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RNA interference (RNAi) is a biotechnological tool used for gene silencing in

plants, with both endogenous and exogenous applications. Endogenous

approaches, such as host-induced gene silencing (HIGS), involve genetically

modified (GM) plants, while exogenous methods include spray-induced gene

silencing (SIGS). The RNAi mechanism hinges on the introduction of double-

stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs)

that degrade specificmessenger RNAs (mRNAs). However, unintended effects on

non-target organisms and GM plants are a concern due to sequence homologies

or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and

EFSA emphasize the need for comprehensive risk assessments. Detecting

unintended effects is complex, often relying on bioinformatic tools and

untargeted analyses like transcriptomics and metabolomics, though these

methods require extensive genomic data. This review aims to classify

mechanisms of RNAi effects induced by short interfering RNA from different

sources in plants and to identify technologies that can be used to detect these

effects. In addition, practical case studies are summarized and discussed in which

previously unintended RNAi effects in genetically modified plants have been

investigated. Current literature is limited but suggests RNAi is relatively specific,

with few unintended effects observed in GM crops. However, further studies are

needed to fully understand and mitigate potential risks, particularly those related

to transcriptional gene silencing (TGS) mechanisms, which are less predictable

than post-transcriptional gene silencing (PTGS). Particularly the application of

untargeted approaches such as small RNA sequencing and transcriptomics is

recommended for thorough and comprehensive risk assessments.
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Introduction

RNA interference (RNAi) represents a cutting-edge approach

in biotechnology for gene expression silencing, applied e.g. in

plant protection, leveraging molecular principles to control gene

expression. This innovative strategy encompasses both

endogenous and exogenous applications, each with distinct

methodologies and implications. Genetically modified (GM)

plants harness RNAi to target plant endogenous transcripts e.g.

to regulate the gibberellin pathway (maize event MON 94804) or

to alter the fatty acid profile (soy event MON 87705). Endogenous

applications also involve GM plants in a process known as host-

induced gene silencing (HIGS) (Nowara et al., 2010) for pesticidal

applications (e.g. maize event MON 87411 containing dsSnf7

against Diabrotica), (see https://euginius.eu). Conversely,

exogenous applications, such as spray-induced gene silencing

(SIGS), or root soaking of RNAi involve the direct application of

RNA molecules to plants (Liu et al., 2020; Werner et al., 2020).

The core mechanism of RNAi in biotechnology application,

such as plant protection, lies in its ability to selectively reduce the

expression of specific genes within the target organism (Koeppe

et al., 2023). In the majority of cases, this is achieved through the

introduction of double-stranded RNA (dsRNA), which is

subsequently processed by the RNase III Dicer or related enzymes

to short interfering (si)RNA, whose base pairing with the

complementary sequence of the target messenger (m)RNA leads

to its degradation (Guo et al., 2016; Hung and Slotkin, 2021). While

this sequence-based mechanism is advantageous for targeting pests

and pathogens, there is a potential for unintended effects on non-

target organisms (NTOs) and the GM plant itself (Christiaens et al.,

2018). These effects may arise due to sequence homologies between

the dsRNA and non-target mRNAs or through mechanisms such as

siRNA-induced epigenetic changes and disruption of the

organism’s endogenous RNAi pathways (Kloc et al., 2008;

Zaratiegui and Martienssen, 2012; Swevers et al., 2013).

Recognizing the novel challenges posed by RNAi-based plant

protection, regulatory bodies such as the US Environmental

Protection Agency (EPA) and the European Food Safety

Authority (EFSA) have acknowledged the need for comprehensive

risk assessments (Christiaens et al., 2018; Papadopoulou et al., 2020;

Christiaens et al., 2022). The Chemicals Committee and the

Working Party on Chemicals, Pesticides and Biotechnology of the

Organisation for Economic Co-operation and Development

(OECD) have compiled considerations to integrate the latest

scientific understanding into the environmental risk assessment of

RNAi applications (Organisation for Economic Co-operation and

Development (OECD) 2020).

One significant concern is the potential for unintended effects

on GM plants themselves. Detecting these effects is complex due to

several factors. Current prediction methods primarily rely on

bioinformatic searches for complementary sequences to the

siRNA within the GM plant’s transcriptome (Good et al., 2016;

Lück et al., 2019; Farooq et al., 2021). However, these analyses are

often hampered by the lack of a complete and accurate reference

genome for the GM plant. When available, reference genomes of
Frontiers in Plant Science 02
closely related cultivars may be used, but these can lead to

inaccuracies due to sequence polymorphisms, resulting in false

positives or negatives in off-target effect predictions.

