
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Abiotic Stress
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1539445
This article is part of the Research TopicEssence of Survival: Impact of Primary and Secondary Metabolism on Plant Acclimation to Abiotic StressView all 6 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Nitrogen availability critically shapes medicinal plant quality by coordinating the "growthsecondary metabolism" trade-off, yet its regulatory mechanisms remain elusive in the non-model species Epimedium pubescens. Through physiological-transcriptomic integration under five nitrogen levels (0, 3.5, 7.5,15, 22.5 mM NO₃⁻), we demonstrated that moderate nitrogen (MN: 7.5 mM NO₃⁻) optimally balanced biomass accumulation (22%-53% higher than low nitrogen [LN: 0 mM NO₃⁻] and high nitrogen [HN: 22.5 mM NO₃⁻]) with maximal Icariin-type flavonoid production (19%-34% higher than LN/HN). Extreme nitrogen stresses (LN/HN) impaired photosynthetic efficiency (18%-20% reduction), disrupted carbon-nitrogen homeostasis, and restricted flavonoid biosynthesis by hindering carbon reallocation (soluble sugars reduced by 26%-27%, starch by 30%-43%). Time-series transcriptomics revealed distinct response dynamics: LN triggered active transcriptional reprogramming at mid-stage (36 days after treatment, DAT), whereas HN responses were delayed to late-stage (48 DAT). Weighted gene co-expression network analysis (WGCNA) identified the grey60 module as a hub coordinating carbon-nitrogen metabolism and mRNA processing. A tripartite regulatory network linking nitrogen-responsive genes (e.g., EpF3H, UGT), Icariin-type flavonoid/carbon metabolism (e.g., icariin, soluble sugars), and growth phenotypes (e.g., biomass, photosynthesis) elucidated how nitrogen optimizes the trade-off between medicinal quality and yield in E. pubescens. This study provides molecular targets for precision nitrogen management to enhance both medicinal quality and yield, while establishing an integrative framework combining physiological and transcriptomic analyses to investigate metabolic trade-offs in non-model plants.
Keywords: Nitrogen, Epimedium pubescens, Flavonoid, Icariin, Carbon-nitrogen metabolism
Received: 04 Dec 2024; Accepted: 14 Apr 2025.
Copyright: © 2025 Liu, An, Xu, He, Xianen, Chen, Guo, Xu and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Caixia Chen, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Baolin Guo, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.