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Pollen image manipulation and
projection using latent space
Ben Mills, Michalis N. Zervas and James A. Grant-Jacob*

Optoelectronics Research Centre, University of Southampton, Southampton, United Kingdom
Understanding the structure of pollen grains is crucial for the identification of

plant taxa and the understanding of plant evolution. We employ a deep learning

technique known as style transfer to investigate the manipulation of microscope

images of these pollens to change the size and shape of pollen grain images. This

methodology unveils the potential to identify distinctive structural features of

pollen grains and decipher correlations, whilst the ability to generate images of

pollen can enhance our capacity to analyse a larger variety of pollen types,

thereby broadening our understanding of plant ecology. This could potentially

lead to advancements in fields such as agriculture, botany, and climate science.
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1 Introduction

Pollen grains are essentially the male gametes of plants, carrying the necessary genetic

material for plant reproduction (Knox et al., 1986). The role of pollen in plants is crucial, as

it allows plants to reproduce without relying on water for the transport of biological

components necessary for fertilisation. Pollen grains come in a range of sizes and

substructures at the nanometre scale (Halbritter et al., 2018). The morphology of these

pollen grains such as shape, ornamentation, and aperturation (Mert, 2009) play a crucial

role in processes like germination (Matamoro-Vidal et al., 2016). The surface of pollen

grains can have unique features that help them cling to different modes of transportation,

such as bird feathers, bee legs, or animal fur, or help them sail through the air on

appendages that resemble airplane wings or hot air balloons. A pollen grain’s morphology

can change due to dehydration (Fatmi et al., 2020), as dehydration can cause pollen to

become more angular or irregular as the turgor pressure that maintains its shape is lost.

Therefore, imaging of pollen grains is a crucial technique, as it provides information on the

pollen’s morphology in 2D and 3D, providing key insights into the health of crops and the

environment (Lau et al., 1995; Fernandez-Mensaque et al., 1998). Various imaging

methods, including fluorescence microscopy (Atlagić et al., 2012), electron microscopy

(Coutinho and Dinis, 2009), and X-ray tomography (Wang et al., 2015; Li et al., 2016) have

been used to discern the external and internal structures of pollen grains. Despite their

capabilities, these techniques have limitations. Fluorescence microscopy relies on specific

staining protocols that can obscure natural morphological details and require precise
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sample preparation. Electron microscopy, although capable of high-

resolution imaging, is limited to surface morphology and

necessitates labour-intensive preparation steps; and whilst X-ray

tomography offers 3D imaging, it is resource-intensive, involving

costly equipment and time-consuming data analysis. Additionally,

these methods are unsuitable for high-throughput analysis due to

the extensive time and expertise required, making them impractical

for studying the vast diversity of pollen species on a large scale.

Analytical methods have also been employed to explore the

creation of pollen grain apertures, such as the work by Zhou and

Dobritsa (2019), which used genetic and molecular biology

approaches to investigate the regulatory pathways controlling

aperture formation in pollen grains. Their study focused on the

role of specific proteins and genes in determining the placement and

structure of apertures, which are critical for pollen function and

viability. Whilst this research provides fundamental insights into

pollen development, it relies on labour-intensive experimental

techniques and lacks scalability for analysing large numbers of

pollen species.

Owing to the vast number of pollen species, additional methods

of pollen analysis and identification have been sought to help

understand pollen and thus plant ecology.

Over the past 10 years, advancements in graphics processing

units (GPUs) and deep learning algorithms have ushered in a new

era of large-scale, data-driven research (LeCun et al., 2015). The

convolutional neural network (CNN), which is inspired by the visual

cortex (Serre et al., 2007), can be used to categorise images by

outputting a label or value. CNNs have been applied across the field

of palynology (Daood et al., 2016; Grant-Jacob and Mills, 2022;

Romero et al., 2020; Punyasena et al., 2012), with examples including

pollen identification via visible light microscopy of pollen grain types

(Mahbod et al., 2021; Crouzy et al., 2016; Marcos et al., 2015; Grant-

Jacob et al., 2021), identification of 46 different pollen grain types

(Sevillano et al., 2020), and identification of pollen grains from

scattering (Grant-Jacob et al., 2019, 2018) and holographic patterns

(Sauvageat et al., 2020; Luo et al., 2022).

