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Intelligent and accurate evaluation of KASP primer typing effect is crucial for

large-scale screening of excellent markers in molecular marker-assisted

breeding. However, the efficiency of both manual discrimination methods and

existing algorithms is limited and cannot match the development speed of

molecular markers. To address the above problems, we proposed a typing

evaluation method for KASP primers by integrating deep learning and

traditional machine learning algorithms, called TAL-SRX. First, three algorithms

are used to optimize the performance of each model in the Stacking framework

respectively, and five-fold cross-validation is used to enhance stability. Then, a

hybrid neural network is constructed by combining ANN and LSTM to capture

nonlinear relationships and extract complex features, while the Transformer

algorithm is introduced to capture global dependencies in high-dimensional

feature space. Finally, the two machine learning algorithms are fused through a

soft voting integration strategy to output the KASP marker typing effect scores. In

this paper, the performance of the model was tested using the KASP test results

of 3399 groups of cotton variety resource materials, with an accuracy of 92.83%

and an AUC value of 0.9905, indicating that the method has high accuracy,

consistency and stability, and the overall performance is better than that of a

single model. The performance of the TAL-SRX method is the best when

compared with the different integrated combinations of methods. In summary,

the TAL-SRX model has good evaluation performance and is very suitable for

providing technical support for molecular marker-assisted breeding and

other work.
KEYWORDS

KASP fractal evaluation, multi-model fusion, stacking integration, deep learning,
hyperparameter tuning
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1 Introduction

The kompetitive allele-specific PCR (KASP) technique is capable of

realizing the precise identification of site-specific SNP (single

nucleotide polymorphism) double allele genotypes in different species

genome sample types (Wang et al., 2020), and is widely used in

molecular marker-assisted selective breeding, quality testing, variety

identification, and stress assessment, etc., because of its unique

advantages of flexibility, high efficiency, and low cost (Tang et al.,

2022). However, population genotype amplification and segregation

are complex and variable, and the evaluation of typing results directly

affects the efficiency of KASP marker development (Zhi et al., 2024).

Therefore, it is necessary to realize the intelligent and accurate

evaluation of the relative independence of population genotyping

results, in order to scale up the screening of excellent KASP markers

and to improve the efficiency of marker development.

Up to now, there are three main methods for evaluating the typing

results in studies utilizing competitive allele-specific PCR technology.

The most widely used method is the manual visual judgment of

genotyping, which is mainly observed and recognized by agricultural

experts or technicians. Due to the flexible and changeable performance

of the typing results, the application of this method in breeding practice

requires that professionals must have long-term and rich experience in

reading typing diagrams, and spend a great deal of time in order to

select well-typed KASP markers, so the evaluation process is

accompanied by the problems of time-consuming, subjective, and

large-scale material validation. For example, Yu et al. (2023) directly

observed the fluorescence typing status of different colored dots in the

KASP fluorescence detector in the screening and validation of

candidate core markers for genotype identification of tobacco

varieties, and used the subjectively evaluated well-typed SNP sites as

molecular markers in their subsequent studies; Schoonmaker et al.

(2023) in the validation of cotton leafroll virus resistance gene

association markers, combined with the observation results, proposed

that the pure and heterozygous group separation, the cluster within the

tight pattern can be proved that the markers are good; Zhao et al.

(2023) in the development of Pi2 KASP marker for rice blast resistance

gene, because the visual typing results were not clear enough, they

further set up negative and positive controls, and initially judged that

the marker was feasible after observation. However, because the typing

results were scattered, four additional cycles were added to the original

testing program to obtain more intuitive and clearer KASP genotyping

results; Kalendar et al. (2022) used grid lines with parallel horizontal

and vertical axes to partition the KASP genotyping map in an

experiment to identify alleles of barley varieties with known

genotypes, and observed whether pure and heterozygous genotypes

were located in different partitioned regions within the map,

respectively, in order to evaluate the accurate validity of the markers.

The second category is the method of quantitative assessment of

indicator values, although with the development of new SNP

genotyping techniques, some scholars have proposed the use of

ANOVA to quantitatively assess the differences in indicator values in

comparison tests between KASP and TaqMan and other techniques.

However, the criteria proposed by this method to use the relative height

of the index value to judge the good or bad typing effect are vague, and

the application scope in KASP test is limited (Broccanello et al., 2018).
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The third category is the traditional machine learning approach,

usually the SNP genotyping results data sample size is large, the data

dimension is high and has the complexity of non-linear relationships,

compared with the statistical analysis using a small number of

indicators, machine learning as a powerful data-driven framework is

more suitable for providing accurate solutions to the complex

relationships between a large number of variables in the KASP test

results (Kok et al., 2021), such as Chen et al. (2024) proposed an

intelligent typing evaluation model for KASP marker primers, which is

based on the typing effect level evaluation criteria, introduces K-Means

clustering algorithm in the design module to fit the gene population

aggregation and classification effects, and finally realizes the intelligent

typing result evaluation by logical decision tree algorithm.

