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Introduction: Nondestructive quantification of leaf chlorophyll content (LCC) of

banana and its spatial distribution across growth stages from remotely sensed

data provide an effective avenue to diagnose nutritional deficiency and guide

management practices. Unmanned aerial vehicle (UAV) hyperspectral imagery

can document abundant texture features (TFs) and spectral information in a field

experiment due to the high spatial and spectral resolutions. However, the

benefits of using the fine spatial resolution accessible from UAV data for

estimating LCC for banana have not been adequately quantified.

Methods: In this study, two types of image features including vegetation indices

(VIs) and TFs extracted from the first-three-principal-component-analyzed

images (TFs-PC1, TFs-PC2, and TFs-PC3) were employed. We proposed two

methods of image feature combination for banana LCC inversion, which are a

two-pair feature combination and a multivariable feature combination based on

four machine learning algorithms (MLRAs).

Results: The results indicated that compared to conventionally used VIs alone,

the banana LCC estimations with both proposed VI and TF combination methods

were all significantly improved. Comprehensive analyses of the linear

relationships between all constructed two-pair feature combinations and LCC

indicated that the ratio of mean to modified red-edge sample ratio index (MEA/

MSRre) stood out (R2 = 0.745, RMSE = 2.17). For multivariable feature

combinations, four MLRAs using original or two selected VIs and TFs-PC1

combination groups resulted in better LCC estimation than the other input

variables. We concluded that the nonlinear Gaussian process regression model

with the VIs and TFs-PC1 combination selected by maximal information
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coefficient as input achieved the highest accuracy in LCC prediction for banana,

with the highest R2 of 0.776 and lowest RMSE of 2.04. This study highlights the

potential of the proposed image feature combination method for deriving high-

resolution maps of banana LCC fundamental for precise nutritional diagnosing

and operational agriculture management.
KEYWORDS

leaf chlorophyll content, banana, image feature combinations, machine learning,
unmanned aerial vehicle hyperspectral imagery
1 Introduction

Banana is one of the important tropical fruits in China; it has

been widely cultivated in many regions of China, such as Hainan

Province, where banana planting has become one of the pillar

industries and a major source of incomes for local farmers. In recent

years, the banana cultivation industry shows a relatively stable

increasing trend, with a planting area of 3.3 × 104 ha and an

annual production of fresh fruits of 1.125 × 106 t in 2023. With the

increasing competition in the fruit market, the consumer demand

for fruit quantity and quality is also improving, which undoubtedly

puts forward higher requirements for the local fruit industry in their

production management capacity. However, for decades, the

inappropriate application of chemical fertilizer in pursuit of high

yields has resulted in serious soil and groundwater pollution, soil

quality degradation, nutrient imbalance in the banana plants, and a

decline in fruit quality (Guo et al., 2010; Huang et al., 2022).

Therefore, to benefit the government and land managers in

making informed decisions on agricultural practices, it is critical

to improve the monitoring ability and accurately diagnose the

nutritional status of banana plants.

The phenotype of banana leaves is broad and big; they are the most

direct organ for identifying nutrient deficiencies and guiding fertilizer

application because they are the main site of photosynthesis, which

determines the primary processes occurring within the plant. Leaf

chlorophyll, as the key photosynthetic pigment, can absorb light energy

and transfer it into the photosynthetic apparatus, providing essential

energy for the growth and development of plants (Curran et al., 1992).

In addition, nitrogen is an important component of chlorophyll, so

monitoring leaf chlorophyll content (LCC) can indirectly indicate

nitrogen and nutritional status (Haboudane et al., 2008). LCC can

also be related to plant stress and senescence since it tends to decrease

when a plant suffers from external stress (e.g., fertilizer shortage or pest

and disease) (Chappelle et al., 1992). Quantifying LCC, overall, has

aroused great attention from both land managers and ecophysiologists.

Compared to traditional chemical analysis measured in the

laboratory, remote sensing technology has been proven to be an

effective way to assess vegetation LCC due to its advantages of rapid

data acquisition and nondestructive and accurate monitoring at a

large scale (Sims and Gamon, 2002; Wu et al., 2008). Optical sensors
02
embedded on satellites and airborne platforms can acquire spectral

information over large areas, which have long been used for

vegetation monitoring. Although an increasing number of optical

satellite images are freely available, the use of satellite imagery for

LCC quantification is still limited by the fact that the image quality

is usually susceptible to atmospheric conditions (e.g., clouds and

suspended particles), and the spatial resolutions and revisit

frequencies are seemingly not enough for supporting crop

management activities at the field level and over short critical

growth stages (Inoue et al., 2016; Jay et al., 2019; Pimmasarn

et al., 2020). During the recent decades, unmanned aerial vehicle

(UAV) equipped with RGB, multispectral and/or hyperspectral

sensor has been attracting more and more attention particularly

in agriculture. RGB and multispectral data are widely used by

researchers to estimate LCC for various crops (Caruso et al.,

2017; Xu et al., 2022; Barata et al., 2023). However, the

broadband spectral information provided by RGB and the

multispectral sensors that offer average spectral information over

a wide range may result in loss of critical and subtle spectral features

which are available in specific hyperspectral bands (Tao et al., 2020).

