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Introduction: Winter wheat is a crucial crop extensively cultivated in northern

China, where its grain yield is influenced by genetic factors (G), environmental

conditions (E), and their interactions (GEI). Accurate yield estimation depends on

understanding the patterns of GEI in multi-environment trials (METs).

Methods: From 2014 to 2018, continuous experiments were conducted in the

Heilonggang region of the North China Plain (NCP), evaluating 71 winter wheat

genotypes across 16 locations over five years. Leveraging 30 years of environmental

data, including 19 meteorological parameters and 6 soil physicochemical

properties, the study analyzed GEI and identified four distinct mega-

environments (MEs) using advanced environmental classification techniques.

Results: Variance analysis of genotype-year combinations at individual locations

revealed significant differences among genotypes. Furthermore, the joint analysis

showed that GEI variance exceeded the variance attributed to genotypic effects

alone. The Additive Main Effects and Multiplicative Interaction (AMMI) model

indicates that the first three interaction principal component axes (IPCAs)

account for over 70% of the GEI variance, thereby demonstrating the

relevance of this model to the current study. Principal Component Analysis

(PCA) across the five-year study period revealed positive correlations between

grain yield and vapor pressure deficit (VPD), evapotranspiration potential (ETP),

temperature range (TRANGE), available soil water (ASKSW), and sunshine

duration. Conversely, negative correlations were observed with relative

humidity at 2 meters (RH2M), total precipitation (PRECTOT), potential

evapotranspiration (PETP), and dew point temperature at 2 meters (T2MDEW).

Among the meteorological and soil variables, minimum temperature (TMIN),

fruiting rate (FRUE), temperature at 2 meters (T2M), and clay content (CLAY)

emerged as the most significant contributors to yield variation during the study
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period. Based on GGE biplot analysis, superior genotypes were identified for their

respective regions: JM196, WN4176, and HN6119 in 2014; ZX4899, H9966, and

LM22 in 2015; BM7, KN8162, and KM3 in 2016; HH14-4019, HM15-1, and HH1603

in 2017; and S14-6111 and JM5172 in 2018. Feixiang and Shenzhou were

identified as the most discriminative and representative locations.

Discussion: These findings provide a scientific basis for optimizing winter wheat

cultivation strategies in northern regions. Based on long-term data from the

North China Plain, future work can further validate their applicability in

other regions.
KEYWORDS
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1 Introduction

Wheat (Triticum aestivum L.) is one of the world’s most

important food crops, with a long history of cultivation that has

provided humanity with essential food and by-products, such as

flour (Senapati et al., 2022; Bayissa et al., 2023). Driven by rapid

population growth and rising incomes, global wheat demand is

expected to increase significantly, particularly in developing

countries (Roostaei et al., 2021). China is the largest producer and

consumer of wheat, maintaining its position as the world’s top

wheat producer in 2022, with an output of 138 million tons—17% of

the global production (Wang et al., 2020, 2024; Yi et al., 2024). The

wheat planting area occupies approximately 23 million hectares in

China, accounting for 22%–30% of the country’s total arable land

and 22%–27% of the total food crop area (Zhang et al., 2024).

Wheat is categorized into winter wheat and springwheat based on

the sowing time, with winter wheat dominating production in China.

Over 80% of China’s wheat production is attributed to winter wheat

(Feng et al., 2024). Wheat yield is influenced by genotype (G),

environmental (E) factors, and genotype–environment interactions

(GEI). These interactions complicate the selection of stable high-

yielding genotypes (Le Gouis et al., 2020; Mitura et al., 2023). In

multi-environment trials (METs), much of the variation in yield is

caused by E and GEI, making them critical factors when breeding and

recommending wheat genotypes in different regions (Crespo-Herrera

et al., 2018; Saeidnia et al., 2023). Stability analysis is essential for

identifying genotypes that consistently perform well across diverse

environments as well as those suited to specific locations (González-

Barrios et al., 2019).These analyses employvariousmethods, including

parametric and non-parametric approaches, to evaluate genotype

stability under changing environmental conditions (Vaezi et al.,

2018; Pour-Aboughadareh et al., 2019; Vaezi et al., 2019; Yue

et al., 2022a).

