multidimensional attention mechanisms and parallel

strategies to learn convolution kernel attention across the four

dimensions of the kernel space at any convolution layer. A four-

dimensional diagram of the attention is shown in Figure 8

(Li et al., 2022).

Figures 8a–c show that different attention values are assigned to

the convolution parameters of the spatial position, input channel

convolution filter, and output channel convolution filter. For a

single convolution kernel, in Figure 8d, different values are assigned

to n global convolution kernels.

Omni-Dimensional Dynamic Convolution improves the

performance of convolutional neural networks in complex tasks by

dynamically generating convolution kernels and processing

multidimensional features. The calculation process for ODConv is

as follows:

Given an input feature map X ∈ RH×W×C, whereH is the height,

W is the width, and C is the number of channels, the generation of

the convolution kernel K is dynamic, depending on the input

features X and contextual information. The dynamic generation

of the kernel K is shown in Equation 4:

K = f (X, q) (4)

where f(·) is the generation function and q represents the

learnable parameters that determine the shape and size of the

kernel. Based on the generated convolution kernel K, ODConv

performs a standard convolution operation, but the kernel is

dynamically adjusted for each input. Therefore, the calculation

method for the output Y is shown in Equation 5:

Y =o
H

i=1
o
W

j=1
K(i, j) · X(i, j) (5)

where Y is the output feature map, representing the result of

applying the dynamically generated convolution kernel K to the

input feature map X.
TABLE 1 EfficientNetV2 network architecture.

Stage Operator Stride Channels Expansion

1 Conv 3 × 3 2 24 2

2 Fused-MBConv, k3
× 3

1 24 1

3 Fused-MBConv, k3
× 3

2 48 4

4 Fused-MBConv4, k3
× 3

1 48 4

5 Fused-MBConv, k3
× 3

2 64 4

6 Fused-MBConv4, k3
× 3

1 64 4

7 MBConv, k3 ×
3, SE0.25

2 128 4

8 MBConv, k3 ×
3, SE0.25

1 128 4

9 MBConv, k3 ×
3, SE0.25

2 160 6

10 MBConv, k3 ×
3, SE0.25

1 160 6

11 MBConv, k3 ×
3, SE0.25

2 256 4

12 MBConv, k3 ×
3, SE0.25

1 256 4

13 SPPF – 1,024 –
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3.2.4 Wise-IoU

Intersection ratio (IoU) denotes the ratio of intersection and

union of two regions, as shown in Equation 6:

LIoU = 1 −
WiHi

wh + wgthgt −WiHi
(6)

The anchor frame is ~B = ½xywh�, and the target frame is Bgt
�!

=

½xgtygtwgthgt �. However, IoU (Jiang et al., 2018) has a flaw that when

there is no overlap between bounding boxes, the gradient of back

propagation disappears, and the width of the overlap area is not able

to update at training time.

Because the calculation of CIoU in the original YOLOv8 model is

relatively complex, the training stage requires a large amount of

computing resources and the training set contains low-quality

examples. If only the regression of the boundary box contains low-

quality examples, it hinders the performance improvement of the

entire model. Therefore, we use a dynamic nonmonotonic focusing

mechanism combined with a gradient gain distribution strategy
Frontiers in Plant Science 09
(Tong et al., 2023) to reduce the harmful gradient of low-quality

examples while reducing the competition for high-quality anchors.

Because the conventional set measurement factors aggravate the

penalty for low-quality examples and reduce the generalization

ability of the model, we need to weaken the penalty of the set

measurement. Therefore, distance attention was constructed using

distance measurement, and WIoU v1 with a two-layer attention

mechanism was obtained. The definition formula is as follows:

LWIoUv1 = RWIoULIoU (7)

RWIoU = exp(
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )*
) (8)

In Equation 7, RWIoU∈ [1,e] significantly increases the number b,

that is, the ordinary mass anchor frame. For Equation 8, if there are

two anchor frames with the same IoU for the target frame, the anchor

frame RWIoU with a relatively far center distance is better than the

other. The anchor frame LWIoUv1 is also significant; therefore, more
FIGURE 7

SE channel attention mechanism diagram.
FIGURE 8

Four dimensions attention diagram.
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attention will be paid to the anchor frame with a far center distance.