Unlike RGB and multispectral observations, hyperspectral data

containing full- and narrow-band spectral radiation information

could describe various characteristics associated with the

biochemical and physiological traits of targets (Sims and Gamon,

2002; Kong et al., 2022). Consequently, a hyperspectral sensor

mounted on UAV will hold a promising potential in the accurate

assessment of LCC. Earlier studies have made lots of attempts to

extract the spectral response characteristic of LCC at visible light

and near-infrared and analyze their ability in characterizing the

growth and nutritional state of crops (Haboudane et al., 2002; Inoue

et al., 2016). They established LCC estimation models and achieved

acceptable accuracy and performance under specific conditions for

wheat, maize, peanut, and other field crops (Qi et al., 2021; Zhang

et al., 2021; Qiao et al., 2022). It has been accepted that UAV

mounted with hyperspectral sensor is very flexible to adjust its flight

heights and efficient to collect data at a higher spatial resolution

(can reach up to the centimeter level) in a short time, enabling it to

capture images of various vegetations with abundant spectral and

textural information during each key growth period. These

properties make it more suitable for monitoring vegetation
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nutritional status especially in cloudy and rainy regions, such as

Hainan Province. In comparison to the abovementioned field crops

with relatively homogeneous canopies, fruit trees have more

complex canopy structure and leaf morphology. At present,

studies on the nutritional diagnosis of fruit trees from remote

sensing data mainly focused on apple, pear, citrus, etc (Osco

et al., 2019; Azadnia et al., 2023; Huang et al., 2024). However,

for a tropical fruit tree such as banana, adoption of UAV

hyperspectral remote sensing in LCC estimation remains

largely unexplored.

Vegetation index (VI), calculated by the spectral reflectance of

two or more bands according to linear or nonlinear mathematical

formula, is widely applied for leaf biochemical parameters

estimation owing to its simplicity and computational efficiency. A

number of VIs were proposed based on knowledge of the reflectance

properties of LCC and have been proven to have the ability of

reducing the noise in hyperspectral reflectance caused by soil

background, atmospheric absorption, and other leaf components,

consequently maximizing the corresponding information on leaf

variables of target (Rondeaux et al., 1996; Sims and Gamon, 2002;

Wu et al., 2008). Lots of studies have been devoted to developing the

linear relationship between VI and LCC (Gitelson et al., 2006; Wu

et al., 2008; Kong et al., 2017a, Kong et al., 2017b). However, some

studies showed that nonlinear models have more obvious

advantages than linear models in quantitative prediction (Kira

et al., 2015; Zhang et al., 2021). Lately, machine learning

regression algorithms (MLRAs), e.g., Gaussian process regression

(GPR), support vector regression (SVR), and adaptive regression

splines (ARS), become powerful candidates for the estimation of

LCC from spectral reflectance of multi-related bands or VIs because

of their ability to perform adaptive, nonlinear data fitting (Verrelst

et al., 2013a; Upreti et al., 2019; Guo et al., 2022). However, the VIs

utilize only a limited amount of information available in spectral

data and are susceptible to saturation at high canopy coverage

(Kong et al., 2017a). Texture features (TFs) describe the grayscale

properties and spatial arrangement of image pixels, can make up for

the insensitivity of spectral information in the regional size and

direction, and have a strong resistance to image noise (Khosravi and

Alavipanah, 2019). To maximize the advantages of VIs and TFs,

previous studies tried to combine both image features to track the

variations in nutritional parameters. Some researchers extracted the

VIs and TFs from remote sensing images and developed new

combined image features, which were proven to provide better

result for estimating LCC and nitrogen (Chen et al., 2019; Zheng

et al., 2020; Guo et al., 2022). Inspired by the approved LCC

modeling presented above, MLRAs seem also to be a useful tool

for coupling the spectral and textural information to monitor crops

(Khosravi and Alavipanah, 2019; Li et al., 2023; Biswal et al., 2024;

Zhang et al., 2024). The high spatial resolution of UAV makes it

possible to document abundant texture feature information in field

experiments. However, the benefits of using the fine spatial

resolution accessible from UAV imagery as well as the potential

ability of the combined use of VIs and TFs for retrieving the LCC in

banana plants, and what degree the image feature combinations can

contribute to improve banana LCC compared to individual spectral
Frontiers in Plant Science 03
features which are rarely reported and kept unknown and need to

be investigated.

The aim of this study was to propose the approaches of spectral

and texture feature combination based on UAV hyperspectral data

then benefit the nondestructive estimation of banana LCC. The

specific objectives were to (i) investigate the correlation between

banana LCC and individual VI and TF and identify the optimal

image features, (ii) develop two-pair feature combinations of VI and

TF and establish the linear relationship with LCC, (iii) estimate the

LCC using multiple MLRAs with the VIs, original VIs and TFs

combination as well as selected VIs and TFs combination as input,

and (iv) evaluate the potential ability of the best linear two-pair VI

and TF combination and nonlinear MLRA models in banana LCC

prediction and map its spatial distribution using UAV

hyperspectral images.
2 Materials and methods

2.1 Study site

The experiment was conducted at the Banana Cultivation

Research and Development Base in Danzhou Municipality (19°

23′N, 109°58′ E), Hainan Province, during April 2024. A cultivar of

banana (Musa acuminate, AA) was selected, and two plots were

investigated in this study, referred to as plot 1 and plot 2,

respectively (Figure 1). Because the banana plants of the two plots

were planted at different times, they have different growth stages

during the field campaign, i.e., leaf development stage (BBCH 18)

and fruit development stage (BBCH 72). The banana plants in plot 1

had eight completely open leaves, with a homogenous yellowish

green color, and the blades were relatively small and narrow, while

the plants in plot 2 had 11 or 12 leaves, and the fruits were already

formed, the leaves were all healthy and dark green, with the area

approximately twice bigger than those at the leaf development stage.