In recent years, with the application of deep learning models,

CNNs have shown great promise in the field of palynology for pollen

grain classification and analysis. However, existing studies primarily

focus on classification tasks using real pollen images, often limited by

the scarcity of high-quality and diverse datasets. Whilst CNN-based

models have demonstrated impressive results in classifying pollen

grains, such as the POLEN23E dataset for 23 pollen types with over

97% accuracy (Sevillano and Aznarte, 2018) and the classification of

73 different pollen types with a higher than 90% accuracy (Astolfi

et al., 2020) using the POLLEN73S dataset that comprises 2,523

images, these methods face challenges when dealing with

underrepresented species or rare morphological features.

These papers highlight the potential of deep learning in

analysing and classifying pollen grains, which can significantly

contribute to a range of fields such as agriculture, botany, and

climate science. By automating the process of pollen identification,

it becomes possible to analyse a larger variety of pollen types,

thereby broadening our understanding of plant evolution

and ecology.
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Style Generative Adversarial Network (StyleGAN) (Karras et al.,

2020), first introduced by NVIDIA researchers in 2018, is a type of

generative neural network that has brought significant modifications

to the generator model by using an alternative generator architecture

that is borrowed from the style transfer literature, which allows it to

create and subsequently modify synthetic (generated) images.

StyleGAN is potentially more effective than other generative

models in producing realistic images because it introduces a unique

style-based generator architecture that allows precise control over

image attributes at different levels of abstraction, from coarse to fine

details. Additionally, its disentangled latent space enables the

generation of high-quality, diverse, and realistic images with

smooth interpolation across variations. This makes it an ideal tool

for creating synthetic pollen images that retain realistic qualities,

which is vital for training deep learning models or enhancing

datasets in fields such as agriculture, botany, and climate science.

The unique feature of such a style-based network is its ability to

control specific aspects of the generated image through the

manipulation of the latent space, which describes a higher-

abstraction representation of the generated image. This allows for

the generation of images with specific characteristics, such as a

particular style or feature. For instance, in the case of generating

images of faces, the network can control aspects such as the facial

expression, identity, and even details like freckles or hair.

Previous synthetic generation studies in palynology have

focused on generating low-resolution microscope images

(Khanzhina et al., 2022) or using scanning electron microscope

(SEM) images for higher-resolution representations (Grant-Jacob

et al., 2022b). Whilst these approaches have been useful for

generating synthetic data, they do not demonstrate the potential

of using StyleGAN for offering new insights into the relationship

between these traits using multiple vector manipulation, nor do

they project real images into latent space for manipulation.

Unlike traditional approaches, this study introduces a novel

application of StyleGAN for the synthetic generation of pollen

images, enabling the manipulation of multiple latent space vectors

to control specific morphological features such as size, shape, and

ornamentation to generate new images of pollen. Furthermore, it

allows for the exploration of feature relationships, such as the

correlation between size and ornamentation, which is often

difficult to achieve through conventional imaging techniques.

This paper explores the potential of using StyleGAN for

interpolating between microscope images of pollen grains in latent

w-space to generate additional images of specific pollen taxa and to

simulate transformations from one pollen taxon to another. It also

demonstrates that w-space latent vectors can be identified that allow

characteristics, such as pollen size and shape, to be manipulated in

generated images and that this technique could potentially unlock

further understanding of the palynological relationships.