In this review, we summarize the mechanisms by which RNAi

applications could induce unintended effects in plants and evaluate

the technologies and approaches available to detect these effects. By

assessing the relevance of RNAi-mediated cellular mechanisms to

GM plants based on existing literature, we provide a comprehensive

overview and aim to rank these mechanisms according to their

significance. This detailed examination will contribute to a better

understanding of RNAi applications and the development of more

accurate risk assessment methodologies.
Mechanisms of RNAi-induced effects
in plants

The principle of RNAi in plant protection relies on reducing or

silencing the expression of specific essential genes in the target

organism or the GM plant itself. These target genes typically belong

to vital metabolic or developmental pathways, leading to a loss-of-

function phenotype (Werner et al., 2020; Hernández-Soto and

Chacón-Cerdas, 2021). RNAi-based pest control strategies

primarily utilize two types of RNA precursors: short hairpin

RNAs (shRNA), which consist of two complementary strands

forming a stem-loop structure, and complementary dsRNA. The

enzyme Dicer, found in nearly all eukaryotes with various isotypes

(Zapletal et al., 2023), processes these precursor molecules into

short, mostly 21-24 nucleotide (nt) RNA duplexes in the cytoplasm

(Figure 1). In plants, Dicer-like (DCL) proteins play an important

role in processing dsRNA into siRNAs of different length

(Henderson et al., 2006; Mukherjee et al., 2013). The RNA

duplexes include a guide strand and a passenger strand [reviewed

in (Kim et al., 2009; Borges and Martienssen, 2015)]. While the

passenger strand is degraded during further processing, the guide

strand, which is complementary to the target gene sequence, is

crucial for the silencing of the gene. In the following, we will first

focus on the biogenesis of small RNAs in plants and then discuss the

mechanisms of RNAi-based silencing before we discuss the

implications of these mechanisms for possible off-target effects in

GM plants.
Biogenesis of small RNAs in plants

To investigate the effects of genetic modifications on the RNAi

pathway in GM plants, it is essential to consider the natural

mechanisms by which RNAi can affect gene expression in plants. To

this end, the cellular pathways by which siRNA molecules can be

produced in plants are first described here (Figure 1; Table 1).

Precursors of siRNA are almost without exception double-stranded

RNA molecules, which are either synthesized by endogenous RNA

polymerases (RNA Pol) or introduced exogenously (Vazquez et al.,

2004; Allen et al., 2005; Axtell et al., 2006). Endogenous precursors

include natural antisense transcripts (NAT) synthesized by RNA Pol II,
frontiersin.org
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which base-pair with the sense mRNA of the coding gene and thus

form the double-stranded substrate for corresponding RNases

(Figure 1A) (Borsani et al., 2005; Jen et al., 2005; Zhang et al., 2012).

RNA Pol II also synthesizes shRNAs encoded in the genome, which

can then be processed by Dicer into siRNA (Figure 1B) (Wesley et al.,

2001; Helliwell and Waterhouse, 2003; Senthil-Kumar and Mysore,

2011) or long non-coding (lnc) RNAs (Kim and Sung, 2012; Liu et al.,

2012; Wu et al., 2012), whose secondary structures can have hairpins

and can thus also be converted into siRNA by corresponding RNases

(Figure 1C). Endogenously encoded micro (mi)RNAs are synthesized

by Dicer or DCL1 in plants (Kurihara and Watanabe, 2004) from

shRNAs, the miRNA precursors (Figure 1D), and either directly

regulate the expression of target genes (by miRNA) or base-pair with

the precursors of so-called trans-acting (ta)siRNAs, which are then

generated by DCL from a double-stranded template (Figure 1E).

Exogenously introduced precursors of siRNA are molecules

introduced into a cell from an external source. A natural example

are viral RNAs, which are either immediately present after infection

and replication (RNA viruses, in plant viruses often single-stranded (ss)

RNA genome) or are generated by transcription of the viral genome

(DNA viruses) and are then templates for DCLs, which produce siRNA

from them (Figure 1F) (Ruiz et al., 1998; Lu et al., 2003; Burch-Smith

et al., 2004). RNA Pol IV or V can also be involved in siRNA synthesis,
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for example in the case of the synthesis of precursors of

heterochromatic (hc)siRNAs, which are then converted to siRNA by

DCL3 (Figure 1G) (Law and Jacobsen, 2010; Zhang and Zhu, 2011;

Matzke and Mosher, 2014). In plants, the proteins DCL2, DCL3 and

DCL4 generate siRNAs of different lengths mostly with 22 nt, 24 nt and

21 nt, respectively, which in turn trigger different mechanisms of

silencing (Henderson et al., 2006; Mukherjee et al., 2013). Of note,

DCL2-derived 22 nt siRNAs in plants are involved in a transitive and

systemic spread of siRNA especially for antiviral defense, called

secondary RNAi (Bouché et al., 2006; Chen et al., 2010; Garcia-Ruiz

et al., 2010; Qin et al., 2017). This spread of RNAi involves the

amplification and expansion of silencing signals that are mediated by

RNA-dependent RNA polymerases (RdRp) (Sanan-Mishra et al.,

2021). In this process, siRNAs act on longer RNAs (such as mRNA)