The soil is laterite, with nutrient content of about 10.78 g/kg of

organic matter, 60.1 mg/kg available nitrogen, 25.41 mg/kg of

available phosphorus, and 120.79 mg/kg of available potassium

and pH of 5.28. All plots were managed in the same way, including

the fertilization and irrigation treatments.
2.2 Data collection

2.2.1 UAV hyperspectral image acquisition
and processing

The DJ M300RTK UAV platform equipped with the X20P

hyperspectral imaging sensor (Cubert GmbH, Ulm, Baden-

Württemberg, Germany) was used to acquire remote sensing data of

the banana fields. The quality of the X20P hyperspectral imaging

sensor is 630 g, and the size is 6 cm*10.7 cm*9.5 cm. Its spectral

resolution is approximately 3.96 nm, with spinning wavelength of 350

to 1,000 nm with 164 bands. Radiometric calibration was taken before

each flight. The flight height was approximately 80 m, and the spatial

resolution of collected hyperspectral images was 2.87 cm. Its flying
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speed was 6 m/s, the forward overlap was about 90%, and the lateral

overlap was about 90%. The flight was conducted under clear sky

conditions between 11:00 a.m. and 13:00 p.m. (Beijing local time) to

minimize shadowing in the images. The Cubert Utils Touch software

was used for image radiometric calibration and fusion of the

hyperspectral data and the corresponding panchromatic image.

Agisoft PhotoScan (Agisoft, St. Petersburg, Russia) was employed to

image mosaicking.

2.2.2 Leaf chlorophyll content measurement
The SPAD-502 meter (Konica-Minolta, Tokyo, Japan) measures

the transmission of red (approximately 650 nm) and near-infrared

(approximately 940 nm) radiation through plant leaves (Minolta,

1989). The increase of LCC could increase the absorption of red

radiation, and the transmission of near-infrared radiation is used as a

reference, so the calculated SPAD value was applied to represent the

amount of LCC present in the sample leaf in many studies (Parry et al.,

2014; Zhou et al., 2020; Zhang et al., 2022). In this study, LCC of

banana was measured by the SPAD-502 meter. The central position of

each measurement point was geo-located with GPS, and a total of 74

ground measurement points (30 points in plot 1 and 44 points in plot

2) were marked in Figure 1. The SPAD value of each point was

generated from the mean SPAD of a total offive banana plants, i.e., the

middle and four corner plants in each measurement point. Specifically,

for a given measurement point, three leaves from the top of the

canopies were selected from each of the five plants, and 20 SPAD

measurements were conducted per leaf, with 60 measurements in total
Frontiers in Plant Science 04
per plant. All measurements of the five plants were averaged to obtain

the SPAD value for the corresponding groundmeasurement point. We

performed the verification of the SPAD meter by quantifying the

relationship between LCC determined in the laboratory and the SPAD

value, but because of the limited experiment condition and operators,

the LCC sampled from only 18 points were measured by chemical

analysis (Figure 2). Several 1-cm circles were cut from each leaf sample.

After weighing the fresh leaf weight, the samples were ground in 10 mL

of 95% ethanol extract solution. After storing the solution in darkness

for more than 24 h, the absorbance was measured with a UV-VIS

spectrophotometer (Perkin-Elmer, Lambda 5, Waltham, MA, USA) at

649- and 665-nm wavelengths. The LCC were calculated using

equations in Lichtenthaler (1987). From Figure 2, the SPAD value

exhibited a strong exponential function relationship with LCC

measured in the laboratory, which was in accordance with many

published studies (Uddling et al., 2007; Parry et al., 2014), further

indicating that it was reliable to use the SPAD meter for banana

LCC measurement.
2.3 Extraction and screening of
image features

2.3.1 Extraction of vegetation index and
textural feature

A series of image features including VIs and TFs were extracted

from the hyperspectral images. A total of 20 VIs that were
Plot 2

Plot 1

FIGURE 1

Location of study site. The red spots are the ground measurement locations for leaf chlorophyll content.
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previously used for LCC estimation in the published literatures were

selected in this study (Table 1). They were classified into original

vegetation index (VIorg) and red-edge vegetation index (VIre).

Previously developed VIre that has analogous form with

corresponding VIorg was chosen to compare the performance for

LCC estimation. Before the extraction, the hyperspectral images

were firstly separated into banana plants and soil background by the

statistic-based segment method. The process of this method was as

follows: The NDVI was selected as a standardized way to assess

whether a pixel observed was vegetation or not (Devadas et al.,

2009). In general, NDVI ranging from 0.3 to 1.0 was considered as

vegetation (Zhang et al., 2019). To find out the banana plants and

soil in the two plots more accurately, the pixels only containing

banana plants and the pixels only containing soil were selected and

counted from the corresponding hyperspectral images, respectively.

The result showed that the optimal thresholds of NDVI for

separating banana plants and soil was set as 0.48 for plot 1 and

0.5 for plot 2, which were used as the mask files to extract the plants.

The pixels with NDVI larger than 0.48 in plot 1 and larger than 0.5

in plot 2 were regarded as banana plants; the rest of the pixels were

regarded as soil. It should be noted that the pixels only containing

banana plants were used for the subsequent calculation of VIs and

TFs. For the ground measurement points, the VIs and TFs were

extracted as follows: 50*50 pixels region of interest (ROI) centered

around the measurement point was manually selected, and then the

mean value of VI or TF within the ROI was deemed to represent the

corresponding measurement point.

For the TFs extraction, the hyperspectral images were first

transformed by principal component analysis (PCA) with the aim

of reducing the dimensionality, redundancy, and collinearity of

data. In this study, we analyzed the TFs generated from the first

three principal component (PC) images, i.e., the first PC image

(PC1), the second PC image (PC2), and the third PC image (PC3),
Frontiers in Plant Science 05
which contained more than 96% of the cumulative variance,

hereinafter referred to as TFs-PC1, TFs-PC2, and TFs-PC3,

respectively. Eight TFs were extracted to evaluate their correlation

with LCC (Table 2). They were based on the gray-level co-

occurrence matrix defined by Haralick et al. (1973). A 3 × 3

calculation window was chosen when calculating the TFs, which

could capture more local details and facilitate to detect subtle

changes of image texture (Yue et al., 2019).