A block diagram concept of the study demonstrated in this

manuscript is displayed in Figure 1, showing how 2,070 microscope

images are used to train a StyleGAN network, and then a single real

image is projected into the network and undergoes vector

manipulation in latent space before being generated by the

synthesis part of the StyleGAN network.
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2 Materials and methods

2.1 Data acquisition

The image data used in this work were derived from the pollen

dataset published by Sevillano et al. (2020) and further detailed in Holt

(2020). This dataset comprises high-resolution microscope images of

46 different pollen taxa. The dataset is particularly well-suited for this

research due to its diversity of taxa, which spans a wide range of

morphological characteristics such as size, shape, and ornamentation.

These variations are critical for training machine learning models to

recognise and classify different pollen types accurately.

To make sure that there was equal weighting in the training of

the neural network, 45 images of each pollen taxon were used in

training the neural networks (2,070 total). The image files from the

dataset were padded with zeros and then resized to 256 × 256 pixels

(RGB), to ensure that all images had the same aspect ratio whilst

preserving the relative size information, before being used as

training data.
2.2 Neural networks

This work used two separate neural networks: the StyleGAN

network and the CNN. The StyleGAN network was used to generate
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images of pollen and subsequently modify specific properties of

these generated images. Owing to a CNN’s ability to classify pollen

grains with great accuracy, a CNN was used to validate the

generated images. The CNN was used as a classifier network to

identify the taxa of each image generated by the StyleGAN network.

The neural networks underwent training on a workstation running

Windows 10 and equipped with an AMD Ryzen Threadripper PRO

5975WX with 32 cores operating at 3.60 GHz, 128 GB RAM, and

two NVIDIA A6000 GPUs (each with 48 GB memory).

StyleGAN, a generative neural network, was used to create

synthetic microscope images of pollen grains, where the appearance

of these images was based on the training data. This work used

StyleGAN2, which is available on GitHub (https://github.com/

NVlabs/stylegan2-ada-pytorch.git). As shown in Figure 2, the

StyleGAN network consists of two subnetworks known as the

mapping network and the synthesis network. The mapping

network transformed a random noise vector z (1 × 512) into a

vector w (1 × 512), and the synthesis network transformed the

vector w into an RGB image (256 × 256 × 3) of a pollen grain.

Therefore, either a z or w vector could be used to generate a

synthetic image of a pollen grain. The z vector is known as a latent

space vector in z-space, and likewise, the w vector exists in w-space.

Critically, as the mapping network is designed to disentangle the

properties (or “style”) of pollen grains in the generated images,

vectors in w-space correspond to a higher abstraction of the pollen
FIGURE 2

Schematic of the StyleGAN neural network (formed of the mapping and synthesis networks) for generating images and the use of a CNN for
subsequent classification of the generated images. StyleGAN, Style Generative Adversarial Network; CNN, convolutional neural network.
FIGURE 1

Block diagram concept of the study.
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grains and hence offer the capability to unlock manipulations of

specific features in the generated images. In this work, as discussed

later, this capability enables properties such as the size or shape of

pollen grains in the generated images to be modified or for an image

of a generated pollen grain to be gradually transformed into an

image of a different pollen grain.

The architecture of the StyleGAN network is shown in Figure 3.

The StyleGAN architecture consists of three main components: the

mapping network, synthesis network, and discriminator network.

The mapping network (left panel) consists of fully connected layers

and takes a latent vector (z) sampled from a distribution (e.g.,

Gaussian noise) and transforms it into an intermediate latent space

(w), which helps disentangle features for better control during

image generation. The synthesis network (middle panel) starts

with a learned constant tensor at a low resolution (4 × 4) and

progressively increases the resolution through up-sampling (e.g., 4

× 4 → 8 × 8 → 16 × 16) up to the final resolution (n × n). Noise

injections at each level add stochastic details, resulting in a

synthesised image. The discriminator (right panel) processes real
Frontiers in Plant Science 04
or generated images, progressively reducing their resolution from

high (n × n) to low (4 × 4) and outputs a prediction to differentiate

between real and generated images. This network is connected to a

loss function used to train both the generator and discriminator

adversarially, with the generator aiming to produce images

indistinguishable from real ones, whilst the discriminator tries to

correctly classify them as real or fake.