Envirotyping, which uses environmental data to model how

crops grow in specific conditions, has become increasingly feasible

with advancements in geographic information systems (GIS) and
02
environmental big data. By characterizing the environment during

the crop growth period, researchers can identify key factors affecting

yield and adaptation (Costa-Neto et al., 2020; Resende et al., 2021).

The variation in genotype responses to environmental gradients

during the growing season resulted in GEI. A “mega-environment”

(ME) is a group of regions with similar environmental conditions,

where a specific genotype consistently performs the best, with

minimal crossover interactions. Repeatable GEI can be addressed

by breeding genotypes tailored to specific MEs, while non-repeatable

GEI can be managed through targeted selection within an ME

(Hassani et al., 2018; Shahriari et al., 2018).

Climate variability, such as changes in rainfall and temperature,

poses significant challenges to global wheat production, and

increases yield instability and food insecurity (Toreti et al., 2019;

Raimondo et al., 2021). To mitigate these risks, it is crucial to

evaluate wheat performance over multiple years and locations.

Methods such as the Additive Main Effect and Multiplicative

Interaction (AMMI) and Genotype Plus Genotype-by-

Environment (GGE) biplots are commonly used to analyze GEI.

GGE biplots are particularly useful for identifying MEs, ranking

genotypes, and selecting environments for testing (Mohammadi

et al., 2018; Singh et al., 2019; Bishwas et al., 2021). More recently,

the use of linear mixed-effects models, such as Best Linear Unbiased

Prediction (BLUP), has been shown to improve the predictive

accuracy. Stability metrics, such as the Weighted Average

Absolute Scores of BLUPs (WAASBs) and WAASBY indices,

allow researchers to simultaneously evaluate both performance

and stability (Olivoto et al., 2019a; Rajput et al., 2021).

In China, wheat cultivation zones have traditionally been based on

agroclimatic regions. However, systematic METs are required to better

identifyMEs and recommend optimal genotypes (Liu et al., 2021). This

study aimed to map the impact of environmental factors on wheat

yield, understand GEI, and identify MEs by integrating environmental,

genotype, and interaction effects. These efforts will help to select wheat

genotypes with high yield, stability, and adaptability, ensuring

sustainable production across diverse regions.
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2 Materials and methods

2.1 Plant materials, locations, and
experimental design

From 2014 to 2018, 51 fields were located in 16 different

locations in the Hebei Province of China (Table 1, Figure 1).
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According to the annual trial results, new genotypes were added

to the evaluation plan every year. A total of 14, 13, 14, 16, and 14

winter wheat genotypes were evaluated in 2014, 2015, 2016, 2017,

and 2018, respectively. Information on the winter wheat genotypes

evaluated each year is shown in Supplementary Tables S1–S5. A

randomized complete block design (RCBD) was adopted with three

replications in a plot of size 13.33 m2. The agronomic measures

during the experiment were based on local field management, and

the grain yield was measured in kg ha−1, with a correction of 13%.
2.2 Classification of mega-environments
based on 30 years of meteorological
factors and soil data

Firstly, 19 meteorological factors from 16 locations from 1989

to 2019 were collected using the R package EnvRtype (Costa-Neto

et al., 2021). To better classify mega-environments (MEs), we

filtered the data for 19 meteorological factors each year and only

screened for meteorological data covering the winter wheat growing

season (October to June). In addition, data for six local soil chemical

factors were obtained using the SoilType package (Fritsche-Neto,

2023). A dataset containing 25 environmental covariates (ECs) is

listed in Table 2. The 25 ECs were used to construct an envirotype-

covariable matrix (W) that further computed the environmental
TABLE 1 Basic information of the 51 environments used in this research
during 2014–2018.