2.3.2 Screening of image features
Pearson correlation coefficient (r) and maximum information

coefficient (MIC) were used to evaluate the correlation between VIs

or TFs and LCC. Pearson correlation coefficient is a widely used

index which can measure the linear correlation between two

variables, with the r value ranging from -1 to 1, while MIC was

explored to evaluate the linear and nonlinear between variables; the

range is 0 to 1. The higher the absolute value of r (|r|) or MIC, the

better correlation of the VI or TF with respect to LCC. In this study,

the VI or TF who has |r| or MIC higher than 0.8 was selected as one

of the potential predictors for banana LCC using MLRAs method.
2.4 LCC estimation modeling
and validation

In this section, we propose two types of methods for assessing

banana LCC, i.e., two-pair image feature combination method and

multivariable image feature combination using MLRAs. Model

validation was also included.

2.4.1 LCC estimation based on two-pair image
feature combination

The SR, NDVI, and DVI are three types of earlier proposed and

the most classic and the most widely used formulas in leaf

biochemical and physiological parameters estimation, which are

composed of two spectral reflectance or features. Inspired by this,

we calculated all possible VI and TF combinations in types of SR,

NDVI, and DVI (referred to as two-pair image feature

combination) for banana LCC assessment. Linear regression was

adopted to model the relationship between LCC and each image

feature combination, and their performances were tested to

determine the best two-pair image feature combination for LCC

estimation. They were defined as Equations 1–3). We consequently

obtained a total of 160 image feature combinations for each type. All

of the calculations were implemented using MATLAB R2021b (The

MathWorks, Inc., Natick, MA, USA).

SR − type =
TF
VI

(1)

NDVI − type =
VI − TF
VI + TF

(2)

DVI − type = VI − TF (3)
FIGURE 2

Verification of SPAD values using leaf chlorophyll content measured
by chemical analysis in the laboratory.
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2.4.2 LCC estimation using multivariable image
feature combination based on MLRAs

Four MLRAs, including PLSR, ARS, SVR, and GPR, were

employed to combine more than two image features for LCC

estimation. The VIs, original Vis, and TFs combinations, as well as

the selected VIs and TFs combinations optimized by Pearson

correlation and MIC, were respectively used as input variables in

these MLRAs. The ARS, SVR, and GPR models were conducted to

build nonlinear relationships between input variable and LCC, while

the PLSR model was carried out to build their linear relationship.

PLSR is a bilinear calibration method for retrieving vegetation

biochemical parameters. It integrates multiple linear regression,

least square regression, and principal component analysis, which
Frontiers in Plant Science 06
compresses the independent variables (e.g., multiply image features)

into several latent variables with the strongest explanation to the

model system and finally reduces the multi-collinearity problem of

input variables and influence of data noise on the regression model

(Hansen and Schjoerring, 2003).

ASR is a basic function-based nonparametric regression, which

was firstly developed by Friedman and Roosen (1995). ASR has the

ability of automatically identifying the most relevant variables

available from remote sensing data and of handling variable

interactions, which is crucial for integrating multi-type data (e.g.,

VIs and TFs). It also provides an explicit expression for prediction

model, making it easier to interpret the relationships between input

features and vegetation parameters.
TABLE 1 Vegetation indices used in this study.

Vegetation index
abbreviation

Vegetation index Formula Reference Bands used

Original vegetation index (VIorg)

SR Simple ratio Rnir=Rred (Jordan, 1969) 802 nm, 682 nm

NDVI Normalized difference vegetation index (Rnir − Rred)=(Rnir + Rred) (Sims and
Gamon, 2002)

802 nm, 682 nm

GDVI Green difference vegetation index Rgreen − Rred (Sripada, 2005) 550 nm, 682 nm

RDVI Red difference vegetation index Rnir − Rred (Huete et al., 1994) 802 nm, 682 nm

MDVI Modified difference vegetation index (Rnir − Rred)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rnir + Rred

p
(Roujean and
Breon, 1995)

802 nm, 682 nm

MSR Modified SR (Rnir=Rred − 1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rnir=Rred + 1

p
(Chen, 1996) 802 nm, 682 nm

mNDVI Modified NDVI (Rnir − Rred)=(Rnir + Rred − 2Rblue) (Sims and
Gamon, 2002)

802 nm, 682 nm,
446 nm

CIgreen Green chlorophyll index Rnir=Rgreen − 1 (Gitelson et al., 2006) 770 nm, 510 nm

OSAVI Optimized soil-adjusted vegetation index (1 + 0:6)(Rnir − Rred)(Rnir + Rred + 0:16) (Rondeaux et al., 1996) 802 nm, 682 nm

OSAVIgreen Optimized soil-adjusted vegetation index
with green

(1 + 0:6)(Rnir − Rgreen)(Rnir + Rgreen + 0:16) (Qiao et al., 2022) 802 nm, 550 nm

SIPI Structure insensitive pigment index (Rnir − Rblue)=(Rnir − Rred) (Penuelas et al., 1995) 802 nm, 446 nm,
682 nm

Corresponding red-edge vegetation index (VIre)

SRre Red-edge simple ratio Rnir=Rred−edge (Sims and Gamon, 2002) 802 nm, 706 nm

NDVIre Red-edge normalized difference
vegetation index

(Rnir − Rred−edge)=(Rnir + Rred−edge) (Sims and Gamon, 2002) 802 nm, 706 nm

REDVI Red-edge difference vegetation index Rred−edge − Rred (Sun et al., 2010) 710 nm, 682 nm