The training for the StyleGAN was conducted using Python

with CUDA enabled. The network was trained on 2,070 images with

5,000 kimg (5 million images processed), meaning that each of the

training images was used approximately 2,400 times. The training

process took approximately 2 days 18 hours, averaging 47 seconds

per kimg. The training parameters included a learning rate of

0.0025, a non-saturating logistic loss function, and a batch size of

32, and Adaptive Moment Estimation (ADAM) was used as the

optimiser (Kingma and Ba, 2014). The Fréchet inception distance

(FID) score (Heusel et al., 2017) was used to measure the similarity

between the generated images and the training images. This score

represents the distance between the feature vectors of the two sets of
FIGURE 3

Diagram of StyleGAN with three networks. (Left) The mapping network transforms a random input into a style signal, controlling various aspects of
image generation. (Middle) The synthesis (generator) network uses the information (A) from the mapping network to generate images from low to
high resolution. It also incorporates random noise (B) to introduce variations and fine details. (Right) The discriminator network compares real and
generated images, updating the weights of all networks through adversarial training to enhance performance. StyleGAN, Style Generative
Adversarial Network.
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images, where a score of zero would mean that the distributions of

the generated and training images are identical. The FID score was

computed every 200 kimg during the training process, and the score

was observed until it plateaued around a value of 29 after

5,000 kimg.

The CNN was trained to identify the taxa of the images

generated by the StyleGAN neural network and was trained using

the same image data as the StyleGAN network. Therefore, an image

of 256 × 256 × 3 size was used as the input to the CNN, and the

network output was a prediction of the pollen taxa. There were no

other pre-processing steps beyond resizing and cropping. The

training data for the CNN were split into percentages of 70% for

training, 25% for validation, and 5% for testing, and the architecture

was the Inception v3 (Szegedy et al., 2017) used in MATLAB

(h t t p s : / / u k .ma t hwo r k s . c om/h e l p / d e e p l e a r n i n g / r e f /

inceptionv3.html, https://uk.mathworks.com/matlabcentral/

fileexchange/65679-deep-learning-toolbox-model-for-inception-

v3-network). In this work, no augmentation was used on the
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dataset. The network was trained for 5 epochs, with an initial

learning rate of 0.0002, a validation frequency of 200, a learn rate

drop factor of 0.1, and a minibatch size of 2; it took 2 days 21 hours

48 minutes to train. The CNN achieved a classification accuracy of

86% [see Figure 4 for training accuracy and validation accuracy

graph over 5 epochs (34,580 iterations) when applied to the testing

data and is labelled as the classification network in Figure 2].
2.3 Image generation

Figure 5 shows a schematic of the methodology for projecting

an image into latent space and then extracting the relevant vector

before manipulating the vector in latent space, either to increase or

decrease the size of the pollen or to increase or decrease the

spikiness. Compared to other studies on pollen image generation,

we demonstrate the manipulation of latent space for image

manipulation in multiple ways, such as size and shape, and we
FIGURE 4

Graph showing the accuracy of training and validation progress during training of the CNN. CNN, convolutional neural network.
FIGURE 5

Schematic of methodology of projecting an image into latent space by generating random z vector, generating an image, and then comparing that
image with the projected to obtain the suitable vector in latent space. The vector is then manipulated by adding or subtracting a vector before the
synthesis network generates a new image.
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also project experimentally obtained images into latent space and

manipulate them, potentially opening the opportunity to

manipulate images and thus species not present in the training data.

We generated 1,000 synthetic images of pollen grains using

1,000 z vectors, where each of the 512 numbers in the vectors was

randomly sampled from a normal distribution with μ = 0 and s = 1.