Code Environment Year Sowing data

1 Yongnian 2014 06/10/2014

2 Yongnian 2015 09/10/2015

3 Yongnian 2016 08/10/2016

4 Yongnian 2017 09/10/2017

5 Yongnian 2018 08/10/2018

6 Handan 2014 09/10/2014

7 Handan 2015 05/10/2015

8 Handan 2017 02/10/2017

9 Handan 2018 02/10/2018

10 Feixiang 2014 10/10/2014

11 Feixiang 2015 12/10/2015

12 Shenzhou 2014 12/10/2014

13 Shenzhou 2015 10/10/2015

14 Shenzhou 2016 09/10/2016

15 Shenzhou 2017 10/10/2017

16 Shenzhou 2018 06/10/2018

17 Gaocheng 2014 10/10/2014

18 Gaocheng 2015 08/10/2015

19 Gaocheng 2016 09/10/2016

20 Gaocheng 2017 11/10/2017

21 Gaocheng 2018 12/10/2018

22 Luquan 2014 13/10/2014

23 Luquan 2015 11/10/2015

24 Luquan 2017 15/10/2017

25 Luquan 2018 11/10/2018

26 Malan 2014 10/10/2014

27 Malan 2015 12/10/2015

28 Malan 2017 13/10/2017

29 Malan 2018 11/10/2018

30 Wuyi 2014 13/10/2014

31 Wuyi 2015 15/10/2015

(Continued)
TABLE 1 Continued

Code Environment Year Sowing data

32 Wuyi 2018 12/10/2018

33 Xinhe 2014 15/10/2014

34 Xinhe 2015 14/10/2015

35 Xinhe 2016 16/10/2016

36 Xingtai 2014 08/10/2014

37 Xingtai 2015 10/10/2015

38 Xingtai 2016 11/10/2016

39 Xingtai 2017 09/10/2017

40 Xingtai 2018 10/10/2018

41 Zhengding 2014 15/10/2014

42 Zhengding 2016 13/10/2016

43 Nanpi 2015 12/10/2015

44 Nanpi 2016 14/10/2016

45 Nanpi 2017 12/10/2017

46 Nanpi 2018 15/10/2018

47 Xinle 2015 14/10/2015

48 Xinle 2017 16/10/2017

49 Linxi 2017 15/10/2017

50 Dacaozhuang 2018 14/10/2018

51 Fucheng 2016 15/10/2016
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affinities W_matrix using functions in the EnvRtype package. With

a nine-month period (October to June) to represent the temporal

variation of the crop growth period, 6,750 (30 years × 25 ECs × 9

intervals) variables were obtained, and the envirotype covariable

matrix (25 environmental rows × 6,750 climatic variables’ columns)

was used to calculate the enviromic kernel (KE) using the following

formula:

     KE =  
WW 0

trace(WW 0)
nrow(W)

(1)

where KE is the environmental similarity kernel based on

environment “omics” and W is the envirotype matrix. To identify

MEs, hierarchical clustering (average linkage method) was applied

to the KE.

Finally, to show the correlations between the 25 environmental

variables, principal component analysis (PCA) was performed by

creating a bidirectional table containing environmental variables

using the ‘fviz_pca_biplot()’ function from the R package factoextra

(Kassambara and Mundt, 2017).
2.3 Stability analysis

2.3.1 Additive main effects and multiplicative
interaction analysis

The additive main effects and multiplicative interaction

(AMMI) model was used to examine the grain yield of the

evaluated genotypes. The AMMI model integrates the standard

analysis of variance (ANOVA) and principal component axis

(PCA) to determine the interactive principal component axis
Frontiers in Plant Science 04
(IPCA) and calculate stability parameters. The AMMI model

proposed by Gauch (1988) is given as:

Yge = m + ag + be +ok
n=1lndgngen + rge (2)

where Yge is the target trait yield of the gth genotype in the eth

environment; m represents the overall average; ag represents the gth

genotype effect; be represents the eth environmental effect; ln
represents the nth principal component axis (PCA) singular

value; dgn and gen are the characteristic vector values of genotype

g, environment e and component n, respectively; rge is the residual;
and k is the number of main component axes (PCA).
2.3.2 The best linear unbiased prediction model
for multi-environment trials

As a well-known linear model with interaction, the best linear

unbiased prediction (BLUP) is often used to analyze METs data, as

described by Piepho et al. (2008), as follows:

yijk = m + ai + tj + atij + gjk + eijk (3)

where yijk is the grain yield observed in the kth block of the ith

genotype in the jth environment; m is the grand mean; ai and tj are
the effect of the ith genotype and jth environment, respectively; atij
is the interaction effect of the ith genotype with the jth environment;

gjk is the effect of the kth block within the jth environment; and eijk
is the error term.
2.3.3 Cross-validation procedure
Cross-validation was performed to determine the best model

and evaluate the efficiency of the AMMI and BLUPmodels. The raw
FIGURE 1

Locations of the 16 locations used in this study in the 2014–2018 crop seasons in Hebei province of China.
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dataset is divided into two parts: training and validation. The

training dataset had N − 1 replications, i.e., two replications,

whereas the validation dataset had only one replication. The root-

mean-square prediction difference (RMSPD) value was used to

select and compare the AMMI and BLUP models. The smaller the

RMSPD value, the more accurate the model prediction

(Gauch, 2013).
Frontiers in Plant Science 05
2.3.4 Estimation of stability indexes
The following stability indexes were estimated based on the