as primers for RdRp, whereby a new, long dsRNA is synthesized, which

is then eventually processed again by the RNAi machinery into siRNA

triggering secondary RNAi.
Mechanisms of RNAi-based silencing

Silencing mechanisms can occur in the GM plant harboring the

RNAi construct, at the transcriptional level in the cell nucleus or the
FIGURE 1

siRNA biogenesis in plants. (A) Synthesis of natural antisense transcripts by RNA polymerase II (RNA Pol II) followed by Dicer-like protein (DCL)-
mediated cleavage. (B) RNA Pol II-mediated transcription of short hairpin (sh) RNAs, followed by DCL processing. (C) RNA Pol II-mediated synthesis
of long non-coding (lnc) RNAs, followed by RNase digestion. (D) miRNA processing of RNA Pol II-transcribed miRNA precursors. (E) Trans acting (ta)
siRNA pathway followed by siRNA synthesis by DCL. (F) Virus-derived siRNA synthesis from RNA or DNA viruses via replication/transcription followed
by DCL processing. (G) RNA Pol IV-mediated transcription of double-stranded (ds) RNA as precursors for heterochromatic (hc) siRNA, followed by
processing via DCL. Generated by the use of Biorender.com.
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TABLE 1 Mechanisms by which RNA interference induces gene expression changes in plants, categorized by their general mode of action, including
the mechanism, the source of siRNA and corresponding references.

Category Mechanism Description Source of siRNA References
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siRNAs guide RISC to
complementary mRNA, leading to

its cleavage and degradation.

Trans-Acting siRNAs
(ta-siRNAs)

(Vazquez et al., 2004; Allen
et al., 2005; Axtell
et al., 2006)

Natural Antisense
Transcripts (NATs)

(Borsani et al., 2005; Jen
et al., 2005; Zhang
et al., 2012)

Exogenous short hairpin
RNA (shRNA)

(Wesley et al., 2001;
Helliwell and Waterhouse,
2003; Senthil-Kumar and
Mysore, 2011)

Long Non-Coding
RNAs (lncRNAs)

(Kim and Sung, 2012; Liu
et al., 2012; Wu
et al., 2012)

Virus-derived siRNAs (Ruiz et al., 1998; Lu et al.,
2003; Burch-Smith
et al., 2004)

Heterochromatic siRNAs
(hc-siRNAs)

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)
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siRNAs guide RISC to
complementary mRNA, leading to

translation inhibition

Trans-Acting siRNAs
(ta-siRNAs)

(Vazquez et al., 2004; Allen
et al., 2005; Axtell
et al., 2006)

Natural Antisense
Transcripts (NATs)

(Borsani et al., 2005; Jen
et al., 2005; Zhang
et al., 2012)

Exogenous short hairpin
RNA (shRNA)

(Wesley et al., 2001;
Helliwell and Waterhouse,
2003; Senthil-Kumar and
Mysore, 2011)

Long Non-Coding
RNAs (lncRNAs)

(Heo and Sung, 2011; Kim
and Sung, 2012; Liu
et al., 2012)

Virus-Derived siRNAs (VIGS) (Ruiz et al., 1998; Lu et al.,
2003; Burch-Smith
et al., 2004)
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miRNAs guide RISC to
complementary or partially

complementary mRNAs, resulting
in cleavage or repression.

Endogenously
expressed miRNAs

(Jones-Rhoades et al., 2006;
Mallory and Vaucheret,
2006; Voinnet, 2009)
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siRNAs guide DNA methylation
machinery to specific genomic
regions, repressing transcription.

Long Non-Coding
RNAs (lncRNAs)

(Wierzbicki et al., 2008;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

Heterochomatic siRNAs
(hc-siRNAs)

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Movahedi et al., 2015)

Pol IV/Pol V-derived siRNAs (Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

(Continued)
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translational/post-transcriptional level in the cytoplasm (Figure 2). In

the nucleus, siRNA can pair with the nascent mRNA of the target gene,

recruiting factors to the transcription machinery that inhibit the

transcription elongation by RNA polymerase (Figure 2A, left)

(Guang et al., 2010). Similarly, siRNA can recruit enzymes that

induce epigenetic silencing of the target gene through DNA

methylation (Law and Jacobsen, 2010; Wu et al., 2010; Zhang and

Zhu, 2011; Wu et al., 2012; Matzke and Mosher, 2014; Movahedi et al.,

2015) or histone modification (Baulcombe, 2004; He et al., 2011; Liu

et al., 2012) (Figure 2A, right) (Verdel et al., 2009). In plants, epigenetic

silencing via DNA methylation is triggered by DCL3-generated ~24 nt

siRNA involving a RISC complex containing the protein Argonaute

(Ago)4 (Zilberman et al., 2003; Henderson et al., 2006; Qi et al., 2006;

Zheng et al., 2007; Wierzbicki et al., 2009; Havecker et al., 2010;

Olmedo-Monfil et al., 2010; Sarkies and Miska, 2014; Lewsey et al.,

2016). The most well-studied RNAi silencing mechanism involves the

degradation of the target gene’s mRNA (Figure 2B, left). In this process,

the protein Ago recruits siRNA to the complementary mRNA

sequence to form the RNA-induced silencing complex (RISC) (Wu
Frontiers in Plant Science 05
et al., 2012). In plants, this is triggered by DCL4-generated ~21 nt

siRNAs involving a RISC complex containing Ago1 (Xie et al., 2005;

Qu et al., 2008; Chen et al., 2010; Wang et al., 2011). If there is perfect

complementarity between siRNA and the target gene, the mRNA is

degraded, leading to down-regulation of the target protein’s production

(Valencia-Sanchez et al., 2006). With incomplete base pairing between

siRNA and target mRNA, the RNA is not degraded; instead, ribosome-

mediated translation is inhibited, resulting in reduced expression of the

target gene (Figure 2B, right) (Brodersen et al., 2008).