The corresponding w-vectors for each of these generated images

were also recorded to support subsequent latent space

manipulations. Interpolation between two generated images with

w-space vectors of wa and wb could then be achieved by generating

an image using a w-space vector of wc = wa + k(wb − wa), where k is

a scalar between 0 and 1 and wc is the w-vector for the interpolated

image. In this case, the vector (wb − wa) therefore corresponds to a

w-space vector that describes the structural change between the two

images. If, for example, wa corresponded to a small pollen grain and

wb corresponded to a large pollen grain, then (wb − wa) would

correspond to a w-space vector for increasing the size of the pollen

grain. However, this w-space vector would also correspond to the

changes in other features, such as the difference in the shape of the

two pollen grains. Therefore, by averaging over many such vectors,

a vector for increasing pollen grain size was identified that

encapsulates the visual information contained in the training

dataset. This “size” w-space vector could then be added to (or

subtracted from) any w-space vector corresponding to a generated

image to increase (or decrease) the size of the pollen grain in the

generated image. To achieve this, a folder of synthetic images of

“small” pollen grains was created, and a folder of “large” pollen

grains was created, from which the w-space vectors were obtained.

Similarly, a “spike” w-space vector for pollen transitioning from no

spikes to spikes and a “round” w-space vector for pollen

transitioning from triangular to round were identified. As shown

later in this work, this allows the generation of a wide variety of

images representing different types and sizes of pollen grains, along

with bespoke morphological changes to the pollen grains in

these images.
3 Results

Following the training of all the two neural networks, 1,000 z-

space vectors were used to create 1,000 images using the StyleGAN

neural network, and the corresponding 1,000 w-space vectors were

also recorded. The CNN was then used to predict the taxa for each

of these generated pollen grains.

The selection of 1,000 z-space vectors was guided by the need to

balance computational feasibility with adequate coverage of the

latent space’s variability. The latent space of StyleGAN is inherently

high-dimensional, and z-space vectors are typically modelled as a

standard Gaussian distribution, meaning that random sampling

spans a representative subset of the space. Generating 1,000

synthetic images is a practical compromise, manageable in terms

of resources whilst sufficiently capturing variability for downstream

tasks. To ensure that the generated images reflected the training

dataset’s diversity, the FID was used for validation, giving a value of

6.281 for 5,000 kimg. Lower scores indicate higher similarity

between the feature distributions of the real and synthetic
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datasets. Scores below 10 are considered very good in most

generative model tasks, indicating higher similarity between the

feature distributions of the experimental training and generated

datasets. In addition, we compared the distribution of taxon labels

in the training data with the 1,000 predicted labels of the generated

data, as shown in Figure 6.

The Jensen–Shannon (JS) divergence (Nielsen, 2019) is a

symmetric and bounded metric that measures the similarity

between two probability distributions, making it interpretable and

robust. A value of 0 indicates identical distributions, and the low

divergence observed here suggests that the synthetic data closely

approximate the real dataset, capturing much of its variability with

only minor differences.

The JS divergence is calculated as

DJS(PjjQ) =
1
2
DKL(PjjM) +  

1
2
DKL(QjjM)

where P andQ are the two distributions being compared,M = 1/

2(P +Q) is the average distribution, and DKL is the Kullback–Leibler

divergence. The JS divergence is bounded between 0 and 1 [or log

(2)) for certain bases] and symmetrically averages over both

distributions. The JS divergence was calculated to be 0.073. This,

along with the histogram comparison, indicates a relatively low

divergence between the real and synthetic datasets.

The low JS divergence highlights that the synthetic dataset does

an accurate job of replicating the variability of the real dataset.

However, the histogram reveals that some specific categories may

still benefit from refinement.

The calculated w-space vectors of “size”, “spike”, and “round” were

added (or subtracted) from a range of generated images to visualise the

predicted changes in the morphology of the generated pollen. As

displayed in Figure 7, −100%, −50%, 0%, +50%, and +100% of the

“size” and “spike” vectors were added onto the w-space vector

corresponding to a generated image of a) Knightia and b) Coriaria.