Simultaneously, we introduce an outlier degree to define the mass of

the anchor frame. The definition formula is as follows:

b =
L*IoU
L−IoU

=
L*IoU

(1 −M)L−IoU +M � L*IoU
∈ ½0, +∞) (9)

A small outlier means a high-quality anchor frame; therefore, a

small gradient gain is needed to make the boundary frame

regression focus on the ordinary quality anchor frame, which

results in the improvement of the generalization ability of models

because the number of ordinary quality anchors is larger than that

of high-quality and low-quality anchors. L−IoU is the sliding average

of momentum m. Since it is dynamic, the mass division criteria of

the anchor frame are also dynamic, so the model makes a gradient

gain allocation strategy conform to the current situation.

On this basis, b is used to construct the non-monotonic focusing

coefficient and r is a scaling factor that ensures that the weighting of

the loss function is proportional to the quality of the anchor boxes, as

shown in Equation 10, thus adjusting the model learning based on the

quality of the target boxes. Through r, the weighting of the loss

function can be adjusted adaptively according to the quality of the

boxes. High-quality boxes (i.e., those with smaller b) will have larger
weights, making their loss contributions more significant for model

updates. For lower-quality boxes (i.e., those with a larger b), the
weighting is smaller, reducing their impact on training and

preventing the model from overoptimizing low-quality target boxes.

r =
b

dab−d (10)

WIoUv3 is the version of the loss function based on the b and

weighting mechanism, we have the formula WIoUv3 is shown in

Equation 11:

LWIoUv3 = rLWIoUv1 (11)

3.3 Model evaluation index

The training utilized a V100 GPU with 32 G of video memory

and an Intel Xeon Processor (Skylake, IBRS), and was trained on the

Windows 11 operating system with an initial weight learning rate of

0.001, attenuation coefficient of 0.0005, and 300 iterations.

The experiment employed the mAP value, precision, and recall

rate as evaluation indicators, with the precision and parameters

being the most significant. Recognition was classified into three

types: low, medium, and high. Among them, the formulas for the

precision and recall are shown in Equation 12:

Precision =
TP

TP + FP
,Recall =

TP
TP + FN

(12)

where TP represents a predicted box with an IoU greater than a

specified threshold. FP represents a predicted box with an IoU less

than or equal to the specified threshold. FN indicates a genuine

target box without a TP.

The area under the PR curve is the Average Precision (AP), and

mAP is the AP average of all categories. The parameters are introduced
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as evaluation indexes to display the model’s lightweight degree. Each

number corresponds to the weight matrix in the convolution and full

join operations used in the model, and is composed of multiple

parameters. A smaller value indicated a less complex model.

The mAP50 is a commonly used evaluation metric to assess the

model performance. It evaluates the accuracy of the model in detection

tasks by calculating the average precision (AP) at an IoU threshold of

0.5. First, the AP value for each class is computed, which is the average

precision obtained from the precision–recall curve at different

confidence thresholds. The AP values of all classes were then

averaged to obtain the final mAP50 score. As a standardized

evaluation metric, the higher the mAP50 value, the better the

model’s performance in terms of detection accuracy.

4 Analysis of experiment results

4.1 Experimental results

To evaluate the model’s performance in any scenario, we utilized

images of strawberries with varying degrees of ripeness as a test dataset.

Figures 9a–c display the recognition performance of the model on

strawberries of low, medium, and high maturity, respectively. These

results indicate that the model can accurately identify strawberries at

different stages of ripening and recognize the entire ripening process.

During the picking process of the robot, the uncrewed vehicle

moved underneath, as captured by the camera on the robot arm and

car. Owing to the complex structure of strawberries, which belong to

the rose family of perennial herbs, stem roots can be divided into new

stems, rhizomes, and stolons. Strawberry leaves are the base of three

compound leaves with long petioles, which may cause the target object

to be blocked by stems and leaves. Therefore, we selected occluded

images to verify the model’s resistance to occlusions. Figure 9d shows

that a low-ripening strawberry is occluded by the leaves of high-

ripening strawberries, with leaf color similar to that of low-ripening

strawberries. The recognition results demonstrated the model’s ability

to accurately identify low-grade ripe strawberries, proving its suitability

for real-world applications.

Images of illuminated and gloomy strawberries were collected

to test the model’s effectiveness under varying lighting conditions.