However, there are relatively few relevant studies on intelligent

typing evaluation of KASP, and the existing evaluation criteria for

typing effect levels lack more detailed classification hierarchies,

which may lead to a low identification rate of good markers for

large-scale screening, thus resulting in a large amount of wasted

financial and material resources, which collectively limit the

application of KASP technology in assisted breeding work.

Second, shallow learning models still have bottlenecks in handling

big data, and given that deep learning, as one of the most popular

data-driven methods, it may be a useful exploration to apply it to

automatically extract and learn the intrinsic features of KASP trial

result data (Du et al., 2019; Ahmed et al., 2023).

Based on the above considerations, we propose TAL-SRX, an

intelligent typing evaluation method for KASP priming based on

multi-model fusion. We utilize the Stacking integrated learning

framework to synthesize and apply multiple heterogeneous base

learners, and construct a two-layer structure to combine and train

with the eXtreme Gradient Boosting (XGBoost) model to drive the

data while improving the prediction accuracy of the model. In

addition, two deep learning models are selected to be given weights

and then introduced into the integrated learning framework to

further enhance the ability of the model to master multidimensional

features under complex task conditions. The performance of the

model is tested by the results of KASP marker typing test of 3399

sets of cotton variety resource materials to verify the effectiveness of

the proposed method. Our results not only provide new insights for

evaluating the distribution patterns of KASP marker amplification

products, but also lay an important foundation for accelerating

breeding efforts to precisely localize and select target traits at the

molecular level in a variety of crops.
2 Materials and methods

2.1 Experimental data

2.1.1 Raw data
In this study, we selected the KASP marker typing report

statistics of the resource materials of cotton varieties produced by

SNPline, a high-throughput genotyping detection platform of LGC

(Figures 1A, B), and the resource materials included resource

varieties, line materials, validated varieties and genetically

segregated population materials. The source of the genotyping
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report statistics is the Cotton Quality Supervision, Inspection and

Testing Center of the Ministry of Agriculture and Rural Affairs,

Cotton Research Institute, Chinese Academy of Agricultural

Sciences, which contains 319 test results from different SNPs and

different DNA samples from 2019 to 2023. Due to the different

sample arrangements on the motherboards of each test, we

extracted statistics in the format of 94 DNA samples and 2 NTC

(negative control reaction without adding DNA samples in the PCR

assay) assay data set to build the original dataset, and obtained a

total of 3399 sets of statistics.

2.1.2 Criteria for evaluating the typing effect of
KASP primers

Based on a large amount of experimental data, we made a

detailed division of the evaluation criteria of KASP primer typing

effect, as shown in Table 1, and we set a scoring range from 100 to 0

to indicate the primer combination morphology from the best case

to the worst case. Specifically, when the competitive primer

combination morphology exhibits independent aggregation of

pure and heterozygous genotypes and the pure genotypes are

located at the maximum of the two axes respectively, and the

heterozygous genotypes are located in the center of the line

connecting the two pure genotypes, the score is 100. And the

score gradually decreases as the degree of the independent

aggregation of pure and heterozygous genotypes exhibited by the
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competitive primer combination morphology decreases, and the

segregation of the genotypes decreases, and the score gradually

decreases Until complete relative dispersion and inability to

accurately typify, the score is 0. This criterion provides a

quantitative method for evaluating the combinatorial morphology

of competitive primers, and provides a powerful tool for analyzing

the amplification efficiency, specificity, and combinatorial

competitiveness of genotypes.

2.1.3 Data set construction
The SNP site number, HEX fluorescence signal magnitude

relative value X, FAM fluorescence signal magnitude relative value

Y and the sample number in the original data set were taken to apply

the KASP-IEva model for typing (Figure 1C), and the results of the

expert’s scoring of the typing effect were used as the criteria. Finally,

using the SNP locus number as the number of each data set, the HEX

fluorescence signal magnitude relative value X and FAM fluorescence

signal magnitude relative value Y of each group were combined and

reconstructed into 192 high-dimensional feature variables, and the

expert scores were used as the labeling categories, which together

comprise the model dataset (Figures 1D, E), of which 84% was used

as the training set and 16% as the test set to evaluate the model

validity. Table 2 is the sample of the model data set. Fusion method in

the Stacking model will be cross-validated using five folds of the

training set from which the validation subset will be further divided.
FIGURE 1

Flowchart of dataset construction. (A) Steps of dataset integration construction. (B) Schematic diagram of genome-wide distribution of SNP variants.
(C) Example of KASP-IEva model typing diagram. (D) KASP marker typing report statistical data structure and sample structure of high-dimensional
dataset. (E) Distribution of the amount of data in each score of the dataset after scored by the experts.
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2.2 TAL-SRX multi-model fusion
evaluation methodology

2.2.1 TAL-SRX architecture
In order to improve the accuracy of good markers screening

recognition at scale, this paper selects six machine learning

algorithms, namely Support Vector Machine (SVM), Random

Forest (RF), eXtreme Gradient Boosting (XGBoost), Artificial

Neural Network (ANN), Long Short-Term Memory (LSTM) and

Transformer. Two integrated strategies of Stacking and Soft Voting

are used for algorithm combination to construct a multi-model

hybrid learning method driven by statistical data for KASP marker
Frontiers in Plant Science 04
typing report, which overcomes the defects of a single learning

model, enhances the functional nature of feature parsing of high-

dimensional data, and possesses a powerful, stable, and

comprehensive learning capability. Figure 2 illustrates the flow of

the KASP primer typing effect evaluation method.