The central image shows the generated images with no additional w-

space vectors; the change in the horizontal direction shows the addition

(or subtraction) of the “size” vector, and the change in the vertical

direction shows the addition (or subtraction) of the “spike” vector. The

classification CNN was applied to these generated images, and the

predicted pollen taxa, along with prediction confidence, are shown on

each generated image. Each generated image also includes the area of

the pollen grain, calculated by summing the number of image pixels

corresponding to the pollen grain. However, labelling is omitted from

images without any visible grains.

In Figure 8, the same methodology was also applied to generated

images of a) Metrosideros and b) Disphyma, with the “size” vector

applied in the horizontal direction and the “round” vector applied in

the vertical direction. The roundness value is also labelled in the figure,

which quantifies how closely the shape resembles a perfect circle, with

higher roundness values indicating shapes that are more circular and

lower values corresponding to more irregular shapes, where this value

was determined as [(4pArea/Perimeter2) × (1 − 0.5/r)2, where r =

Perimeter/(2p) + 0.5].

The ability to use images of the real world for interpolation

could allow previously unseen pollen grains to be examined. As

such, by projecting an experimental image into the latent space, an
frontiersin.org
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equivalent latent space image can be found and used in vector

manipulation. The process of mapping a real-world image into the

latent space of the model is known as “projection”. An initial latent

vector is created, usually either at random or based on the average

latent vector of the model. This latent vector is then progressively

refined using gradient descent to reduce the disparity between the

image produced from the latent vector and the original real-world

image. The outcome of this iterative optimisation is a fine-tuned

latent vector that encapsulates the real-world image in the model’s

latent space. This vector can be further manipulated or analysed as

needed. Overall, this procedure enables the model to effectively

translate real-world images into its own latent space. In Figure 9, we

interpolate between two different taxa in a) Knightia (LHS) and

Kunzea (RHS) and b) Brachyglottis repanda (LHS) and Citrus

(RHS) to demonstrate the capability of such a technique. We also

use the CNN to predict the generated pollen taxa. As seen in the

images, it is possible to interpolate between two taxa, generating

what appear to be other taxa in the process.
4 Discussion

The generated images shown in Figure 7 demonstrate that when

the “spike” vector is added (or subtracted), not only does the

appearance of the spikes on the generated pollen grains change,

but the taxa also change. Likewise, as the “size” vector is added (or

subtracted), the generated pollen changes size and taxa. When the

size or spike vector is too negative, there is no image generation,

meaning that the latent space vectors may not be mapped to the
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features that generate an image of pollen. When both vectors are

applied, such as +100% “size” and +100% “spike”, a generated

image that resembles Lycopodium pollen is created. It should be

noted that whilst the CNN predicts Lycopodium, it is limited to the

dataset on which it has been trained, and the actual Lycopodium

pollen contains more ornamentation on its surface. Interestingly

overall, when the “spike” is added, the size of the pollen grain

increases, perhaps implying a correlation between size and spikes

(or ornamentation), based on the dataset and calculated vectors

used in this work. Indeed, this can be observed in Figures 7A, B,

where only the edge of the pollen grains was visible in the smaller

grains, and as the spike vector is increased, the pollen changes taxa

to those that are not only larger but also have more ornamentation

over the whole pollen.

The ability to manipulate images in latent space is also

demonstrated by changing the roundness in Figure 8. It can be

seen that the “size” vector increases the size of the generated pollen

grain and that the “round” vector generally increases the circularity.

In Figure 8A, there is little evidence that the roundness of the pollen

has a correlation with the size, although for some taxa [e.g.,

Griselinia (0%, 50%) and Ixerbia (0%, 100%)], increasing the

roundness does increase the size due to how the neural network

has positioned such pollen in the multidimensional latent space. It

is evident that increasing the roundness does not merely make the

pollen rounder, but changes the ornamentation as well. For example

in Figure 8B, an increase in the roundness of Carpodetus removes

the lobe structure as it transitions to Citrus. The conclusions drawn

from these figures may be limited to the training dataset, and hence,

additional training data may provide additional insights. If this
FIGURE 6

Histogram of distribution of taxa in training dataset and generated dataset (as predicted by CNN). CNN, convolutional neural network.
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approach was applied to a much more varied dataset, perhaps