The current literature suggests that siRNA molecules produced

via different biogenesis pathways can differ in terms of their length,

triggering different types of mechanisms of gene expression

regulation described. While DCL4-generated 21 nt siRNA

predominantly triggers PTGS via mRNA degradation, DCL3-

generated 24 nt siRNA triggers TGS via epigenetic silencing and

DCL2-generated 22 nt siRNA induces secondary siRNA. However,

all DCL may act on long dsRNA molecules introduced into the

plant. Therefore, both TGS and PTGS need to be considered when

analyzing RNAi-induced effects in GM plants (Table 1).
TABLE 1 Continued

Category Mechanism Description Source of siRNA References

Endogenously
expressed miRNAs

(Wu et al., 2010; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

Trans-Acting siRNAs
(ta-siRNAs)

(Allen et al., 2005; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

Natural Antisense
Transcripts (NATs)

(Borsani et al., 2005; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

Exogenous short hairpin
RNA (shRNA)

(Waterhouse and Helliwell,
2003; Zhang and Zhu,
2011; Matzke and
Mosher, 2014)
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siRNAs direct histone-modifying
enzymes to specific loci, causing
chromatin condensation and

gene silencing.

Long Non-Coding
RNAs (lncRNAs)

(He et al., 2011; Zhang and
Zhu, 2011; Liu et al., 2012)

Heterochomatic siRNAs
(hc-siRNAs)

(Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

Pol IV/Pol V-derived siRNAs (Law and Jacobsen, 2010;
Zhang and Zhu, 2011;
Matzke and Mosher, 2014)

Trans-Acting siRNAs
(ta-siRNAs)

(Axtell et al., 2006; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

Natural Antisense
Transcripts (NATs)

(Borsani et al., 2005; Zhang
and Zhu, 2011; Matzke and
Mosher, 2014)

Exogenous short hairpin
RNA (shRNA)

(Helliwell and Waterhouse,
2003; Law and Jacobsen,
2010; Senthil-Kumar and
Mysore, 2011)

Virus-Derived siRNAs (VIGS) (Baulcombe, 2004; Blevins
et al., 2006; Matzke and
Mosher, 2014)
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Implications of RNAi silencing mechanisms
for possible off-target effects in GM plants

With regard to the knowledge about mechanisms by which

RNAi can potentially induce unintended effects in the GM plant,

the existing literature shows clear bias towards PTGS. For example,

a PubMed search with the search term “RNAi AND PTGS NOT

TGS” in title and abstract returned 118 hits, whereas the search

term “RNAi AND TGS NOT PTGS” only returned 25 hits (as of

18.10.2024). Hence, most published studies are concerned with the

investigation of effects resulting from the inhibition of translation or

degradation of mRNA (possibly resulting from incomplete

complementarity). Relatively fewer studies deal with TGS,

possibly because here effects, for example via epigenetic silencing,

could also arise upstream or downstream of the gene with sequence

complementarity and these cannot be clearly determined on the

basis of the pure small RNA sequence by analyzing complementary

sequences in the genome.
Techniques for the assessment of
RNAi-induced effects in plants

RNAi can induce different types of off-target effects in the plant,

which can be identified and studied using different techniques. Here

we provide a brief overview of the different techniques that can be

used to study the changes induced by RNAi and RNAi off-target

effects. The methods employed to study RNAi effects can be divided

into two main approaches: targeted and untargeted analysis

(Table 2). Targeted screening of RNAi effects focuses on

analyzing the intended silencing effects on specific target genes

and includes, for example, validation of gene knockdown,
Frontiers in Plant Science 06
functional assays, validation of phenotypic effects, assessment of

specificity and long-term effects (e.g. stability of gene silencing).

Targeted screening can also be used to analyze effects on predicted

off-target genes. The corresponding techniques include molecular

techniques such as RT qPCR (Chi et al., 2008; Sun and Rossi, 2009;

Holmes et al., 2010; Varkonyi-Gasic and Hellens, 2011; Augustine

et al., 2013; Kitzmann et al., 2013; Liu et al., 2014; Czarnecki et al.,

2016; Keykha et al., 2016; Manske et al., 2017; Betti et al., 2021;

Sarkar and Roy-Barman, 2021; Xu et al., 2021; Zhou et al., 2021;

López-Márquez et al., 2023; Kyslıḱ et al., 2024), northern blotting

(Chi et al., 2008; Fukuhara et al., 2011; Augustine et al., 2013;

Manske et al., 2017; Sarkar and Roy-Barman, 2021), western

blotting (Kumar et al., 2003; Sahin et al., 2007; Sun and Rossi,

2009; Holmes et al., 2010; Liang et al., 2013; Han, 2018; Vidarsdottir

et al., 2019; Kyslıḱ et al., 2024), genetic techniques such as reporter

gene assays (Kumar et al., 2003; Smart et al., 2005; Rinaldi et al.,

2008; Sun and Rossi, 2009; Manske et al., 2017; López-Márquez

et al., 2023) or genetic mutations (Chan et al., 2006; Czarnecki et al.,

2016; Krzyszton and Kufel, 2022), phenotypic assays (Chi et al.,

2008; Liu et al., 2014; Xu et al., 2021; Zhou et al., 2021; Tao et al.,

2023), enzyme activity assays (Chi et al., 2008; Betti et al., 2021;

Sarkar and Roy-Barman, 2021) or advanced techniques such as

genome editing using CRISPR/Cas9 (Moore, 2015; Kanchiswamy

et al., 2016; Peretz et al., 2018; Kleter, 2020; Mujtaba et al., 2021;

Bock et al., 2022).