The TAL-SRX multi-model fusion evaluation method makes

full use of the advantages of traditional machine learning algorithms

and deep learning algorithms. Firstly, the “base model-metamodel”

approach is used to connect the three traditional machine learning

algorithms. In order to accelerate the parameter search process and

maximize the performance of each learner, different optimization

algorithms are used to meet the unique tuning requirements of
TABLE 1 Criteria for evaluating the typing effect of KASP primers.

Score Primer combination morphology

100
NTC has no obvious specificity, pure and heterozygous genotypes are clustered independently, pure genotypes are located at the maximum of each of the two

axes, and heterozygous genotypes are located in the center of the line connecting the two pure genotypes

90
NTC has no obvious specificity, pure and heterozygous genotypes are clustered independently, pure genotypes are located at the maximum of each of the two

axes, and heterozygous genotypes deviate from the line connecting the two pure genotypes

80
NTC has no obvious specificity, pure and heterozygous genotypes are clustered independently, pure genotypes are located at the maximum of each of the two

axes, and heterozygous genotypes are shifted along the line connecting the two pure genotypes

70
NTC has no obvious specificity, pure and heterozygous genotypes are independent, one pure genotype is shifted or trailing along the coordinate axis, and the

heterozygous genotype is located in the center of the line connecting the two pure genotypes

60
NTC has no significant specificity, pure and heterozygous genotypes are independent, pure genotypes are shifted along the coordinate axis, and heterozygous

genotypes are located in the center of the line connecting two pure genotypes

50
NTC has no obvious specificity, pure and heterozygous genotypes are independent, pure genotypes have a trailing tail, and heterozygous genotypes are located

in the center of the line connecting the two pure genotypes

40 NTC is not clearly specific, pure and heterozygous genotypes are partially diffuse or shifted along the axes, but can be typed

30 NTC is not clearly specific, all pure genotypes are relatively diffuse and heterozygous genotypes are shifted, but can be barely differentiated

20 NTC has no obvious specificity, all pure and heterozygous genotypes are relatively diffuse, some genotypic loci are crossed and cannot be accurately typed

10 NTC shows marked specificity

0 Pure and heterozygous genotypes are all relatively diffuse, genotypic loci are crossed and cannot be typed
TABLE 2 Model data set samples based on KASP marker typing results.

SNP site
number
SNPID

Relativevalue of HEX fluorescence signal magnitude X and relativevalue of FAM fluorescence signal
magnitude Y Label

1 2 3 - 190 191 192

CS01 0.34152 1.23918 0.31628 - 0.36266 0.29725 0.31885 50

CS02 1.23677 1.20181 0.32964 - 0.35707 0.29542 0.29948 30

CS03 0.35668 1.18205 1.20185 - 0.51436 0.96719 0.86575 10

CS04 0.36522 0.31756 1.09486 - 0.36946 0.28544 0.29809 40

CS05 1.42639 0.32153 1.42668 - 0.3707 0.29418 0.28624 60

CS06 1.40921 0.46171 1.41027 - 0.3593 0.30589 0.32609 100

CS07 0.36557 0.32076 0.32602 - 0.39087 0.30391 0.31229 30

CS08 0.71165 0.32425 0.31644 - 0.35485 0.2853 0.2939 50

CS09 1.20593 0.31494 0.31246 - 0.34687 0.28328 0.29112 100

CS10 0.41205 0.38226 0.37761 - 0.35003 0.28565 0.30938 40
front
iersin.org

https://doi.org/10.3389/fpls.2025.1539068
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1539068
different learners. In the Stacking integrated learning framework

based on hyperparameter optimization algorithms, the

heterogeneous learner parses features of different dimensions

within the dataset to generate new feature variables of lesser

dimensions, and the meta-learner integrates the data and thus

predicts the probabilities. Then the deep learning algorithm is

introduced, and the data output processed by ANN is passed to

the LSTM layer to flexibly capture complex features while

enhancing the model’s ability to adapt to heterogeneous samples,

and then the Transformer model based on the self-attention

mechanism is added to capture the global dependencies between

the input variables and enhance the model robustness. Finally, the

voting integration model extracts the shared features of the output

data of each basic algorithm and obtains the evaluation results of

KASP primer typing effect.