MDVIre Modified difference vegetation index with
red-edge

(Rnir − Rred−edge)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rnir + Rred−edge

q
(Qiao et al., 2022) 802 nm, 710 nm

MSRre Modified red-edge SR (Rnir=Rred−edge − 1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rnir=Rred−edge + 1

q
(Wu et al., 2008) 802 nm, 710 nm

mNDVIre Modified red-edge NDVI (Rnir − Rred−edge)=(Rnir + Rred−edge − 2Rblue) (Sims and Gamon, 2002) 802 nm, 710 nm,
446 nm

CIre Red-edge chlorophyll index Rnir=Rred−edge − 1 (Gitelson et al., 2006) 770 nm, 710 nm

OSAVIred-edge Optimized soil-adjusted vegetation index
with red-edge

(1 + 0:6)(Rnir − Rred−edge)(Rnir + Rred−edge + 0:16) (Wu et al., 2008) 802 nm, 706 nm

MTCI MERIS terrestrial chlorophyll index (Rnir − Rred−edge)=(Rred−edge − Rred) (Dash and Curran, 2004) 802 nm, 710 nm,
682 nm
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SVR was derived from the statistical learning theory proposed

by Cortes and Vapnek (1995). It can effectively capture the complex

nonlinear relationships between remote sensing data and vegetation

parameters by employing kernel functions to map input variables

into a high-dimensional feature space. Additionally, SVR relies

primarily on support vectors for training, making it useful when

the number of samples was limited in biochemical parameters

estimation (Guo et al., 2022).

GPR is a probabilistic approximation to nonparametric kernel-

based regression. It has been proven to have significant advantages

in vegetation parameter retrieval due to its powerful nonlinear

modeling capability, small sample adaptability, and ability to

quantify prediction uncertainty (Campos-Taberner et al., 2016;

Upreti et al., 2019). It offers an explicit form of the predictive

model, which establishes a nonlinear relation between the input

(e.g., VIs and TFs) and the output variable (i.e., LCC). Moreover,

GPR is particularly suitable for scenarios with limited ground-

measured data and supports the integration of multi-source and

high-dimensional input features.

2.4.3 Model validation
The validity of LCC estimation models was assessed based on a

k-fold (k = 10) cross-validation procedure, which splits the dataset

into 10 equal-sized subsets. In each iteration, nine subsets were used

as the training set, and the remaining one was used as the validation

set to evaluate the models. The coefficient of determination (R2) and

the root mean square error (RMSE) of the measured and predicted

LCC values were used to evaluate the prediction ability of the

models based on two-pair image feature combination method and

multivariable image feature combination using MLRAs.
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3 Results

3.1 Correlation analysis between image
feature and LCC

The correlations between LCC and all VIs in Table 1 and all TFs

extracted from three PC images in Table 2 were calculated and

analyzed. Figure 3 shows the |r| and MIC values for different types

of VIs and TFs. The values of |r| or MIC larger than 0.8 were

selected and presented in Table 3. From the correlations of different

VIs with respect to LCC, as expected, a majority of VIre were

superior to the corresponding VIorg with similar forms. For

instance, the GDVI showed weakness in correlating LCC with |r|

of 0.38 and MIC of 0.33, while the REDVI dramatically increased by

88% and 98% respectively, compared to the GDVI. The values of

MIC of the MDVIre and OSAVIre were also improved greater than

14% in comparison of the MDVI and OSAVI. This result

highlighted a strong potential for use in banana LCC estimation

with red-edge spectral band. The best VI was MSRre, which

generated the correlation of 0.836 with LCC. For the TFs, the

TFs-PC1 were generally correlated better with LCC than the TFs-

PC2 and TFs-PC3, owing to the larger values of both |r| and MIC.

From Table 3, we found that all eight TFs obtained in PC1 image

were selected using Pearson correlation, while none of the TF

extracted in PC3 image reached the threshold of MIC. The MEA

was selected not only in all PC images by Pearson correlation

method but also in PC1 image by MIC.
3.2 Banana LCC estimation using two-pair
feature combination of VI and TF

Figure 4 shows all coefficient of determination (R2) values based on

the linear regression analyses of LCC against all possible two-pair

combinations of the VI and TF used in types of SR, NDVI, and DVI.

The closer to yellow and the higher the size of the scatter, the larger R2

value and better accuracy of the model derived from the image feature

combination. The results indicated that for all the three types, image

feature combinations calculated from the TFs-PC1 paired with VIs

exhibited the strongest relationship with LCC (Figures 4A–C) and then

those calculated from the TFs-PC2 (Figures 4D–F) followed by the

TFs-PC3 (Figures 4G–I). This means that textural information on the

PC1 image contributed more in LCC determination compared to that

on the PC2 and PC3 images. Furthermore, it should be noteworthy that

in comparison to other TFs, the MEA combined with almost all VIs

preserved higher sensitivity to LCC variability, which was coincident

with the results in Figure 3 where the MEA is showing better

correlation and also being selected from the PC1 and PC2 as well as

PC3 images. This phenomenon was more obvious when extracting the

MEA from PC2 and PC3 images, with the size and color of scatters

revealing relatively high R2 values (Figures 4D–I).

From Figures 4A–C, almost all image feature combinations

showed similar patterns among the SR, NDVI, and DVI types. A

high degree of image feature combinations constructed by the TFs-

PC1 and VIs behaved well against LCC. The MSRre together with
TABLE 2 Texture features used in this study.