Untargeted screening of RNAi effects involves comprehensive

analyses mainly aimed at identifying unintended consequences and

potential unpredicted off-target effects of RNAi treatments. These

techniques include analyzing changes in transcriptomic profiles

(Chan et al., 2006; Surget-Groba and Montoya-Burgos, 2010; Haque

and Nishiguchi, 2011; Narzisi and Mishra, 2011; Jiao et al., 2021; Xu

et al., 2021; Gaffo et al., 2022; Krzyszton and Kufel, 2022; Nguyen
FIGURE 2

Mechanisms of RNAi-mediated silencing. (A) Mechanisms of transcriptional gene silencing (TGS). (B) Mechanisms of post-transcriptional gene
silencing (PTGS). Generated by the use of Biorender.com
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TABLE 2 Techniques for detecting RNAi off target effects in plants categorized by class and field. Short descriptions of each technique as well as the
corresponding references are given.

Class Category Technique Description References
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es

Quantitative RT-PCR (RT-qPCR) Quantification of specific RNA
molecules to assess reduction in target
or off-target genes.
advantages: high specificity;
disadvantages: limited to a minimum
RNA size, sequence information
required, single gene analysis

(Chi et al., 2008; Sun and Rossi, 2009;
Holmes et al., 2010; Varkonyi-Gasic
and Hellens, 2011; Augustine et al.,
2013; Kitzmann et al., 2013; Liu et al.,
2014; Czarnecki et al., 2016; Keykha
et al., 2016; Manske et al., 2017; Betti
et al., 2021; Sarkar and Roy-Barman,
2021; Xu et al., 2021; Zhou et al.,
2021; López-Márquez et al., 2023;
Kyslıḱ et al., 2024)

Northern blotting Quantification of specific RNA
molecules to assess reduction in target
or off-target genes as well as specific
detection of siRNAs.
advantages: high specificity, detection
of fragments possible, detection of
short RNA molecules;
disadvantages: sequence information
required, time-intensiveness, single
gene analysis

(Chi et al., 2008; Fukuhara et al., 2011;
Augustine et al., 2013; Manske et al.,
2017; Sarkar and Roy-Barman, 2021)

Western blotting Quantification of specific proteins to
assess reduction in target or off-target
genes at the protein level.
advantages: quantification of gene
products, integrated assessment of
mRNA degradation and translation
inhibition;
disadvantages: requires specific
antibodies, single protein analysis

(Kumar et al., 2003; Sahin et al., 2007;
Sun and Rossi, 2009; Holmes et al.,
2010; Liang et al., 2013; Han, 2018;
Vidarsdottir et al., 2019; Kyslıḱ
et al., 2024)

G
en
et
ic
te
ch
n
iq
u
es

Reporter gene assays Assessment of the effect of RNAi on
target gene expression in a GM
reporter system.
advantages: quick assessment, clear
read out;
disadvantages: artificial system, single
gene analysis

(Kumar et al., 2003; Smart et al., 2005;
Rinaldi et al., 2008; Sun and Rossi,
2009; Manske et al., 2017; López-
Márquez et al., 2023)

Genetic mutants Comparison of RNAi effects with
genetic mutants to validate phenotypic
effects of gene knockdown.
advantages: coverage of all phenotypic
effects;
disadvantages: mutant required, no
discrimination between target and off-
target effects

(Chan et al., 2006; Czarnecki et al.,
2016; Krzyszton and Kufel, 2022)

P
h
en
ot
yp
ic
te
ch
n
iq
u
es

Phenotypic assays Measurement of physiological
parameters such as photosynthetic
efficiency and hormone levels
comparing RNAi-based GMP with
unmodified comparator.
advantages: identification of
physiological parameters;
disadvantages: no discrimination
between target and off-target effects

(Chi et al., 2008; Liu et al., 2014; Xu
et al., 2021; Zhou et al., 2021; Tao
et al., 2023)

B
io
ch
em

ic
al
te
ch
n
iq
u
es

Enzyme activity assays Measurement of activity of enzymes
encoded by target genes to confirm
functional consequences.
advantages: assessment of functional
consequences;
disadvantages: restriction to the target
gene, no assessment of off-
target effects

(Chi et al., 2008; Betti et al., 2021;
Sarkar and Roy-Barman, 2021)

(Continued)
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TABLE 2 Continued