AMMI and BLUP analyses. The stability indexes based on AMMI

analysis were the AMMI Stability Index (ASI), AMMI Stability

Value (ASV), Modified AMMI Stability Index (MASI), Modified

AMMI Stability Value (MASV), Simultaneous Selection Index

(SSI), Sums of the Averages of the Squared Eigenvector Values

(EV), Annicchiarico’s D Parameter Values (DA), Zhang’s D

Parameter (DZ), Sums of the Absolute Value of the IPC Scores

(SIPC), Absolute Value of the Relative Contribution of IPCs to the

Interaction (ZA), and Weighted Average of Absolute Scores

(WAAS). The BLUP values of the evaluated winter wheat

genotypes (Supplementary Figure S4) were used in the estimation

of indexes viz., the relative performance of the genotypic values

(RPGV), the harmonic mean of genotypic values (HMGV), and the

harmonic mean of the relative performance of genotypic values

(HMRPGV) (Ajay et al., 2020; Anuradha et al., 2022).

To allow weighting between grain yield and stability of winter

wheat genotypes, a new superiority index, WAASBY (Weighted

Average of Absolute Scores of BLUP (WAASB) and yield) was used.

The best genotype was determined by rescaling and weighing grain

yield (GY) and stability index (WAASB) (Olivoto et al., 2019b). The

weighting values for the WAASB and GY were 50 and 50,

respectively, which gave equal weights to both metrics. Various

stability indexes were obtained using the R metan package (Olivoto

and Lúcio, 2020).

2.3.5 GGE biplot analysis
The yield data were analyzed using GGE biplot analysis. GGE

biplots have the following functions: a) can visually present the

mean genotypic performance across environments; b) can study the

“which-won-where”mode across the mega-environments (MEs); c)

can evaluate the discrimination and representativeness of the

testing environments; d) can compare the target genotype with

the ideal genotype. Yan (2001) proposed the following GGE biplot

model:

Yij = m + bj + l1xi1hj1 + l2xi2hj2 + eij (4)

where Yij is the expected grain yield of genotype i in

environment j; m is the grand mean; bj is the main influence

value of environment j; l1 and l2 are the singular values of the

first and second principal components (PC1 and PC2), respectively,

xi1 and xi2 are the feature vectors of genotype i for PC1 and PC2,

respectively, hj1 and hj2 represent the special vectors of

environment j for PC1 and PC2, respectively, and eij is the

unexplained residues of genotype i in environment j. The GGE

biplot analysis and mapping was done by the R metan package.
2.4 Statistical software

All statistical analyses of the raw data involved in this study

were performed using R software 4.3.1 (R Core Team, 2022) with

the packages mentioned previously.
TABLE 2 Details of the 25 environmental covariables (ECs) used in
this study.