Texture
feature abbreviation

Texture
feature

Formula

MEA Mean MEA = o
G

i,j=1

ip(i, j)

VAR Variance VAR =o
G

i=1
o
G

j=1

(i − u)2p(i, j)

HOM Homogeneity HOM =o
G

i=1
o
G

j=1

p(i, j)

1 + (i − j)2

CON Contrast CON =o
G

i=1
o
G

j=1

(i − j)2p(i, j)

DIS Dissimilarity DIS =o
G

i=1
o
G

j=1

p(i, j)ji − jj

ENT Entropy ENT = −o
G

i=1
o
G

j=1

p(i, j) log p(i, j)

SEC
Second
moment SEC =o

G

i=1
o
G

j=1

p(i, j)2

COR Correlation COR =o
G

i=1
o
G

j=1

(i − j)(j − i)p(i, j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VARi � VARj

p

In the formulas, i and j represent the row number and column number of the image,
respectively, and p(i,j) represents the relative frequency of two neighboring pixels.
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MEA were thereinto selected from every 160 feature combinations

in each type due to their outstanding performances in capturing

variations in CCC with higher R2 than 0.75. The result is shown in

Table 4. It can be seen that the most effective feature combination

was provided by the ratio of MEA to MSRre (referred to as MEA/

MSRre), which explained 78.9% of the variation in LCC, implying

that the ratio clearly combines the abilities of the given VI and TF

responding to LCC. Whereas feature combinations that showed

weakness in characterizing LCC were different among the tree types,
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the R2 values obtained using the HOM/GDVI, SEM/GDVI, MEA

−SRre, and CON−MSRre were less than 0.1.
3.3 Banana LCC estimation using
multivariable image feature combinations

PLSR, ARS, SVR, and GPR methods were employed to combine

more than two image features for LCC estimation. Three variable

groups were included, i.e., VIs, original Vis, and TFs combinations,

and selected VIs and TFs combinations from Pearson correlation as

well as from MIC as shown in Table 3. To assess the predictive

capabilities of the models, R2 and RMSE were calculated for all of

the modeling results (Table 5). Overall, the models using all VIs

showed a relatively moderate performance, with R² values around

0.615 to 0.63 and RMSE values around 2.65 to 2.75. In comparison

with all VIs, the models based on VIre provided a more accurate

estimation in terms of R2 and RMSE values when using the four

MLRAs, with R² increased to a range of 0.63 to 0.67 and RMSE

decreased to a range of 2.492 to 2.643. More importantly, the image

feature combinations, which not only included spectral information

but also image textures, dramatically improved the estimation

results for LCC across the three input groups compared to using
TABLE 3 Selected VIs and TFs using Pearson correlation coefficient (|r|)
and maximal information coefficient (MIC).

Image
feature

Selected by |r| value Selected byMIC value

VI SR, NDVI, MSR, SRre, NDVIre,
MDVIre, MSRre, mNDVIre,
CIre, MTCI

SR, NDVI, MSR, mNDVI,
CIgreen, MDVIre, MSRre,
mNDVIre, MTCI

TF-PC1 MEA, VAR, HOM, CON, DIS,
ENT, SEC, COR

MEA, ENT

TF-PC2 MEA CON, DIS

TF-PC3 MEA –
FIGURE 3

Pearson correlation coefficient (|r|) and maximal information coefficient (MIC) between different types of VIs and TFs vs. LCC. The green histogram
indicates the value of |r|, the black broken line indicates the value of MIC, and the red dashed line indicates |r| = 0.8 or MIC = 0.8.
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the VIs alone. However, MLRAs showed varying estimation

performances for different feature combinations.

From the results of original feature combination and two

selected feature combination groups, it could be observed that the

examination of different feature combinations input showed that

the combinations of TFs-PC1 and VIs resulted in better LCC

estimates than the combinations of TFs-PC2 and VIs, with almost

all R2 values exceeding 0.75. Similar performances with models

using TFs-PC2 can be found in the models using TFs-PC3. With

respect to the MLRAs used, the GPR method acquired a slightly
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better accuracy when considering the VIs+TFs-PC1 as input

variable in the three feature combination groups.

As expected, the VIs+TFs-PC1 combination selected using

Pearson correlation method provided a robust improvement,

especially for the ARS, SVR, and GPR models, with R² ranging

from 0.765 to 0.768 and RMSEs close to 2.074. Meanwhile, the

desirable result was also seen for models derived from the VIs+TFs-

PC1 combination selected through MIC, especially the GPR model,

which outperformed all other MLRAs, demonstrating that it was

the best model for LCC estimation.
TABLE 4 Optimal two-pair feature combination selected in types of SR, NDVI, and DVI, linear relationship, and coefficient of determination (R2)
between optimal feature combination and LCC.

Type PC image Optimal two-pair
feature combination

Model R2

SR-type PC1 MEA=MSRre y = 4:4405x + 52:45 0.789

NDVI-type PC1 (MEA −MSRre)=(MEA +MSRre) y = −1:7169x + 76:08 0.77

DVI-type PC1 MEA −MSRre y = −197:89x + 243:61 0.756
x and y in the “Model” column refer to the optimal two-pair feature combination and LCC, respectively.
FIGURE 4

Coefficient of determination (R2) based on the linear relationship between LCC and all possible two-pair feature combinations of VI and TF extracted
from PC1 (A–C), PC2 (D–F), and PC3 (G–I) images in types of SR, NDVI, and DVI.
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3.4 Evaluation of LCC prediction using UAV
hyperspectral images

We compared the performance of the best two-pair image

feature combination and that obtained in a multivariable

calibration based on GPR algorithm for LCC prediction, i.e.,

models derived from the MEA/MSRre and the selected VIs+TFs-

PC1 extracted through the MIC method. Figure 5 shows the

scattering plot between LCC estimated from UAV hyperspectral

reflectance data and LCC measured in the field campaign. We

found that the predictive capability of the two models seems

satisfactory, which had led to high coefficients of determination

(R2 > 0.74) and good RMSE values, and they all reached the 0.001

significance level. However, judging by the scattering point

distribution, a slight dispersion of the MEA/MSRre model

occurred; prediction using the GPR model achieved the best

result, with the highest R2 of 0.776 and the lowest RMSE of 2.04.