Class Category Technique Description References

A
dv
an
ce
d
te
ch
n
iq
u
es

CRISPR/Cas9 CRISPR/Cas9 gene editing for
validation of RNAi effects by knocking
out target genes; Editing of potential
off-target genes to assess phenotypic
outcomes compared to RNAi
treatments.
advantages: specific analysis of
phenotypic changes induced by target
knockout;
disadvantages: knowledge about off-
target required, time consuming for a
number of off-targets

(Moore, 2015; Kanchiswamy et al.,
2016; Peretz et al., 2018; Kleter, 2020;
Mujtaba et al., 2021; Bock et al., 2022)

U
n
ta
rg
et
ed

an
al
ys
is

M
ol
ec
u
la
r
te
ch
n
iq
u
es

RNA sequencing (RNA-Seq) Next generation sequencing of RNA
and differential gene expression
analysis to assess target and off-target
genes.
advantages: global detection of gene
expression changes;
disadvantages: time consuming, ideally
availability of (high quality) reference
genome required (workaround: de
novo transcriptome assembly)

(Chan et al., 2006; Surget-Groba and
Montoya-Burgos, 2010; Haque and
Nishiguchi, 2011; Narzisi and Mishra,
2011; Jiao et al., 2021; Xu et al., 2021;
Gaffo et al., 2022; Krzyszton and
Kufel, 2022; Nguyen et al., 2022; Tyagi
et al., 2022; Dong et al., 2023; López-
Márquez et al., 2023; Budnick et al.,
2024; Cazares et al., 2024)

Small RNA sequencing (small
RNA-Seq)

Next generation sequencing of small
RNAs for siRNA and miRNA
quantification e.g. to inform
bioinformatic off-target predictions.
advantages: global analysis of small
RNAs;
disadvantages: time consuming

(Huang et al., 2024)

P
h
en
ot
yp
ic
te
ch
n
iq
u
es

Visual observation Observation of plant phenotypes such
as growth rate, seed weight, leaf shape,
and flower development.
advantages: global assessment of
phenotypic effects;
disadvantages: no discrimination
between target and off-target effects

(Augustine et al., 2013; Manske et al.,
2017; López-Márquez et al., 2023)

Microscopy Microscopic observation cellular and
subcellular changes.
advantages: assessment of effects at the
cellular and subcellular level;
disadvantages: no discrimination
between target and off-target effects

(Chi et al., 2008; Kitzmann et al.,
2013; Betti et al., 2021; Sarkar and
Roy-Barman, 2021; Xu et al., 2021;
Zhou et al., 2021; Kyslıḱ et al., 2024)

B
io
ch
em

ic
al
te
ch
n
iq
u
es

Metabolite profiling Gas chromatography (GC) coupled
mass spectrometry (MS) analysis of
changes in metabolite levels to provide
insights into affected metabolic
pathways.
advantages: global assessment of
metabolites;
disadvantages: time-consuming, no
discrimination between target and off-
target effects

(Chen et al., 2012; Huang et al., 2022;
Baysoy et al., 2023; Bressan et al.,
2023; Naik et al., 2023; Huang
et al., 2024)

A
dv
an
ce
dt
ec
h
n
iq
u
es

Proteomics Liquid chromatography coupled mass
spectrometry (LC-MS) to identify
changes in protein abundance and
post-translational modifications.
advantages: global detection of gene
expression changes at the protein
level;
disadvantages: lower sensitivity,
time consuming

(Chi et al., 2008; Lacourse et al., 2008;
Asano and Nishiuchi, 2011; Chen
et al., 2012; Naik et al., 2023)

(Continued)
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et al., 2022; Tyagi et al., 2022; Dong et al., 2023; López-Márquez

et al., 2023; Budnick et al., 2024; Cazares et al., 2024), changes in

protein expression (Chi et al., 2008; Lacourse et al., 2008; Asano and

Nishiuchi, 2011; Chen et al., 2012; Naik et al., 2023) and

modifications, metabolites (Chen et al., 2012; Huang et al., 2022;

Baysoy et al., 2023; Bressan et al., 2023; Naik et al., 2023; Huang

et al., 2024) and epigenetic changes (Warnatz et al., 2011;

Muhammad et al., 2020; Navarro-Mendoza et al., 2023) to

understand the downstream effects of RNAi on cellular processes.

In addition, the distribution and potential off-target interactions of

RNAi (small RNAs) with unintended mRNA targets can be

determined. Furthermore, there are also bioinformatic tools that

utilize computational algorithms to predict potential off-target sites

based on sequence complementarity and thermodynamic stability

(Good et al., 2016; Lück et al., 2019). However, such bioinformatic

prediction tools require extensive knowledge, for example of the

plant’s genome or its RNAi machinery, in order to apply

them effectively.

When studying off-target effects of RNAi, both targeted and

untargeted analyses offer unique advantages and disadvantages.