containing thousands of taxa, latent w-space vector arithmetic

could have the potential to help understand the relationship

between features and traits in pollen grains and to predict taxon

changes (and results of these changes) due to environmental and

evolutionary factors.
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The ability to essentially upload an image into latent space for

manipulation could provide a powerful tool for understanding the

relationships and behaviour of pollen. In Figure 9, which shows the

transition between two pairs of pollen images not present in

training, we can see a transition between one taxon to another,

not only by straight pixel interpolation but also through different
FIGURE 7

Generated images of pollen grains created through latent w-space vector manipulation, showing the addition of a “size” vector (−100%, −50%, 0%,
+50%, and +100%) in the horizontal direction and a “spike” vector (−100%, −50%, 0%, +50%, and +100%) in the vertical direction, to generated
images of (a) Knightia and (b) Coriaria. Each generated image also shows the predicted pollen taxa and predicted confidence, as well as the pollen
size in pixels. Labelling is omitted from images without any visible grains.
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taxa. In Figure 9A, the image transition occurs through seven

different taxa, and in Figure 9B, the transition occurs through six

different taxa, as classified by the CNN. The transition between

pollen is dependent on how latent space has distributed the data, as

in Figure 9A, the transition is not simply a large triangular shape to

a small triangular shape. Although pollen grain taxa have been

identified, the identification is limited to the training of 46 taxa,
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meaning that although a pollen grain may be identified as Laurelia

at 99%, it may not necessarily look like it due to the limited data

used in the CNN training. Owing to such as vast number of pollen

taxa present in the world, being able to train a latent space neural

network on every type would be extremely difficult. As such, this

methodology demonstrates the possibility of using pollen taxa not

used in training so that they could be explored in latent space and
FIGURE 8

Generated images of pollen grains created through latent w-space vector manipulation, showing the addition of a “size” vector (−100%, −50%, 0%,
+50%, and +100%) in the horizontal direction and a “round” vector (−100%, −50%, 0%, +50%, and +100%) in the vertical direction, to generated
images of (a) Metrosideros and (b) Disphyma. Each generated image also shows the predicted pollen taxa and predicted confidence, as well as the
circularity of the pollen grain. Labelling is omitted from images without any visible grains.
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manipulated to understand their morphology in different

environments, such as undergoing dehydration (Grant-Jacob

et al., 2022a), or understand the pollens in the context of their

phylogenetic relationships. This methodology could be used in

addition to work on using CNNs to analyse pollen morphology

and place extinct pollen morphotypes within a phylogenetic

framework using Bayesian inference (Adaïmé et al., 2024).

A key challenge in isolating specific features, such as size versus

shape, through w-space manipulation in StyleGAN is the potential

overlap between latent vector representations for different

characteristics. The latent space in StyleGAN is highly

compressed and abstract, meaning that features like size, shape,

ornamentation, and colour are not always entirely independent. As

a result, adjusting one feature may inadvertently affect others,

complicating the process of isolating and controlling a specific

characteristic independently.

For example, when manipulating the latent vector to adjust the

size of a pollen grain, the shape or ornamentation of the grain may

also change. This is because these features may share latent

dimensions in the vector space, and the model may not perfectly

separate them. As seen in Figure 7, when the “size” vector is altered,

the taxa of the pollen grain can change, along with its size,

indicating a correlation between size and taxa or other features

like ornamentation. This overlap in latent vector representations

makes it difficult to manipulate one feature without

influencing others.

Furthermore, the model’s ability to separate features effectively

depends on the richness and diversity of the training dataset. If the

dataset lacks sufficient variation in certain attributes, the model may

struggle to create distinct latent representations for each feature.