Based on the results presented above, the GPRmodel was applied

to UAV hyperspectral images to map chlorophyll status over the two

large plots of banana, as shown in Figure 6. Because they

corresponded to the LCC distribution at different growth stages of

banana, various spatial variability in each plot was exhibited. A first

observation across the different sites was that the banana LCC in plot

1 was overall homogeneous at the leaf development stage (Figure 6,

left). Nevertheless, at the fruit development stage, a more obvious

spatial heterogeneity of LCC appeared in plot 2 (Figure 6, right) due,

in large part, to the different degrees of nutritional absorption and

migration at the later stage of the banana. Moreover, the dynamic

changes of LCC were revealed; they gradually increased as the

progress of growth. The range of LCC at leaf development stage

was concentrated from 54 to 60, while the LCC at fruit development

stage dominated the range of 58 to 70.
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4 Discussion

The assessment and monitoring of banana LCC status and

spatial distribution are of importance for addressing crucial issues,

such as growth monitoring, nutritional stress, and management

practices. In this study, we estimated LCC by various feature

combinations of spectral and textural information derived from

UAV hyperspectral images for banana at different growth stages.

The VI method is widely used in quantifying vegetation parameters.

However, many literatures have indicated that soil background has

a strong influence on canopy reflectance and the derived VIs

relating to leaf parameters, especially at the early growth stages

(Zha et al., 2020). A meaningful process we conducted to the

original UAV hyperspectral images was to remove the soil

background pixels by statistic threshold segment method. Then, a

series of VIs and TFs were extracted based on pixels only containing

vegetation, further ensuring the reliability of LCC estimation.

However, relative experiments should be conducted to further

verify the specific impact of soil background on banana LCC

quantification in the future.

The red-edge spectral bands located between 700 and 740 nm

with being not static but rather shifting during vegetation stress or

in a good condition was proven to have the potential for improving

LCC estimation for a variety of vegetation, such as maize, wheat,

maple, sugar beet, etc (Gitelson et al., 2006; Wu et al., 2008; Jay

et al., 2017; Kong et al., 2022), which inspired the inclusion of red-

edge bands into not only airborne but also satellite sensors. The VIre
used in our study was likewise expected to perform better for

banana. It is interesting to note that a desirable result was obtained

when using UAV hyperspectral data. It is pronounced in banana

LCC determination where the VIre showed higher sensitivity as

compared with the original VI with a similar form, which often
TABLE 5 Predicted LCC results using PLSR, ARS, SVR, and GPR with different input variables.

Variable group Input variable
Number

of features

PLSR ARS SVR GPR

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Original features All VIs 20 0.615 2.696 0.63 2.652 0.63 2.652 0.6 2.754

All VIre 9 0.63 2.643 0.67 2.492 0.65 2.542 0.66 2.538

All VIs+TFs-PC1 28 0.756 2.082 0.75 2.064 0.75 2.169 0.76 2.09

All VIs+TFs-PC2 28 0.725 2.262 0.735 2.326 0.698 2.369 0.71 2.307

All VIs+TFs-PC3 28 0.726 2.261 0.71 2.34 0.71 2.248 0.669 2.499

Features selected by Pearson
correlation (|r| > 0.8)

Selected VIs+TFs-PC1 18 0.753 2.041 0.767 2.078 0.765 2.09 0.768 2.074

Selected VIs+TFs-PC2 11 0.718 2.176 0.704 2.345 0.737 2.209 0.735 2.218

Selected VIs+TFs-PC3 11 0.735 2.22 0.736 2.214 0.732 2.231 0.725 2.258

Features selected by MIC
(MIC > 0.8)

Selected VIs+TFs-PC1 11 0.749 2.162 0.748 2.168 0.767 2.124 0.776 2.04

Selected VIs+TFs-PC2 11 0.711 2.318 0.699 2.368 0.729 2.245 0.672 2.467
front
R2 values higher than 0.75 are in bold.
All VIs+TFs-PC1, image feature combination combined by all VIs and all TFs-PC1; Selected VIs+TFs-PC1, selected feature combination combined by selected VIs and selected TFs-PC1 from
Pearson correlation coefficient (|r| > 0.8) or maximal information coefficient (MIC > 0.8); TFs-PC1, textural features extracted from the first principal component images; TFs-PC2, textural
features extracted from the second principal component images; TFs-PC3, textural features extracted from the third principal component images.
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suffers from saturation problems (Wu et al., 2008). To identify the

specific band in the red-edge region from UAV hyperspectral image

that can substantially make the VIre achieve the best result for

banana, we applied the spectral reflectance that ranged from 702 to

742 nm to replace the original red-edge band contained in the VIre
one by one and further compared their performances in LCC

estimation. The R2 values of linear relationships with LCC are

presented in Figure 7. An important information revealed in the

figure was that the trends of all VIre curves, except for the REDVI

and OSAVIre, were generally similar, showing the best correlation

with LCC when 730-nm red-edge band participated in the

regression model. This implied that the red-edge band centered

mostly at 730 nm could help in the design of an index or a sensor

band that could better estimate the LCC for banana.

In addition to individual VI, the linear two-pair feature

combination and nonlinear multivariable MLRAs were

independently applied to combine the VI and TF features derived
Frontiers in Plant Science 11
from hyperspectral images for LCC assessment. Based on Figure 4

and Table 5, the more accurate estimation results were generated

when the TFs (especially the MEA) were involved in LCC models

compared to models only using spectral information. Guo et al.