In Figure 10, the left strawberry is exposed to sunlight, whereas the

right strawberry is in the shadow. The recognition results

demonstrate that the model performs well under both lighting

conditions and is suitable for practical applications.
4.2 Ablation experiment

To verify the effectiveness of the module in the original YOLOv8

model, the same dataset and test set were used to conduct ablation

experiments on the correspondingmodels. The performance parameters

of each model are listed in Table 2. YOLOv8 represents the original

YOLOv8model, YOLOv8 +ODConv represents themodel that replaces

the standard convolution with a full-dimensional dynamic convolution

at the neck, and YOLOv8 + EfficientV2 represents the model-replaced

backbone network by the EfficientV2 network. YOLOv8 + EfficientV2 +
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FIGURE 9

Detection in different scenarios. (a) Low maturity; (b) Medium maturity; (c) High maturity; (d) Target is obscured.
FIGURE 10

Different light conditions. (a) Environment with direct sunlight; (b) Environment with natural light.
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ODConv indicates that the backbone network was replaced by the

EfficientV2 network, while the neck part was modified, and the standard

convolutions were replaced with ODConv. Simultaneously, the neck

structure is changed, and the original ordinary convolution of the neck is

replaced by a full-dimensional dynamic convolution. YOLOv8 +

EfficientV2 + ODConv + WIoU represents a change from CIoU to

WIoU based on previous improvements. The training loss function is

shown in Figure 11. The YOLOv8-EfficientNetv2-ODConv-WIoU-x

model converges faster, and the loss function decreasesmore rapidly and

eventually stabilizes at a lower value. The performance at the end of

training was relatively better.

Because the model must be deployed on the picking robot, the

number of parameters in the model must be minimized. The identified

strawberries are divided into three types of maturity; therefore, it is

necessary to accurately identify their maturity. Therefore, precision and

parameter quantity are the key evaluation indexes. Table 2 shows that

the precision index improved significantly by 11.26% after adding full-

dimensional dynamic convolution. However, the number of model

parameters is too large; therefore, the EfficientV2 network is replaced

with the original backbone network. The results show that the number

of parameters is significantly reduced by 15.83% compared to the

original YOLOv8model. However, the precision improvement was not

substantial. Therefore, the two models were combined. Compared to

the original YOLOv8 model, the precision index of the new model was

improved by 12.05%, and compared to the previous YOLOv8 +
Frontiers in Plant Science 12
ODConv model, the precision index has been improved by 0.7%. At

the same time, the number of parameters is only increased by 0.14 M

compared with the YOLOv8 + EfficientV2 model. However, it is worth

noting that the training reasoning time of this model was 4.29 ms

slower than that of the original YOLOv8 model. To reduce the

reasoning time and enhance the precision of identifying small

targets, the original CIoU was replaced by the WIoU. The obtained

data show that the precision index of the original YOLOv8 model

continued to improve, which was 14.92% higher than that of the

original YOLOV8 model. The training reasoning speed is 1.41

ms faster.

The experiments demonstrated that ODConv improved the

precision index significantly, the EfficientV2 network effectively

reduced the number of model parameters and their complexity, and

WIoU accelerated the training reasoning speed and increased the

recognition precision.

To compare the various models, we tested them using the same

photograph, which included varying levels of maturity, lighting, and

occlusion. Figure 12a illustrates the limitations of the original

YOLOv8 algorithm in detecting low-ripe strawberries because it

failed to identify a low-ripe strawberry on the left side and a small

low-ripe strawberry in the middle. Additionally, it misclassifies

medium-ripe strawberries as high-ripe strawberries and fails to

detect medium-ripe strawberries on the right-hand side. As shown

in Figure 12b, after adopting the full-dimensional dynamic
FIGURE 11

Training loss curve.
TABLE 2 Ablation experiment.

