
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Physiology
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1540594
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Orobanche coerulescens is a parasitic plant considered as a malignant weed due to its harmful effects on crops. However, its richness in high-value secondary metabolites makes it a significant medicinal resource. The development of microspores and megaspores is essential for sexual reproduction in plants but research on this aspect of O. coerulescens is lacking. This study aimed to systematically observe the developmental processes of microspores and megaspores in O. coerulescens using microscopic techniques. We measured the levels of soluble sugar, starch, and phytohormones during different developmental stages. We also investigated the key regulatory genes in the metabolic pathways of phytohormones that are closely related to the development of microspores and megaspores using transcriptome sequencing technology. The findings revealed that the flower development process of O. coerulescens could be categorized into six stages. Mature pollen was tricellular, with downy ornamentation and pores on the outer wall. The embryo sac was the monosporangiate polygonum type, and the ovule was inverted. The megaspores developed and matured about 15 days later than the microspores. The soluble sugar level of the flower buds decreased initially and then increased during development, whereas the starch level showed an opposite trend. The levels of strigolactone, auxin, and gibberellins gradually increased throughout the development process. The key genes regulating phytohormone synthesis during the development of microspores and megaspores were identified as ALDHs (Aldehyde Dehydrogenases). In contrast, the key genes regulating phytohormone signaling included TIR1 (Transport Inhibitor Response 1) and IAA3 (Indole-3-acetic Acid Inducible 3), and the key TF was ARF5 (AUXIN RESPONSE FACTOR 5). The findings of this study enhanced the understanding of O. coerulescens biology, providing theoretical references for regulating its reproduction, implementing biological control measures, maintaining its population, and optimizing resource utilization.
Keywords: Megaspores, microspores, Reproductive biology, Histological analysis, Orobanche coerulescens, phytohormones, Transcriptomics, Metabolic pathways
Received: 06 Dec 2024; Accepted: 03 Mar 2025.
Copyright: © 2025 Cui, Liu, Xie, Xiao, Tian, Jiang and Niu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Lijuan Jiang, Central South University Forestry and Technology, Changsha, 410000, Hunan Province, China
Yandong Niu, Hunan Academy of Forestry, Changsha, Hunan Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.