(2022); Yue et al. (2019), and Reddersen et al. (2014) also reported

that combing VIs and TFs can lead to better LCC and aboveground

biomass estimates for crops and grassland. Our outcomes open the

possibility to couple the potential of spectral and textural features

for further improving the accuracy of LCC retrieval for tropical fruit

tree (i.e., banana) at the field scale. In the present study, eight TFs

were selected, and a total of 24 TFs were extracted from the first

three images after principal component analysis. However, different

performances of VI paired with TF extracted from different PC

images were obtained; the combined uses of VI and TF-PC1

achieved better results than others combined by TF-PC2 and TF-

PC3 whether in linear relationships or nonlinear MLRAs. One of

the main reasons for such results is that the growing of banana
FIGURE 6

Spatial distributions of banana LCC in plot 1 (left) and plot 2 (right) mapped using the best GPR model.
FIGURE 5

Comparison between predicted LCC from UAV hyperspectral reflectance data and ground-measured LCC using the best two-pair MEA/MSRre

combination (left) and GPR model derived from selected VIs+TFs-PC1 extracted through the MIC method (right).
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plants could cause the changes in TFs of UAV image data. The TFs

extracted from PC1 image captured more information related to the

spatial resolution of the dark and bright areas of the image (Haralick

et al., 1973), facilitating the accuracy of LCC prediction.

Compared to the two-pair image feature combination method,

MLRAs using a combination of multiple VIs and TFs-PC1 as input

had a slightly better ability for LCC prediction, especially the VIs

+TFs-PC1 selected by Pearson correlation and MIC. This was

expected since they utilized more features and nonlinear

transforms. Among all MLRAs, the GPR model based on not

only the original but also the selected feature combinations stood

out as being the most accurate than the rest of the MLRAs (Table 5),

suggesting that it is the optimum algorithm for banana LCC. This is

in accordance with previous studies which reported that the GPR

satisfied in varied leaf parameter retrieval using airborne or

spaceborne satellite data (Verrelst et al., 2013a; Upreti et al., 2019;

Zhou et al., 2020). The GPR with selected VIs+TFs-PC1 by MIC as

input provided the best result in terms of both high accuracy and

low error (Figure 5, right) for LCC ground validation test. In

essence, GPR is based on non-parametric regression in a Bayesian

framework. It builds models by taking fully into account the

characteristics of the data itself, making it affordable to deal with

complex, nonlinear, or irregular data (Campos-Taberner et al.,

2016). Furthermore, the model was earlier evaluated as a potential

predictor with a relatively small dataset (Verrelst et al., 2013a),
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which was another reason that ensuring it still had an outstanding

performance when the number of banana ground-based samples

was limited in our study. More importantly, along with pixelwise

estimation maps for banana LCC at two growth stages, GPR can

provide the accompanying confidence intervals, which was a

significant advantage over other competitive MLRAs (e.g., PLSR,

ASR, and SVR) because these confidences put forward some insight

in the robustness and reliability of the LCC retrieval (Verrelst et al.,

2013b). Furthermore, a total of 11 image features were screened by

the MIC, including five original vegetation indices, four red-edge

vegetation indices, and two texture features extracted from PC1

images. The selected VIs contained the narrow bands in red, red-

edge, and near-infrared spectral regions which were proven to be

sensitive and closely related to the LCC (Gitelson et al., 2006; Wu

et al., 2008; Zhou et al., 2024). The introduced green band could

suppress the saturation phenomenon of the relationship of

absorptions versus LCC and is resistant to atmospheric effects

(Gitelson et al., 1996, Gitelson et al., 2003). The selected two TFs,

i.e., MEA and ENT, provided a more comprehensive analysis of

texture features of UAV images, helping to understand the global

brightness distribution and texture complexity (Haralick et al.,

1973). This suggests that the inclusion of multiple effective image

features in the regression model allowed for the incorporation of

more valid spectral and textural information related to the LCC

variable, resulting in improved estimation for banana. Even though
FIGURE 7

R2 values of linear relationships between LCC and the VIre derived from the red-edge spectral band from 702 to 742 nm.
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the GPR model based on VIs+TFs-PC1 selected using MIC

achieved a relatively high accuracy with limited samples of LCC,

it is still needed to collect more ground-measured samples

throughout the whole growth periods of banana in future research.
5 Conclusion

The analyses of this study indicated the potential of UAV

hyperspectral images in efficient LCC monitoring for tropical fruit

trees, i.e. banana plants, across different growth stages. We first

analyzed if using the red-edge bands in UAV hyperspectral data

improved the estimation of banana LCC over conventionally used

original red or green bands in VIs. The result demonstrated that the

VIre presented better correlation and achieved higher sensitivity in

LCC estimation based on MLRAs compared to the VIorg, expanding

the positive role of red-edge bands in assessing LCC for banana. In

addition to VIs, several TFs, especially the MEA, also showed

satisfactory correlations with LCC. To investigate the contribution

of VIs integrated with TFs, on one hand, we proposed a

comprehensive two-pair VI and TF combination method to

explore the best two-pair feature combination for estimating LCC;

on the other hand, MLRAs with multivariable groups containing

VIs and TFs as input were also developed and applied. We found

that the combination of VI and TF significantly improved the

accuracy of LCC retrieval in comparison to using VI alone. The

most robust two-pair feature combination was MEA/MSR{sb}{/sb}

re, and the GPR model using the selected VIs+TFs-PC1 extracted

through MIC as input variable outperformed the other MLRAs (i.e.,

PLSR, ASR, and SVR). They improved the prediction accuracy with

R2 of 0.745 (p < 0.001) and 0.776 (p < 0.001), respectively, also

implying that the latter model was the most suitable one for

quantifying banana LCC. This study provides insights into the

remote estimation of LCC for tropical fruit trees. Our proposed

retrieval approaches by combing the spectral and image textural

features could offer great possibilities for more accurate diagnosing

of nutritional status and providing practical guidance for

precision fertilization.
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