Targeted analysis as focuses on predefined genes or pathways,

provide specific and efficient validation of RNAi-induced gene

silencing. It ensures detailed understanding of intended effects but

has a limited scope, potentially missing broader biological impacts

and introducing bias by overlooking unexpected interactions. These

techniques require fewer technical resources and their costs are

reduced, making targeted analysis well suited as validation

techniques. In contrast, untargeted analysis provides a

comprehensive , genome/proteome/transcriptome-wide

assessment, enabling the discovery of both known and unknown

off-target interactions. However, this approach depends on high-

quality, well-annotated genomes for precise mapping of RNAi-

induced changes and understanding the broader implications of

gene silencing in plants. While this unbiased method generates

extensive datasets that provide deeper insights into RNAi effects, it

is resource-intensive and complex, demanding substantial time,

computational power, and expertise for analysis and interpretation.

Additionally, the large datasets can introduce noise, probably

requiring further validation to identify meaningful effects. Despite

potential challenges, combining both approaches can offer a

balanced perspective, profiting the specificity of targeted analysis

and the breadth of untargeted analysis to achieve thorough insights

into RNAi effects.
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Discussion

Relevance of unintended effects of RNAi
for risk assessment

Unintended effects of RNAi applications in GM plants

themselves are a critical focus in the safety assessment of food

and feed. Consequently, the Food and Agriculture Organization of

the United Nations, for example, has issued guidelines for

conducting food safety assessments of food derived from

recombinant DNA plants (Food and Agriculture Organization of

the United Nations, 2003). Also the OECD publishes science-based

consensus documents offering information for the regulatory

assessments of specific food and feed products, including those

derived from transgenic organisms (Organisation for Economic Co-

operation and Development, 2021). These documents gather data

on the product’s nutrients, anti-nutrients and toxicants, its use as

food or feed, and other factors relevant to food and feed safety. Here

and in various review articles on the topic of risk assessment of

RNAi-based GM crops, primarily untargeted methods for analyzing

gene products and their metabolites, such as proteomics and

metabolomics, are proposed to investigate RNAi-induced effects

in the GM crop itself (Senthil-Kumar and Mysore, 2011; Kleter,

2020; Papadopoulou et al., 2020; Chaudhary et al., 2024).

The mechanisms by which the RNAi pathway can trigger specific

gene expression changes in plants include both transcriptional and

post-transcriptional regulation. These processes rely on specific base

pairing, either with the nascent transcript (TGS) or with the mature

target mRNA or a sequence-like mRNA (PTGS).While 21 nt siRNAs

are predominantly involved in PTGS, 24 nt siRNAs often trigger TGS

via epigenetic changes. In PTGS the target gene is directly known

based on the sequence, whereas TGS can also affect genes located in

close or distant proximity to the gene with sequence homology,

making sequence-based prediction of TGS induced effects more

difficult. PTGS is by far the most investigated mechanism in

scientific studies to date, while the literature on RNAi-induced TGS

is relatively limited. Therefore, the sheer number of scientific studies

and the focus on PTGS to date does not necessarily reflect the actual

relevance of the respective mechanisms in the plant, making it

difficult to rank them according to their potential for causing

unintended effects in plants.

Scientific literature on case studies investigating unintended

effects in RNAi-based GM crops is currently scarce. However,
TABLE 2 Continued

Class Category Technique Description References

Chromatin immunoprecipitation
sequencing (ChIP-Seq)

Assessment of changes in DNA
methylation or histone modifications
and transcription factor binding as a
result of RNAi.
advantages: global assessment of
epigenetic TGS;
disadvantages: time consuming

(Warnatz et al., 2011; Muhammad
et al., 2020; Navarro-Mendoza
et al., 2023)
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bioinformatic tools are being dynamically developed to predict

intended target genes and potential unintended effects on off-

target genes in the GM crop or NTOs in case of HIGS, leveraging

sequence homology to enhance the accuracy and scope of these

predictions (Chen et al., 2019). While these tools often reach their

limits in NTOs due to the lack or deficient annotated-genomes, high

quality annotations are available for model plants or major crops,

enabling such tools to predict PTGS effects on plant off-target genes

with a higher probability. However, there are also mechanisms

(such as TGS) that are not based on direct sequence homology to

the target and whose unintended effects cannot be easily predicted

bioinformatically. In most cases, it can be assumed that off-target

effects manifest themselves at the transcriptome level and can be

measured using sufficiently sensitive methods.
Adequate techniques to detect unintended
RNAi-induced effects

To detect unintended RNAi-induced effects in GM plants for

risk assessment, knowledge about the siRNAs processed in the GM

plant, such as size and sequence, compared to the wild type is

necessary. Since both intended and possible secondary siRNAs

(such as tasiRNA) can play a role, untargeted analyses, such as

small RNA sequencing, should be used to identify the sequences of

all siRNAs. With this knowledge, bioinformatic tools can be used to

predict both intended and unintended effects mediated by sequence

homology, primarily through PTGS, and these predictions can be

validated using targeted methods such as RT-qPCR. However, a

comprehensive bioinformatic search for homologies requires access

to the plant´s complete genome, whereas RT-qPCR analyses can

also be managed with knowledge of shorter sequence segments.