This could lead to challenges in fine-tuning or generating high-

quality, realistic images where individual characteristics are clearly

separated, as seen in the generated images where manipulating the

“spike” vector also influenced the size and ornamentation of the

pollen. These issues highlight the complexity of manipulating

specific features in StyleGAN and the need for a more refined

approach to disentangling latent representations.

Synthetic images generated by StyleGAN can be highly valuable

for augmenting real-world datasets, especially in areas like pollen

classification, where obtaining a diverse and high-quality dataset

may be challenging. By generating realistic and controlled synthetic
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images, StyleGAN can help fill gaps in datasets, increase their size,

and improve the diversity of training examples available for deep

learning models. This can enhance the robustness and

generalisation ability of classifiers, making them more effective in

real-world applications.

For example, in the context of pollen classification, obtaining

images of all possible pollen types with varying characteristics (e.g.,

size, shape, and ornamentation) under different imaging conditions

can be difficult. Augmentation of images could be achieved by

carefully manipulating latent vectors, and specific features such as

spike density, size, and ornamentation can be adjusted, enabling the

generation of images for underrepresented or difficult-to-capture

species or scenarios. These synthetic data can thus act as a

supplement to the real dataset, improving classifier performance

on less common or poorly represented pollen types.

Moreover, synthetic images can be particularly useful in cases

where real-world data are scarce due to privacy concerns, cost, or

limited access to expert annotation. For example, in clinical or

environmental settings where data collection is expensive or time-

consuming, synthetic images can fill in the gaps, allowing deep

learning models to be trained on a more diverse set of examples.

Additionally, StyleGAN-generated images could be used to simulate

edge cases or rare occurrences that may not be adequately captured

in real-world datasets, further enhancing the model’s ability to

handle a wide range of real-world conditions.
5 Conclusion and future scope

The results presented in this work demonstrate the significant

potential of leveraging StyleGAN’s latent space manipulation to

explore and understand pollen grain morphology. Through the

projection, generation, and manipulation of synthetic pollen

images, we have shown that adjusting latent vectors such as “size”,

“spike”, and “roundness” not only alters the appearance of pollen

grains but can also lead to changes in their taxon classification. These

findings suggest that latent space manipulation offers a powerful

method for studying the relationships between different features of

pollen grains, such as size, ornamentation, and shape, which are

crucial for understanding both environmental and evolutionary

influences on pollen morphology.
FIGURE 9

Generated images of pollen grains created through latent w-space vector manipulation, showing the interpolation of projected images between (a)
Knightia and Kunzea and (b) Brachyglottis repanda and Citrus. Each generated image also shows the predicted pollen taxa and predicted confidence.
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However, this approach is not without limitations. The results

observed in this study are inherently tied to the training dataset,

which restricts the generalisability of the findings. The

manipulation of latent vectors is influenced by how the data are

distributed in the multidimensional latent space, and this may result

in unexpected transitions, particularly when working with pollen

taxa not included in the training set. Further research into

expanding the training dataset to include a broader range of

pollen taxa, and perhaps even thousands of species, could reveal

deeper insights into the underlying relationships between pollen

traits and environmental factors.

The future scope of this work involves expanding the training

dataset to include a broader range of pollen taxa, which would improve

the accuracy and reliability of generated images and enable more precise

feature manipulation. A larger, more diverse dataset would offer deeper

insights into the relationships between pollen traits and environmental

factors. Additionally, the ability to manipulate pollen images in latent

space could be utilised to study the effects of environmental influences,

such as dehydration or climate change, on pollen morphology, and to

simulate evolutionary changes in pollen structures. This approach could

also be integrated with phylogenetic frameworks to better understand

the evolutionary relationships between different pollen taxa, as seen in

work that places extinct pollen morphotypes within a phylogenetic

context. Furthermore, insights gained from latent space manipulation

could enhance predictive models for pollen identification and

classification, particularly for taxa not included in the training dataset.

Ultimately, with continued refinement and expansion, thismethodology

holds the potential to improve our understanding of pollen grain

morphology and its implications in areas such as agriculture, climate

science, and botany.
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