Source Environmental factor Unit

Nasa POWERa All sky insolation incident on a
horizontal surface ASKSW

MJ m−2 d−1

Downward thermal infrared
(longwave) radiative flux ASKLW

MJ m−2 d−1

Extraterrestrial radiation RTA MJ m−2 d−1

Wind speed at 2 m above the surface
of the earth WS2M

m s−1

Minimum air temperature at 2 above
the surface of the earth TMIN

°C d −1

Average air temperature at 2 above the
surface of the earth T2M

°C d −1

Maximum air temperature at 2 above
the surface of the earth TMAX

°C d −1

Dew-point temperature at 2 m above
the surface of the earth T2MDEW

°C d −1

Relative air humidity at 2 above the
surface of the earth RH2M

%

Rainfall precipitation PRECTOT mm d −1

Calculatedb Temperature range TRANGE °C d−1

Potential evapotranspiration ETP mm d−1

Deficit by precipitation PETP mm d−1

Vapor pressure deficit VPD kPa d−1

Slope of saturation vapor pressure
curve SPV

kPa °C d−1

Effect of temperature on radiation-use
efficiency FRUE

from 0 to 1

Growing degree day GDD °C d−1

Actual duration of sunshine n h

Daylight hours N h

Soil covariates Clay total CLAY g/100 g

Sand total SAND g/100 g

Silt total SILT g/100 g

pH H2O PHAQ

Organic carbon ORGC g/kg

Total nitrogen (N) NITKJD g/kg
arepresents the meteorological data obtained directly from NASA orbital sensors (Sparks,
2018), brepresents the data was calculated from Allen et al. (1998) and Soltani and
Sinclair (2012).
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3 Results

3.1 Envirotyping

Based on 30 years (1989–2019) of climate and soil information,

four mega-environments (MEs) were identified using similarity

analysis of 25 environmental covariates (ECs), including 19

meteorological factors and six soil physicochemical factors. ME1

comprised locations—Shenzhou, Wuyi, Malan, Dacaozhuang,

Xingtai, and Xinhe. ME2 includes locations such as Linxi,

Yongnian, Feixiang, and Handan. Nanpi and Fucheng were

included in ME3, whereas Gaocheng, Zhengding, Luquan, and

Xinle were included in ME4 (Figure 2). These MEs exhibited

geographic proximity, with the first two principal components

accounting for 68.8% of location variability, indicating significant

differences in environmental variables across environments

(Supplementary Figure S1).

Principal component analysis based on 30-year climate data

and soil composition information revealed that ME1 had higher

TRANGE, PRECTOT, GDD, N, SAND, PHAQ, and SILT values.

ME2 had higher RTA, WS2M, FRUE, SPV, TMAX, ASKLW, and

PETP. ME3 had lower climate and soil variables, namely, VPD,

ORGC, NITKJD, and CLAY, and ME4 was associated with higher

ETP, ASKSW, and n (Figure 3). RTA, T2M, TMIN, FRUE, and
Frontiers in Plant Science 06
GDD were the climatic variables that contributed the most to the

environmental scores (Supplementary Figure S2). During the 2014–

2018 METs, grain yield (GY) was found to be positively correlated

with environmental variables such as ETP, VPD, TMAX, SPV,

GDD, T2M, FRUE, and ORGC, and negatively correlated with

environmental factors such as RH2M, PRECTOT, PETP, and

T2MDEW (Figure 4). This variation was predominantly

attributed to TMIN, FRUE, T2M, SPV, and GDD during 2014–

2018 (Supplementary Figure S3).
3.2 Combined analysis of variance and
AMMI analysis

The combined analysis of variance for each year showed that

genotype (G), environment (E), and GE were all highly significant

(P ≤0.001) for grain yield at all locations (Table 3). Among the

sources of variation, the environmental effect recorded the highest

sum of squares, indicating that the highest degree of variation was

47.72%, 66.82%, 70.59%, 68.28%, and 69.26% in all five years,

respectively. The proportions of GE interactions accounted for

15.54%, 9.51%, 7.76%, 9.70%, and 10.00%, respectively. From

2014 to 2018, genotypic main effects accounted for 12.64%,

5.46%, 3.24%, 3.96%, and 4.99% of the total variation. During
FIGURE 2

The heat map depicting the delineated mega-environments considering the environmental similarity based on 30 years of climate information on 19
meteorological covariates and six soil factors.
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2014–2018, the proportion of total variation recorded by GE

interactions was greater than that of the genotype, indicating its

importance for variety performance across various locations.