2.2.2 Stacking integration based on
hyperparameter optimization algorithm

Stacked integration is a widely used integration learning

technique, the basic principle of which is to make predictions

through a two-layer nested structure (He et al., 2024; Shi et al.,

2023). In this paper, the stacked model trains two base learners and
Frontiers in Plant Science 05
uses their prediction results as inputs to the meta-learner to fully

exploit the original dataset features to improve the prediction

accuracy. For each sub-model, an optimization algorithm is used

to improve the model structure, and RS-RF, PSO-SVM and BO-

XGBoost are constructed respectively to find the hyper-parameter

combinations with the best performance, Figure 3 illustrates the

overall framework of Stacking, and the specific implementation

process is (Fu et al., 2020):

(1) Data preprocessing is performed on the training set S = {(yn,

xn), n = 1,…, N} by using the five-fold cross-validation method,

which randomly divides the data set S into five equal-sized and

disjoint subsets S1, S2,…, S5; (2) one subset is selected as the

validation set and the remaining four subsets are used as the

training set, and the PSO-SVM model is trained on the training

set, and the prediction is performed on the validation set and the

prediction result is saved. And then select the remaining four

subsets sequentially as validation sets, respectively, and finally

obtain five prediction results, which are combined into the set Z1;

(3) For the RS-RF model, repeat the operation of step (2) to obtain

the set Z2; (4) Combine the prediction results of the base learner in

the five-fold cross-validation, and horizontally splice them into the

new feature variables Z = {Z1, Z2}, thus realizing the feature
FIGURE 2

Overall architecture of TAL-SRX multi-model fusion approach.
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conversion from the base learner to the meta-model, and train the

meta-model by using these new features and the original labels yn;

(5) After the model training is completed, use the base model to

predict the test set, and the prediction results are input to the meta-

model to obtain the final KASP primer typing effect evaluation

results (Liu et al., 2024). The base and meta learners are described in

detail in the subsequent subsections.

2.2.2.1 RF model based on RS optimization

Random Search (RS) finds the best model parameters by

randomly sampling multiple parameter combinations in a

predefined parameter space and evaluating the performance of

each combination (Shakya et al., 2024). It eliminates the need for

gradient information and can explore globally to avoid

local optimization.

RF is an algorithm that integrates multiple decision trees based

on the idea of bagging (Breiman, 2001). In RF, many trees are

constructed using a randomly selected training dataset and a

random subset of predictor variables, and the results of each tree

are aggregated using the absolute majority voting method to obtain

the prediction categories (Speiser et al., 2019). In this paper, we

optimize the modeling process of RF based on RS by extracting a

sample subset through Bootstrap method, randomly selecting a

subset from the sample features to find the optimal splitting point

when each node splits, and constructing multiple unpruned

decision trees using these sample and feature subsets, and

evaluating the performance of the model in each iteration to

select the optimal hyper-parameter configurations. Where the

absolute majority voting strategy is formulated as:

H(x) =
 cj,       ifo

T

i=1
hji(x) > 0:5o

N

k=1
o
T

i=1
hki (x);

reject,         otherwise :

8><
>:

(1)

Where hi is the base learner, i.e., the decision tree, cj is the

category labeling, T is the total number of base learners, hji(x) is the
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output of hi on the category labeling cj, and N is the hji(x) total

number of predicted outputs of hi on sample x.

Each tree in RF has different segmentation features and

segmentation points, which has stronger nonlinear data

processing ability and overfitting resistance compared with a

single decision tree model, and meanwhile, stochastic search can

help RF model better adapt to the dataset and improve its

robustness and generalization ability.
2.2.2.2 SVM model based on PSO optimization

Particle Swarm Optimization (PSO) originates from the

phenomenon of bird flock foraging (Kennedy and Eberhart,

1995), and its essence is to simulate the intelligent behavior of the

group, through the information sharing and mutual learning

between individuals and groups, each particle adjusts its own

position and speed in the search space (Tang et al., 2023), and

gradually finds the optimal solution of the problem.

The core idea of SVM is to classify data by solving the

maximum margin hyperplane in the feature space, a method

known as maximum interval classification. When confronted with

linearly indivisible data, SVM maps the data to a higher

dimensional space by a kernel method so that it becomes linearly

divisible in this new space (Utkin et al., 2016). In this paper, we use

the PSO algorithm to optimize the parameters of the SVMmodeling

process, and determine the optimal parameter model by evaluating

the fitness of each particle and updating the optimal positions of the

individuals and populations in each iteration, where the decision

function of the SVM can be expressed as:

f (x) = w · f(x) + b (2)

Where x is the input eigenvector, f(x) is the feature map (defined

by the kernel function) mapping the input eigenvector x to the high-

dimensional space, w is the normal vector (weight vector) of the

hyperplane found in the eigenspace, b is the bias term, and the inner

product w·f(x) denotes the projection into the eigenspace.
FIGURE 3

Stacking integrated learning evaluation model.
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SVM has excellent adaptability to class imbalance problems with

large feature differences, and the PSO algorithm, with its outstanding

performance of simple implementation, high accuracy and fast

convergence, can help SVM to improve its ability to handle high-

dimensional complex datasets (Luo et al., 2023).