Algorithm IoU Precision (%) Recall (%) mAP50 Parameter (M) Speed/ms

YOLOv8 0.7 79.02 79.36 79.63 68.16 7.73

YOLOv8 + ODConv 0.7 87.92 85.44 91.75 68.71 8.142

YOLOv8 + EfficientV2 0.7 84.82 89.54 93.30 57.32 9.719

YOLOv8 + WiseIoU 0.7 81.6 83.93 85.75 68.16 6.4

YOLOv8 + EfficientV2
+ ODConv

0.7 88.54 89.05 93.60 57.46 12.02

YOLOv8 + EfficientV2 +
ODConv + WIoU

0.7 90.81 86.03 93.10 57.48 10.61
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convolution, strawberries with low maturity on the left and high

maturity on the right can be identified, and tiny strawberries with

low maturity in the middle can also be identified. owing to the small

target size, the recognition box is slightly offset, and the strawberry

initially identified as having high maturity can also be accurately

identified as having medium maturity. However, strawberries that

should have been identified as medium ripeness were not detected.

As shown in Figure 12c, after the lightweight processing of the

model using EfficientV2, the recognition effect is improved

compared with the original YOLOv8 model. However, problems

such as recognition errors and failure to identify small targets, have

not improved. As shown in Figure 12d, when full-dimensional
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dynamic convolution and EfficientV2 are added simultaneously, the

recognition effect is enhanced compared with the model with only

EfficientV2. Small targets could also be identified, but the

recognition box was still offset, and strawberries with middle and

medium maturity were still not identified. As shown in Figure 12e,

after replacing CIoU with WIoU, all strawberries could recognize

the corresponding ripeness, and the small target recognition box

offset was also improved.

Based on the experimental results, it can be concluded that the

proposed model reduces complexity and improves recognition

precision. The model accurately identifies strawberries in natural

picking environments, making it suitable for practical application.
FIGURE 12

The results of different models. (a) YOLOv8; (b) YOLOv8-ODConv; (c) YOLOv8-EfficientNetv2; (d) YOLOv8-ODConv-EfficientNetv2; (e) YOLOv8-
ODConv-EfficientNetv2-WIoU.
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5 Discussion

To evaluate the effectiveness of different modules in the

proposed model, we conducted ablation experiments using the

same training and testing datasets and compared them with other

similar modules. The performance metrics for each model are listed

in Table 3.

As shown in Table 3, YOLOv8+EfficientV2 demonstrates a

significant performance improvement, with an accuracy increase of

5.50%, recall improvement of 0.49%, and mAP50 increase of 2.85%.

Although YOLOv8 + EfficientV2 has 50.03% more parameters than

YOLOv8 + Vanillanet and is relatively slower, its improvements in

accuracy and recall offer clear advantages. YOLOv8 + ODConv
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outperformed both YOLOv8 + DWConv and YOLOv8 + DSConv

in terms of accuracy and recall, with a significant improvement in

mAP50. Additionally, while the parameter count of YOLOv8 +

ODConv is slightly higher than that of YOLOv8 + DWConv and

YOLOv8 + DSConv, it delivers better performance and faster speed,

outperforming YOLOv8 + DSConv by 20.65 ms and YOLOv8 +

DWConv by 5.92 ms. YOLOv8 + EfficientV2 + ODConv + WIoU is a

model with strong overall performance. This demonstrates a clear

advantage over the models that incorporate only individual modules

or networks.

To further validate the effectiveness of the proposed network,

we conducted comparative experiments with several other object

detection algorithms as well as different convolutional or network
TABLE 3 Comparison of the performance of different algorithm modules.

Algorithm IoU Precision (%) Recall (%) mAP50 Parameter (M) Speed/ms

YOLOv8 + Vanillanet 0.7 79.32 89.05 90.45 38.21 2.86

YOLOv8 + EfficientV2 0.7 84.82 89.54 93.30 57.32 9.719

YOLOv8 + MobileOne 0.7 75.39 83.66 85.07 64.95 15.9

YOLOv8 + ODConv 0.7 87.92 85.44 91.75 68.71 8.142

YOLOv8 + DSConv 0.7 80.82 85.01 85.32 67.91 20.65

YOLOv8 + DWConv 0.7 84.18 80.96 85.21 64.47 5.92

YOLOv8 + EfficientV2 +
ODConv + WIoU

0.7 90.81 86.03 93.10 57.48 10.61
FIGURE 13

Detection results of Baidu PaddlePaddle dataset. (a) High maturity detection; (b) High and low maturity detection; (c) Three types of
maturity detection.
TABLE 4 Comparison of the performance of different object detection algorithms.