The AMMI analysis results for all five years are presented in

Table 4. The GE interaction matrix was partitioned to form a

multiplicative component. The first three IPCAs (interaction

principal component axes) obtained by singular value

decomposition of GE interactions were statistically significant

(p <0.01) using the F-test. IPCA1 accounted for 27.7%, 32.0%,

33.9%, 44.2%, and 55.5% of total GE interactions between 2014 and

2018, respectively.
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3.3 Model comparison between BLUP and
AMMI families

The evaluation identified the optimal models for the period

2014–2018. Based on our multi-year datasets showing various

genotype-environment interaction (GEI) patterns, our analysis

indicated that the Best Linear Unbiased Prediction (BLUP) model

provided the most accurate predictions. Furthermore, we observed

that AMMI9, AMMI6, AMMI0, AMMI4, and AMMI2

demonstrated the highest accuracy among the AMMI models

during the period 2014–2018 (Figure 5).
FIGURE 4

Biplot for the principal component analysis between environmental variables in the trials during 2014-2018.
FIGURE 3

Biplot for the principal component analysis between environmental variables during 1989-2019.
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TABLE 4 AMMI analysis of variance of grain yield fo

Sources 2014

Df F value Proporti

Environment (E) 10 63.46***

Rep (Env) 22 3.02**

Genotype (G) 13 39.23***

GE Interaction 130 4.82***

IPCA1 22 7.90*** 27.7

IPCA2 20 6.67*** 21.3

IPCA3 18 6.41*** 18.4

Residuals 286 – –

Total 591 – –

Df, degree of freedom; **, significant at P ≤0.01; ***, highly sign

Sources 2014

Df M

Environment (E) 10 2

Rep (Env) 22 3

Genotype (G) 13 4

GE Interaction 130 5

Residuals 286 1

CV (%) 4.13

Overall mean
(kg/ha)

8,226.31

Df, degree of freedom; **, significant at P ≤0.01; ***, highly sign
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FIGURE 6

The heatmap showing the correlation between stability indices based on AMMI and BLUP along with grain yield. ns, p ≥0.05; *p <0.05; **p <0.01;
***p <0.001.
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FIGURE 5

The distribution of 1,000 estimates of root mean square prediction difference (RMSPD) was visualized by boxplot to compare the prediction
accuracy of BLUP and AMMI families.
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3.4 Stability indices

A heat map (Figure 6) was generated to compare various

stability indices derived from the AMMI, BLUP, and WASSY

methods based on their rankings (Supplementary Tables S6, S7).

The rank correlation analysis of these indices demonstrated that the

BLUP and AMMI indices formed two separate clusters with a

strong correlation observed within each cluster, while correlations

between clusters were weaker.

During the period from 2014 to 2018, the correlation between

AMMI indices and grain yield varied between −0.53 to 0.42, −0.53

to −0.13, −0.33 to 0.15, −0.70 to −0.13, and −0.60 to −0.15,

respectively, for each respective year, whereas the correlation of

the BLUP index with grain yield was 1.00*** to 1.00***, 1.00*** to
1.00***, 0.99*** to 1.00***, 1.00*** to 1.00***, and 1.00*** to

1.00*** across the same time frame. Overall, this suggests that the

BLUP indices exhibited a high correlation with grain yield, whereas

the AMMI indices displayed a low or negative correlation.

TheWAASY index was significantly and positively correlated with

grain yield and BLUP indices. This suggests that the WAASY index

considers both grain yield and GE interactions when identifying the

best genotypes. The correlation between WAASY index and AMMI

index in 2014–2018 was −0.48 to −0.86***, −0.60* to −0.85***, −0.50
to 0.84***, −0.68** to −0.94*** and −0.54* to −0.91***, respectively,
while the correlation with BLUP index was 0.81*** to 0.82***, 0.84***
Frontiers in Plant Science 10
to 0.86***, 0.73*** to 0.75***, 0.78*** to 0.79*** and 0.83*** to

0.84***, respectively.
3.5 GGE biplot analysis

According to the GGE biplot analysis, the first two PCs

(principal components) explained 66.36%, 62.60%, 64.43%,

65.75%, and 80.67% of the total genotype and GE variation from

2014 to 2018, respectively. The winning genotype at each location

was identified using the which-won-where view of the GGE biplot.

During 2014, genotypes JM196 exhibited high yield in locations

Shenzhou, Zhengding, and Yongnian to become the champion

genotype, while genotypes WM4176 and HN6119 were identified

as superior genotypes in the remaining locations. During 2015,

genotypes ZX4899 and H9966 became the general winners across

six locations including Xinle, Feixiang, Shenzhou, Handan,

Gaocheng, and Wuyi, and genotype LM22 became the universal

winner across the remaining five locations. During 2016, genotypes

BM7, KN8162, and KM3 were the champion genotypes on locations

Fucheng and Xinhe, locations Nanpi and Gaocheng, locations

Zhengding, Yongnian, Xingtai, and Shenzhou, respectively.