2.2.2.3 XGBoost model based on BO optimization

Bayesian Optimization (BO) emerges at the forefront of black-

box optimization methods due to its high efficiency in finding the

global optimal solution with fewer times, and its advantage lies in its

ability to infer the posterior distribution of the objective function

based on the a priori information and the results that have already

been observed, achieving a good balance between exploration and

exploitation in the search process 0 (Wang et al., 2023).

XGBoost is a scalable end-to-end tree boosting technique in

Boosting integrated learning model (Dong et al., 2022; Chen and

Guestrin, 2016). Its objective function consists of two parts: the loss

function and the regular term, and the core idea of the model is to

measure the deviation through the loss function, and use the regular

term to control the complexity of the model to avoid overfitting

while reducing the deviation. In this paper, we use BO to optimize

the modeling process of XGBoost by evaluating the performance of

sampling points and updating the Gaussian process agent model in

each iteration to select the optimal parameter combinations, so as to

gradually approximate the optimal solution of the unknown

objective function, where the objective function is defined as

follows (Talukder et al., 2024; Cai et al., 2021):

L(f) =o
n

i=1
l(yi, ŷ i) +o

K

k=1

Ω(fk) (3)

Where l is the loss function, W is the regularity term, yi is the

true value, ŷ i is the predicted value, and fk denotes each tree.

XGBoost integrates multiple weak learners into a single strong

learner with higher computational speed and better model

performance, and BO optimization improves the stability of the

XGBoost model on the dataset and reduces the risk of overfitting

or underfitting.

2.2.3 Voting integration incorporating deep
learning algorithms

Since the KASP marker typing report statistics are produced

from different batches, in order to avoid the threat of genetic data

heterogeneity to the model robustness, this paper proposes an

integration method that introduces the deep learning models

ANN-LSTM and Transformer on top of the integration of

traditional machine learning algorithms, which will be described

in detail in the following two deep learning frameworks:
Fron
1. ANN-LSTM: ANN is a class of computational models

inspired by biological neural networks, which are widely

used in tasks such as data classification (Yang and Wang,

2020; Affonso et al., 2015). Combined with LSTM, we

construct a hybrid neural network that uses ANN as a

feed-forward neural network layer, integrating the

nonlinear relationship capturing ability of ANN and the
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complex data modeling ability of LSTM (Greff et al.,

2016).In the forward propagation process, the input data

first passes through the ANN layer, which uses ReLU as the

activation function for nonlinear transformation to

increase the expressive ability of the model, and the data

passes through the 128 hidden units of the layer to adjust

the shape of the output after the initial feature extraction,

and the LSTM layer is also set up with 128 units, which is

able to efficiently capture the intrinsic complex structure of

the data by means of the mechanism of the memory unit

and the forgetting gate. Finally, the output of LSTM is

mapped to the targe t ca tegory space . In the

backpropagation process, the cross-entropy loss function

is calculated, and the model parameters are updated in

training rounds (epochs) by the Adam optimizer. After

training, the model is predicted on the test set and the

probability distribution of each score is calculated.

2. Transformer: the Transformer is a neural network based

mostly on self-attentive mechanisms for capturing global

dependencies between input features and focusing on key

details of the data (Han et al., 2021). In this architecture, an

encoder with feature extraction capability is first defined

and the input data is processed through three encoder

layers to increase the model depth. During forward

propagation, a self-attention mechanism and a feed-

forward neural network process the data to capture

higher level relationships and extract more complex

features. To prevent the model from overfitting, a

Dropout layer is added to randomly discard some

neurons, and finally the processed features are mapped to

the target category space by a linear layer. During the

training process, the model calculates the cross-entropy

loss by backpropagation and updates the model parameters

using the Adam optimizer, and during the testing phase,

the model calculates the score category probability for each

sample by softmax function and outputs it.
The prediction probabilities of the three models, ANN-LSTM,

Transformer and Stacking, are weighted and averaged to obtain the

results of the KASP primer typing effect evaluation. With this approach,

we obtain a powerful and stable system that contains multiple

heterogeneous base learners, and TAL-SRX has the ability to adapt to

different scenarios compared to a single predictionmodel, thus obtaining

better prediction results (Ribeiro and dos Santos Coelho, 2020).

3 Test results and analysis

3.1 Test environment

The operating system environment was Windows 11 with a

12th Gen Intel(R) Core(TM) i5-12500 3.00 GHz CPU, 32.0 GB of

RAM on board, and a GPU of NVDIA GeForce RTX 3080, 10 GB of

RAM. The training environment was created by Anaconda3 and the

environment was configured with Python 3.10.13 and PyTorch2.0.0

deep learning framework.
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3.2 Indicators for model assessment

In order to verify the effectiveness of the proposed modeling

method, the model performance is evaluated using accuracy,

precision, recall, F1 score and Cohen’s Kappa coefficient. The

value range of the first four indicators is 0-1, and each scoring

category is calculated separately, and then the macro-averaging

(Macro-averaging) method is used to obtain the average indicator

values, and the evaluation formulas for each category are as follows:

Accuracy   =  
TP

TP + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall   =
TP

TP   +   FN
(6)

F1score =
2  �   (Precision  �  Recall)

Precision   +  Recall
(7)

Where TP, FP and FN denote i.e., the number of samples

correctly predicted to be that label, the number of samples

incorrectly predicted to be that label and the number of samples

incorrectly predicted to be other labels, respectively.

