![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Metabolism and Chemodiversity
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1539883
This article is part of the Research Topic Secondary Metabolites in Beverage Plant: Metabolism, Function, and Regulation View all 5 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Tea plant leaves exhibit fluorine-accumulating properties, and the excessive intake of fluoride (F) via tea consumption may pose health risks to consumers; however, despite the high-F content in tea plant, signs of F toxicity are absent, suggesting the presence of F tolerance mechanisms within tea plant. This study investigated F accumulation in the cell walls and structural composition of cell walls in leaves of two tea plant varieties from tea gardens: Camellia sinensis cv. Nongkangzao, a high-F cultivar, and C. sinensis cv. Pingyang Tezao, a low-F cultivar. The results indicate that cell walls are the primary site of F accumulation in tea leaves, accounting for greater than 80.8% of total F, primarily in a water-soluble form.Furthermore, the F in tea leaf cell walls is predominantly located within pectin polysaccharides.In the leaves of Nongkangzao and Pingyang Tezao, the F in pectin accounted for 83.2% and 89.6% of cell wall F, respectively. The fluoride in the cell wall components shows a significant correlation with the metal elements Al, Ca, Mn, and K. The cell wall modifications show that fluoride is closely associated with the amino and carboxyl groups in pectin. Thus, this study aimed to provide an in-depth analysis of the role of tea plant leaf cell walls in F accumulation.In summary, we hypothesize that F in tea plant may directly bind to the amino and carboxyl groups in pectin, or it may bind together with metal elements at these sites in pectin, thereby being fixed within the cell wall. This prevents fluoride from further entering the cell interior and mitigates its damaging effects on intracellular structures. This may be a key mechanism underlying the F tolerance in tea plants.
Keywords: Camellia sinensis L., Fluoride, Cell wall modification, Enrichment characteristics, Chemical forms
Received: 05 Dec 2024; Accepted: 13 Feb 2025.
Copyright: © 2025 Li, Xu, Xu, Luo, Li and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Chunlei Li, College of Agronomy, Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Shouguang, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.