During 2017, the champion genotype across locations Gaocheng,

Linxi, Handan, Xingtai, Nanpi, and Luquan was HH14-4019, while

the genotypes HM15-1 and HH1603 performed well in the
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FIGURE 7

The which-won-where view of the GGE biplot for multi-environment trials from 2014 to 2018.
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locations Yongnian, Malan, Shenzhou, and Xinle as the universal

winner. During 2018, the genotype S14-6111 had broad adaptability

in the locations Malan, Xingtai, Dacaozhuang, Gaocheng, Wuyi,

and Luquan as the universal genotype, while JM5172 performed

best in the location Yongnian (Figure 7).

Based on the discriminative and representative view of GGE

biplot, during 2014, Yongnian,Malan, Gaocheng, Handan, Feixiang,

and Luquan were the most discriminative locations. Moreover, the

Handan and Feixiang locations were more representative. Thus,

Handan and Feixiang were locations with both discrimination and

representativeness. In 2015, Yongnian, Xinle, and Feixiang were the

most discriminative locations, and Nanpi and Xingtai were more

representative. In 2016, the highest discriminative locations were

Fucheng, Yongnian, Xingtai, and Zhengding, whereas the

representative location was Gaocheng. During 2017, locations

Shenzhou and Xinle were higher discriminative, while Yongnian,

Malan, Shenzhou, and Xingtai showed good representative ability

among the test locations. Thus, Shenzhou was the most

representative and best discriminating location for evaluating

winter wheat. Likewise, during 2018, Shenzhou, Yongnian, Malan,

and Xingtai were the higher discriminative locations, while

Shenzhou, Luquan, Nanpi, and Handan showed good representative

ability. Shenzhouwas the locationwithhigher discriminative and good

representative (Figure 8).
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4 Discussion

4.1 Impact of genotype–environment
interactions on winter wheat yield

The results of this study confirm that GEI plays a significant role

in determining winter wheat yield. The findings revealed that

environmental factors, especially temperature, relative humidity,

and vapor pressure deficit (VPD), significantly affected genotypic

performance. These interactions are particularly pronounced in

multi-year and multi-location trials, where the variability of the GEI

exceeds that of genotype effects alone. This result aligns with those

of previous studies (Özdoğan, 2011; Semenov et al., 2014; Bajwa

et al., 2020), highlighting that environmental factors, especially

those linked to climate change, cannot be overlooked in wheat

production. The North China Plain (NCP), a region with dynamic

agricultural conditions, serves as a prime example of how the GEI

shapes genotype performance (Xiao et al., 2020; Zhang et al., 2020).

Understanding the role of environmental changes in wheat growth

is crucial for the selection of genotypes with superior adaptability.

In this context, selecting genotypes with stable and high yield

potential across various environments is paramount, as this can

directly improve productivity in regions affected by climate

variability (Nataraj et al., 2024).
FIGURE 8

The discriminativeness vs. representativeness view of the GGE biplot for multi-environment trials from 2014 to 2018.
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4.2 Environmental factors and their
influence on wheat growth

The study revealed that warmer conditions, especially in

locations such as Dacaozhuang, Xinhe, and Xingtai, led to

elevated temperatures (T2M, TMAX, and TMIN), reduced

relative humidity, and consequently, higher VPD. These

conditions result in increased evapotranspiration (ETP), especially

in Xinhe, suggesting that water loss through evapotranspiration is

more pronounced in warmer environments. This positive

correlation between environmental temperature and ETP

supports the hypothesis that environmental warming increases

the challenges associated with water loss in wheat production

(Casagrande et al., 2024). These findings underscore the need for

climate-resilient wheat genotypes that can withstand environmental

stresses. Genotypes that exhibit stable yields under varying

temperature and relative humidity are essential for maintaining

productivity in the face of climate change. Focusing on these

environmental factors when selecting drought-resistant or heat-

tolerant traits could improve the resilience of future wheat crops

(Wang et al., 2023).
4.3 Statistical models for yield prediction
and genotype selection