The Kappa coefficient provides a more reliable measure of

consistency than simple accuracy by taking into account the

contingency factor of classification, with values ranging from -1 to 1

on the following scale: 0.81 - 1.00 indicates almost perfect agreement;

0.61 - 0.80 indicates significant agreement; 0.41 - 0.60 indicates

moderate agreement; 0.21 - 0.40 indicates fair agreement; 0.00 - 0.20

indicates very low agreement; less than 0 indicates no agreement or

very poor agreement. The formula for Kappa coefficient is given below:

k =
po − pe
1 − pe

(8)

Where po denotes the proportion of predicted labels that are

consistent with actual labels, and pe denotes the proportion of

consistency under the assumption that predicted and actual labels

are stochastically independent.
3.3 Model hyperparameter selection and
model performance analysis

The selection of the hyperparameters of the base model is

crucial for the improvement of the prediction performance of the

integrated model (Yang and Shami, 2020), in order to ensure that

the performance of TAL-SRX tends to be optimal, RS is used to

optimize the RF model, PSO is used to optimize the SVM model,

BO is used to optimize the XGBoost model, the hyperparameter

optimization of ANN-LSTM and Transformer are both using trial

and error method, and the determination of the voting weights is

using the grid search method, and the optimization of the

hyperparameters is performed by the grid search method. The

parameter optimization of each model is shown in Table 3.
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The prediction performance of the base model is improved to

some extent after optimization, and the TAL-SRX integrated

strategy obtains a more comprehensive learning prediction result

for the dataset by integrating diverse base algorithms and observing

the data space and structure from different perspectives.

Comparative analysis of test set prediction results between the

base model and the TAL-SRX integrated algorithm, Figure 4

shows the error size between the predicted value and the actual

value of each model, which intuitively demonstrates which samples

have been incorrectly evaluated and classified in the prediction

process of the model, and the color bar on the right side of the

heatmap indicates the correspondence between the color and the

size of the error, with the topmost displaying the color of the largest

error, and the bottommost being the color of the smallest error. As

can be seen from the figure, the TAL-SRX algorithm has fewer blue

bars and generally lighter colors, which indicates that the TAL-SRX

algorithm has a lower evaluation error rate than the other base

models, and the error values are generally smaller than those of a

single model.

Table 4 compares the prediction performance of the base model

with the TAL-SRX algorithm, and the accuracy of the five single

models ranges from 84.93% to 89.15%, which verifies the feasibility

of the five algorithms, including RS-RF, SO-SVM, and BO-

XGBoost, as the base learner. The accuracy of our proposed TAL-

SRX integration algorithm is 92.83%, which is 3.68% higher than

the PSO-SVM model with the highest accuracy among the single

models, and the precision, recall, and F1 score of this method are

93.82%, 87.65%, and 89.88%, respectively, which are higher than

that of the five single models, indicating that the TAL-SRX

integration method has a better performance than the base model

The integrated performance is significantly improved and has high

prediction accuracy.

In order to reflect the model’s ability to distinguish between

different labels, the ROC curve is drawn to calculate the average

AUC value of each model in the case of multiple categories. As

shown in Figure 5, the dashed line is the baseline, and the AUC

represents the area below the ROC curve. The farther the ROC

curve is from the baseline, the larger the AUC is, indicating that the

model has a stronger ability to distinguish between samples. Among

the six evaluation algorithms, the base model BO-XGBoost has the
TABLE 3 Core hyperparameters of the base model.

Model
name

Hyperparametric configuration

RF
n_estimators=202, max_depth=34,

min_samples_split=5, min_samples_leaf=1

SVM C=695.65, kernel=“rbf”, Gamma=0.0089

XGBoost
colsample_bytree=0.87, learning_rate=0.29, max_depth=7,

n_estimators=139, subsample=0.83

ANN-LSTM lr=0.01, epochs=500

Transformer nhead=6, dropout=0.01, lr=0.001, epochs=500

TAL-SRX
Soft Voting

weight_transformer=0.25, weight_stacking=0.95,
weight_ANN-LSTM=0.55
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second highest AUC value of 0.9891, and the TAL-SRX strategy has

the highest AUC value, which is 0.0014-0.0276 higher than that of

the single learner, and on the whole, the TAL-SRX can effectively

recognize and evaluate the KASP typing samples with

different labels.