Algorithm IoU Precision (%) Recall (%) mAP50 Parameter (M) Speed/ms

YOLOv8 0.7 79.02 79.36 79.63 68.16 7.73

YOLOv5 0.7 81.50 76.53 79.57 97.20 6.01

YOLOv3 0.7 78.41 78.83 79.26 103.96 5.01

SSD 0.7 74.6 57.6 68.2 47.12 5.02

Faste R-CNN 0.7 82.5 84.6 86.6 106 14.35

YOLOv8 + EfficientV2 + ODConv + WIoU 0.7 90.81 86.03 93.10 57.48 10.61
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modules. All the models were trained using the same training

dataset, and the training process consisted of 300 epochs.

As shown in Table 4, When comparing YOLOv3, YOLOv5, and

YOLOv8, YOLOv5 performs the best in terms of accuracy, reaching

81.50%, which is 3.14% higher than YOLOv8 and 3.59% higher than

YOLOv3. In terms of recall, YOLOv8’s recall rate of 79.36% is slightly

higher than that of YOLOv5’s 76.53%. However, YOLOv8’s mAP50 is

79.63%, which was 0.08% higher than that of YOLOv5. Regarding speed,

YOLOv3 was the fastest, with a processing time of 5.01 ms per image,

35.1% faster than YOLOv8, and 16.6% faster than YOLOv5.When

comparing YOLOv8, SSD, and Faster R-CNN, YOLOv8 outperforms

SSD in both accuracy and recall. However, Faster R-CNN achieved a

higher accuracy, surpassing YOLOv8 by 4.48%, although it was relatively

slower. Compared to SSD’s 5.02 ms, YOLOv8 was slower.

In the comparison between YOLOv8 + EfficientV2 + ODConv +

WIoU, Faster R-CNN, and SSD, YOLOv8 + EfficientV2 + ODConv +

WIoU achieved an accuracy of 90.81%, which was 8.31% and 16.21%

higher than those of Faster R-CNN and SSD, respectively. Its recall rate

of 86.03% and mAP50 of 93.10% far exceeded toes of both Faster R-

CNN and SSD. Although the processing speed of YOLOv8 +

EfficientV2 + ODConv + WIoU is slower than that of SSD, it has

45.76% fewer parameters than Faster R-CNN, demonstrating superior

computational efficiency. Therefore, YOLOv8 + EfficientV2 +ODConv

+ WIoU has a significant advantage in applications requiring high

accuracy and is well suited for scenarios that require high precision and

lower computational load.

To further validate the detection capability of the improved model,

we conducted experiments using the Baidu Paddle-Paddle dataset. The

detection results are shown in Figures 13a–c. In Figure 13a, the model

can detect strawberries with high maturity, but one strawberry is

blocked by the strawberries and leaves in front, and thus, is not

detected. As shown in Figure 13b, most of the high and low-

maturity strawberries were detected, but one low-maturity strawberry

was missed. In Figure 13c, high-, medium-, and low-maturity

strawberries were detected, but two low-maturity strawberries were

not recognized due to interference from the top leaves. Therefore, the

model may experience detection failures when the target object is

extremely small or overly occluded by similar objects.
6 Conclusion

The target detection algorithm for strawberry-picking robots

must overcome challenges such as occlusion, variations in lighting,

and diversity in fruit shapes. To address these issues, this study

proposes an improved YOLOv8 model that incorporates full-

dimensional dynamic convolution, progressive learning strategies,

and feature enhancement methods. The following conclusions were

drawn based on validation using a strawberry dataset:
Fron
1. In this study, the new backbone architecture was 15.67%

lighter than the original model to some extent. The addition

of ODConv and the improvement of the neck structure

improved the performance of the models, such as precision

and recall.
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2. The model can accurately identify targets in various picking

environments, even when the target is blocked and the features

of the target and occluder are similar. It achieves a precision of

90.81%with 57.48Mmodel parameters and is suitable for actual

picking tasks and adaptability to changing light conditions, while

maintaining effective identification performance.

3. The new model proposed in this study effectively identified

strawberries at different stages of maturity in complex

environments. However, there is room for improvement

in the model’s computation speed. Future work will focus

on enhancing the speed by integrating model optimization

and hardware acceleration techniques with the current

model, aiming to further improve the efficiency of

mechanical harvesting. For instance, the model can be

converted to the ONNX format and deployed on Jetson

NX to generate a TensorRT-based inference engine, and

Triton can be utilized for subsequent deployment.
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