Selecting appropriate statistical models is essential for improving

the yield predictions in METs (Koundinya et al., 2021; Yue et al.,

2022b). In this study, the Best Linear Unbiased Prediction (BLUP)

model outperformed the Additive Main Effects and Multiplicative

Interaction (AMMI) model for predicting yield. These findings

support the use of BLUP as a preferable tool for large datasets, as it

accounts for both genotype and environmental effects, and provides

more reliable predictions for breeders (Piepho, 1994). While AMMI

remains useful for modeling genotype–environment interactions and

imputing missing data, our results suggest that BLUP is particularly

valuable for predicting yield potential in trials with diverse

environmental conditions. These insights can be directly applied to

breeding programs that seek to optimize yield predictions and to

select the best-performing genotypes for specific locations or climatic

conditions (Piepho et al., 2008).
4.4 Application of GGE biplot for genotype
evaluation and mega-
environment identification

Wheat is a globally distributed and highly adaptable crop that

not only has high nutritional value but also possesses unique gluten

properties and excellent processing characteristics, making it

suitable for the production of a wide variety of foods (Hyles et al.,

2020; Yadav et al., 2022). Although China is the largest wheat

producer in the world, with an annual production exceeding 137

million tons, accounting for approximately 17% of the global total,

the mean yield in China is 5, 812 kg/ha, which is only approximately
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80% of the yield levels seen in advanced agricultural countries like

France. The analysis of numerous genotypes across diverse

environments presents challenges in identifying consistent

responses across environments, particularly without graphical

representations of the data. The GGE biplot enabled visualization

of genotype performance across multiple environments. By

identifying mega-environments, the GGE biplot helps breeders

focus on genotypes that are best suited to specific environmental

conditions (Yan, 2001; Yan and Holland, 2010). Locations like

Handan, Feixiang, Nanpi, and Shenzhou were consistently

identified as representative environments over multiple years.

These locations offer valuable insights for breeders looking to

select genotypes that can thrive under specific climatic conditions,

either for general or targeted adaptation. For example, genotypes

such as JM196, WM4176, and ZX4899 performed consistently well

in their respective mega-environments. These genotypes show

promise for use in breeding programs that target specific regions.

Moreover, environments with high discriminative power, such as

Yongnian and Feixiang, are ideal for identifying stable genotypes

with broad adaptability, contributing to the selection of high-

yielding varieties suitable for various regions. Recognizing

consistently similar environments aids in optimizing location

selection for multi-environment trials (METs), thus reducing

MET costs. Similar analyses have been applied to rice (Singh

et al., 2023), maize (Yue et al., 2021), winter (Ferrante et al.,

2021), and sugarcane (Mehareb et al., 2022), utilizing the GGE

biplot to pinpoint the most discriminative test environments. This

study also underscores the unpredictability of year-to-year

variations at the same location, emphasizing the need for a

stability analysis to better align specific genotypes with

specific environments.
5 Conclusion

Breeding programs rely on multi-environment trials to identify

the best-performing genotypes for commercial cultivation and to

select locations that best represent the target environments. This

study analyzed mega-environments from 2014 to 2018 using several

statistical approaches: envirotyping, AMMI, BLUP, and GGE. The

findings show that the AMMI index effectively identifies genotypes

with minimal GEI, whereas the BLUP index is useful for selecting

genotypes with high grain yield. In contrast, the WAASY index

highlighted the genotypes that demonstrated superior performance in

terms of both yield and stability. A positive correlation was observed

between WAASY, grain yield, and BLUP indices. Principal

component analysis (PCA) revealed that grain yield was positively

correlated with environmental factors such as potential

evapotranspiration (ETP), vapor pressure deficit (VPD), maximum

air temperature (TMAX), and organic carbon (ORGC). Conversely, it

was negatively correlated with relative humidity (RH2M), rainfall

precipitation (PRECTOT), and dew-point temperature (T2MDEW).

Interestingly, some geographically and agro-ecologically distinct

locations exhibited similar data patterns and were grouped into the

same mega-environment. This suggests that other biological,

biophysical, and soil-related factors are important for classifying
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the environment. For breeding programs, it is recommended to select

and test genotypes within the identified mega-environments to

ensure that they are adapted to specific conditions. Locations such

as Feixiang and Shenzhou were found to be both discriminative and

representative, making them ideal locations for developing wheat

cultivars with broader adaptability.
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