The models are further analyzed for different label classification

consistency, and the box violin plot of Kappa coefficient for each

model is shown in Figure 6. It can be seen that the median Kappa

coefficient of each single model is distributed between 0.7 and 0.9,

and the distribution is denser near 0.8. After applying the integrated

method, the median Kappa coefficient of TAL-SRX is higher than

0.9 and densely distributed near 0.9, and the overall distribution

pattern is tighter, which is a very significant improvement,

indicating that the predicted labels of the TAL-SRX method are
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more consistent with the actual labels are more consistent and the

model is more stable. Among them, the anomalous value of Kappa

coefficient for 90-point labels is affected by the uneven distribution

of samples in the dataset.

In summary, the experimental results prove that compared with

the base model, the TAL-SRX method has higher evaluation

accuracy, consistency and stability. Analyzing from the theoretical

point of view, on the one hand, TAL-SRX makes full use of the

differences of the heterogeneous models and takes advantage of the

powerful nonlinear modeling ability of the base model, so as to be

able to comprehensively capture the detailed characteristics of the

data, and, on the other hand, the base model takes advantage of the

differences. For example, BO-XGBoost is based on the gradient

boosting framework, which enhances its generalization ability and
FIGURE 4

Error heatmap of the base model and the TAL-SRX approach. (A) Error heatmap of RS-RF. (B) Error heatmap of PSO-SVM. (C) Error heatmap of BO-
XGBoost. (D) Error heatmap of ANN-LSTM. (E) Error heatmap of Transformer. (F) Error heatmap of TAL-SRX.
TABLE 4 Comparison of base model and TAL-SRX test set performance.

Model Accuracy(%) Precision(%) Recall(%) F1 Score(%)

RS-RF 88.97 93.2 84.51 87.71

PSO-SVM 89.15 92.8 84.34 87.41

BO-XGBoost 88.97 90.91 83.89 86.38

ANN-LSTM 84.93 86.09 82.2 83.01

Transformer 86.58 84.95 82.71 83.48

TAL-SRX 92.83 93.82 87.65 89.88
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robustness to noisy data by controlling the depth of the tree, and the

characteristics of each internal model enhance the integrated

expression ability of TAL-SRX, so that TAL-SRX has obvious

advantages over a single model, and is able to achieve effective

prediction of the typing effect of KASP primers.
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3.4 Comparative analysis of integrated
combined approach ablation

In order to demonstrate the effectiveness of the two integration

strategies in TAL-SRX, ablation comparison tests are performed
FIGURE 5

ROC curves for the base model and the TAL-SRX approach.
FIGURE 6

Kappa coefficients for the base model and the TAL-SRX approach.
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using different integration combination approaches. Firstly,

Stacking integration and deep learning model integration using

traditional machine learning algorithms alone are used for

prediction, in which the integration combinations of ANN-LSTM

and Transformer are used to determine the best weight

combinations using grid search, which are 0.45 and 0.4,

respectively, and, secondly, the ANN-LSTM integration is added

on top of Stacking, and the best weight combinations are

determined using grid search weight combinations were 0.25 and

0.05, while the Transformer integration was added on top of

Stacking and grid search was used to determine the optimal

weight combinations of 0.35 and 0.1.

The test of each integration combination method is shown in

Figure 7, which shows that compared to the Stacking integration

using traditional machine learning algorithms alone, the accuracy,

precision, recall and F1 score of TAL-SRX are 2.02%, 1.00%, 1.86%

and 1.58% higher, respectively, which indicates that the deep

learning algorithms have the ability to extract high-level features

and key details when processing complex data is stronger.

Compared to the integrated combination of deep learning alone,

the accuracy, precision, recall, and F1 score of TAL-SRX are 4.78%,

8.07%, 3.60%, and 5.23% higher, respectively, which is attributed to

the fact that Stacking integrates the advantages of more learners and

reduces the bias due to data segmentation through five-fold cross-

validation in the model training stage, thus improving the

prediction Accuracy. In addition, compared to the simple

Stacking model, the accuracy of adding two deep learning

algorithms respectively is improved, and the TAL-SRX method,

which introduces the two together, has the highest accuracy, which

indicates that the Stacking, ANN-LSTM, and Transformer

algorithms have their own strengths and positive effects on the

specific types of data on the dataset, and that the three algorithms

scoring the right samples do not completely cover each other, thus

effectively improving the model scoring performance.
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3.5 Comparative analysis of TAL-SRX
methodology and expert scoring
prediction results

Figure 8 demonstrates the scoring and sample size relationship

curves of expert scoring and TAL-SRX method, which shows that

the trajectories of the orange and blue curves are basically the same,

and the sample size distribution curves of expert evaluation and

algorithmic evaluation have similar trends in each score band,

indicating that there is a high degree of consistency between the

TAL-SRX evaluation and the expert evaluation, and that the

evaluation results of the multi-model fusion method can reflect

well the success rate of the development of KASP markers, and then

effectively screen out the well-typed markers. However, it is worth

noting that there are obvious deviations in the curve trajectories of

the two score regions of 0 and 10, which is due to the fact that the

Transformer, which has the strongest global feature capturing

ability, has the smallest weight in the voting and contributes less

to the final prediction results, which makes the performance of the

integrated model performance on the samples with dispersed

distribution of allele genotypes weaker.
4 Discussion

The demand for molecular marker-assisted breeding has driven

the development of KASP markers, but the complexity and diversity

of allele genotype distribution patterns in the typing results have

seriously hindered the large-scale screening of markers, and the

existing manual discrimination and algorithms do not have the

ability to analyze the data of the typing results with high accuracy

and efficiency, making it challenging to develop good molecular

markers in bulk. Deep learning, as an important branch of machine

learning, has been widely used in various fields, however, there has
FIGURE 7

Performance comparison of different integration combinations.
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not been any study using deep learning algorithms to evaluate

