
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Plant Sci.
Sec. Plant Pathogen Interactions
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1536152
This article is part of the Research Topic Unraveling Pathogen-Plant-Microbiome Interactions in Horticultural Crops Through Omics Approaches View all 15 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Genera Pseudomonas and Xanthomonas include bacterial species that are etiological agents of several diseases of major vegetable crops, such as tomato, pepper, bean, cabbage and cauliflower. The bacterial pathogens of those genera may cause severe crop damage, leading to symptoms like leaf spots, wilting, blights, and rotting. These plant pathogens can affect propagation materials and spread rapidly through plant tissues, contaminated soils, or water sources, making them challenging to control using conventional chemical products alone. Biopesticides, such as essential oils (EOs), are nowadays studied, tested and formulated by employing nano- and micro-technologies as innovative biological control strategies to obtain more sustainable products using less heavy metal ions. Moreover, there is a growing interest in exploring new biological control agents (BCAs), such as antagonistic bacterial and fungal species or bacteriophages and understanding their ecology and biological mechanisms to control bacterial phytopathogens. These include direct competition for nutrients, production of antimicrobial compounds, quorum quenching and indirect induction of systemic resistance. Optimisation of the biocontrol potential goes through the development of nanoparticle-based formulations and new methods for field application, from foliar sprays to seed coatings and root inoculation, aimed to improve microbial stability, shelf life, controlled release and field performance. Overall, the use of biological control in horticultural crops is an area of research that continues to advance and shows promising potential. This review aims to provide an in-depth exploration of commercially accessible biocontrol solutions and innovative biocontrol strategies, specifically focusing on managing bacterial diseases in vegetable crops caused by Pseudomonas and Xanthomonas species. In this article, we highlighted the advancements in developing and using EOs and other BCAs, emphasising their potential or shortcomings for sustainable disease management. Indeed, despite the reduced dependence on synthetic pesticides and enhanced crop productivity, variable regulatory frameworks, compatibility among different BCAs, and consistent performance under field conditions are among the current challenges to their commercialization and use. The review seeks to contribute valuable insights into the evolving landscape of biocontrol in vegetable crops and to provide guidance for more effective and eco-friendly solutions against plant bacterial diseases.
Keywords: Bacterial plant diseases, Vegetables, essential oils, Microbiological control agents, Bacteriophages
Received: 28 Nov 2024; Accepted: 07 Apr 2025.
Copyright: © 2025 Giovanardi, Biondi, Biondo, Quiroga, Modica, Puopolo and Pérez Fuentealba. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Set Pérez Fuentealba, Universidad de O'Higgins, Rancagua, Chile
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.