Unintended effects mediated by TGS, on the other hand, are not

directly linked to the actual sequence of the siRNA and therefore

cannot be adequately detected with targeted methods, but only with

untargeted methods. RNA sequencing, for example, can be used for

the direct, untargeted investigation of gene expression changes,

changes in histone modifications can be detected using ChIP-Seq or

altered DNA methylation patterns can be detected using bisulphite

sequencing. However, all these methods require the availability of

the plant´s genome for accurate analysis. Additionally, there are

currently no studies that specifically address the importance of

selecting appropriate plant material such as tissue type,

developmental stage, and sampling time points or the sensitivities

required for untargeted analyses to effectively capture RNAi-

induced changes (e.g. alterations in gene expression). Most

published studies have focused on using plant tissues, like leaves,

without a detailed exploration on how these factors might influence

the detection and interpretation of RNAi-induced effects. Likewise,

unintended off-target genes may be expressed, for example, in

certain tissue types and not in others. These gaps highlight the

need for more comprehensive research to optimize experimental

designs in RNAi studies aiming to identify unintended effects.
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Case studies assessing unintended effects

Among the few studies assessing unintended effects of RNAi in

GM plants, some have employed untargeted omics methods to analyze

changes in gene expression and metabolite profiles. For example,

Huang et al. (2022) compared the leaves of three transgenic maize

RNAi lines resistant to Apolygus lucorum with those of three

conventionally bred maize lines. Using untargeted omics methods at

the levels of small RNAs, the transcriptome and the metabolome, the

authors observed that the number of differentially expressed genes

(DEGs) and differentially accumulated metabolites (DAMs) were

greater in RNAi lines than in conventional lines. Additionally, Zörb

et al. (2013) using GC-MS-based metabolite profiling showed that

RNAi-mediated silencing of the sulfur-rich alpha-gliadin storage

protein family in wheat grains did not induce changes in any of the

109 metabolites analyzed. Similarly, Zhang et al. (2020) investigated

transcriptomic and metabolomic changes in RNAi-based GM maize

resistant to Monolepta hieroglyphica compared to its unmodified

variant. This study only identified a single DEG at the transcriptome

level and 8 out of 5787 metabolites as DAMs, leading the authors to

conclude that the RNAi variant exhibited negligible changes compared

to the wild type.

Building on the insights gained from studies exploring off-target

effects in RNAi-based GM plants, these findings have helped to inform

regulatory approaches, including the one of the first authorization-

relevant risk assessments for an RNAi-based genetically modified crop

was carried out by the US Environmental Protection Agency (US EPA)

for SmartStax Pro (MON 87411/Unique ID: MON-87411-9) (EPA

Reg. Number: 62719-707). As part of the product characterization and

human risk assessment, in 2016 the US EPA recommended a number

of methods to rule out unintended side effects. These include

transcriptome analyses using microarray or RNA sequencing,

proteome analyses, GC-MS-based metabolomics, and the global

detection of changes in DNA methylation patterns. It should be

noted that certain recommended methods, such as microarray

analyses for transcriptome studies or 2D gel electrophoresis coupled

with MS for transcriptome analysis, are no longer state-of-the-art and

should be replaced by more up-to-date methods such as RNA

sequencing and LC-coupled MS, respectively. The US EPA advised

that these analyses should be carried out comparatively between the

GM plant containing all modification events (SmartStax Pro), the GM

plant lacking the dsRNA cassette (SmartStax) as well as non-genetically

modified lines across several generations. Furthermore, they

recommended using a combination of different omics methods and

to combine them with more sensitive methods such as RT-qPCR, to

thoroughly exclude unintended effects.
Current limitations and future research

In summary, the challenges in detecting unintended RNAi

effects in GM plants lie in the diversity of siRNAs that can be

formed from corresponding precursor molecules and in the fact
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that TGS (especially via epigenetic mechanisms) can also affect the

expression of nearby genes without sequence homology, indicating

that targeted/biased bioinformatic methods alone are not sufficient

for excluding unintended effects. The few available studies indicate

that the RNAi method appears to be relatively specific with minimal

unintended effects expected (Zörb et al., 2013; Zhang et al., 2020;

Huang et al., 2024).

Untargeted approaches, such as RNA sequencing for

transcriptome analysis, LC-MS-based proteomics or GC-MS-

based metabolome profiling, offer a promising and increasingly

sensitive means of investigating these effects. The current state of

well-annotated plant genomes varies significantly across species,

with high-quality annotations available for some model plants and

major crops, while others remain underrepresented. This variability

poses challenges for accurately mapping RNAi-induced changes, as

comprehensive and well-annotated reference genomes are crucial

for identifying both target and off-target effects, as well as for

understanding the broader biological impact of RNAi in diverse

plant species. One way around this problem is to perform a de novo

assembly of the transcriptome of unannotated plants (Surget-Groba

and Montoya-Burgos, 2010; Narzisi and Mishra, 2011). However,

this depends on the quality and depth of the sequencing. In

combination, bioinformatic approaches with untargeted methods,

such as various omics, offer the possibility to detect specific off-

target effects in GM plants.

Future research on detecting RNAi-induced effects in GM

plants should focus on improving sensitivity and specificity with

advanced sequencing technologies, better off-target detection

through CRISPR, and more accurate quantification using

methods like RT-qPCR and proteomics. Environmental impact

studies, long-term monitoring, and standardizing protocols will

be key for regulatory safety assessments.
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