population genotype amplification and segregation, so it is of great

significance to use an integrated strategy to introduce a deep

learning model to evaluate the effect of KASP primer typing. In

this study, two integration strategies, stacking and soft voting, were

used for algorithm combination to construct a multi-model hybrid

learning method driven by statistics of KASP marker typing report,

and the fol lowing conclusions were drawn from the

experimental study:
Fron
1. Refined the evaluation criteria of KASP primer typing

effect, and constructed a competitive allele distribution

pattern evaluation system from 0-100 points. This

evaluation criterion provides a powerful quantitative tool

for analyzing the amplification efficiency, specificity and

combinatorial competitiveness of genotypes, which is not

only applicable to the results of the KASP test in cotton, but

also provides a reference to the resources of other varieties,

and can be used to screen for the superior KASP markers

that meet the characteristics of different crops.

2. In the multi-model fusion method proposed in this paper, the

Stacking integrated learning model is connected using the

“base model-metamodel” approach, which gives full play to

the respective advantages of heterogeneous learners, and

different optimization algorithms are adopted for different

learners to accelerate the parameter search process and

maximize the performance of each model, and the training

process adopts five-fold cross-validation to enhance the model

stability. The ANN-LSTM hybrid neural network model

combines the ability of nonlinear relationship capture and
tiers in Plant Science 12
complex feature extraction, which enhances the adaptability of

the model to heterogeneous samples, and the Transformer

model is based on the self-attention mechanism, which

captures the global dependencies in the high-dimensional

feature space, and improves the robustness of TAL-SRX.

3. The proposed model was trained and tested using 3399 sets

of KASP marker typing report statistics of cotton varietal

resource materials, and the performance comparison

between the TAL-SRX method and the base model was

carried out firstly, and the TAL-SRX algorithm had a lower

error rate and error value than that of the base model, with

an accuracy of 92.83% and an AUC value of 0.9905, which

was of high evaluative accuracy, consistency and stability,

and the performance is significantly better than the single

model. Secondly, the impact of each algorithm on the

model prediction performance was investigated by

integrating and combining ways of ablation comparison,

and the experimental results show that the two integration

strategies can enhance the model performance, and

different sub-algorithms have positive effects on the

model. Finally, a comparison between the TAL-SRX

method and expert scoring was carried out, and the

evaluation results of this method have a high consistency

between the number of samples on each score band and the

expert evaluation. Therefore, the TAL-SRX method has

good evaluation performance.

4. In this study, we explored an intelligent KASP primer

typing effect evaluation method using deep learning

algorithms and stacking integration, and verified its

effectiveness through experiments, which provided the
FIGURE 8

Comparison of TAL-SRX methodology and expert scoring results.
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Fron
possibility of applying the algorithm to KASP typing data of

various crop variety resources.
5 Conclusion

In this study, an intelligent typing evaluation method for KASP

primers with higher accuracy, called TAL-SRX, is proposed, which can

be used to provide more accurate data support for improving the

success rate of KASPmarker development. Themethod first introduces

an optimization algorithm to construct the Stacking integrated learning

framework through three improved models, RS-RF, PSO-SVM and

BO-XGBoost, which improves the model prediction performance to

some extent and enhances the stability and prediction accuracy of the

model. Then, a hybrid neural network is constructed using ANN and

LSTM to capture nonlinear relationships and extract complex features

to strengthen the model’s ability to adapt to discrepant samples, and

the Transformer algorithm with a multi-attention mechanism is

introduced to capture the global dependencies in the high-

dimensional feature space, which effectively enhances the model’s

robustness. Comparison tests were conducted on the test set, and the

distribution of the number of samples on each score band was in high

agreement between the TAL-SRX method and the expert evaluation

results, with an evaluation accuracy of 92.83%, an AUC value of 0.9905,

and a lower error rate and error value than that of the base model, and

the overall performance was significantly better than that of each single

model. In the integrated combination approach ablation comparison

test, the TAL-SRX integrated method showed better accuracy and was

suitable for KASP primer intelligent typing evaluation. However, it is

worth noting that the model proposed in this paper mainly addresses

the problem of data evaluation for medium-sized experiments, and is

only applicable to the experimental dataset where the mother plate is a

96-well plate, and in the actual operation of KASP, the researchers will

also obtain the experimental data of different well plates on a larger

scale and a large scale, so it is necessary to further adjust the structure of

the model in the subsequent experiments to enhance the generalization

ability of the model for more datasets.
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