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Introduction: Cultivated land quality degradation is a critical challenge to food

security, requiring effective nature-based restoration strategies based on

comprehensive assessments of land quality. However, existing methods are

often costly, limited in scope, and fail to capture the multidimensional

complexity of the degradation processes.

Methods: This study integrated vegetation indices, topographic data, and soil

physical and chemical properties to construct a model for identifying cultivated

land degradation. Remote sensing indices were calculated using Google Earth

Engine, enabling large-scale spatial analysis. Machine learning, combined with

SHapley Additive exPlanations (SHAP), was employed to explore the driving

factors of degradation.

Results: The results indicate that 11.86% of cultivated land in Yugan County is

degraded, primarily in the central plain and riparian zones, driven by both natural

factors (precipitation, temperature) and anthropogenic factors (straw

incorporation, fertilization management). Soil erosion was concentrated in

southern hills and near rivers, fertility decline occurred in the central plain, and

soil acidification was evenly distributed with generally low degradation levels.

Discussion: Based on these findings, vegetation-based restoration solutions,

including deep-rooted crops, crop rotation and intercropping, and straw

incorporation, are proposed to address different types of cultivated land quality

degradation and support sustainable land management.
KEYWORDS

cultivated land quality degradation, remote sensing indices, SHAP, Yugan County,
nature-based solutions
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1 Introduction

The escalating issue of cultivated-land degradation threatens

food security and ecosystem stability (Nguyen et al., 2023).

According to the Food and Agriculture Organization of the

United Nations, approximately one-third of the world’s land faces

degradation, primarily due to climate change, over-farming, and

irrational land use, leading to soil erosion, nutrient loss, and

reduced organic matter, which endanger global food production

and ecosystem health (FAO, 2022). If these trends continue, 840

million people will face hunger globally by 2030 and the risk of food

supply instability will increase (FAO, 2021). In China, cultivated

land quality degradation poses significant threat to national food

security, particularly in the southern regions (Fan et al., 2023).

Declining soil fertility, nutrient loss, soil erosion, and heavy metal

pollution are prevalent issues driven by excessive chemical fertilizer

use, monoculture cropping, and intensified soil erosion and water

loss (Wang et al., 2020; He et al., 2024). These practices accelerate

soil structural damage and reduce biodiversity, further undermining

land productivity (Zhang et al., 2021b). As a typical agricultural area

in southern China, Poyang Lake exemplifies these challenges, with

soil degradation exacerbated by extreme weather events linked to

climate change. Problems such as soil erosion, fertility decline, and

heavy metal contamination have far-reaching implications for

agricultural productivity and ecosystem resilience (Li et al.,

2021b). Additionally, urbanization and industrialization intensify

resource competition, compounding the degradation of cultivated

land (Zheng et al., 2019; Su et al., 2024). Immediate, region-specific

protection and restoration measures are essential to mitigate these

threats and promote sustainable land management.

Nature-based solutions (NbS) are sustainable approaches that

emulate or enhance natural processes to address environmental,

social, and economic challenges (Keesstra et al., 2018). NbS

emphasize the conservation, restoration, and sustainable

management of ecosystems to deliver diverse ecological services,

addressing contemporary environmental issues while laying the

foundation for future ecological resilience (Cohen-Shacham et al.,

2016; Prăvălie et al., 2024). In the context of cultivated land

degradation, NbS offer promising strategies for restoring

cultivated land quality through vegetation restoration, soil

management, and agroecological practices (Sharma et al., 2024).

These solutions are vital for mitigating land degradation, enhancing

soil fertility, improving water retention, and fostering biodiversity

in agricultural settings (Intergovernmental Panel on Climate, C,

2019; Debele et al., 2023). For cultivated land degradation,

vegetation restoration not only holds significant importance for

ecological rehabilitation in degraded lands but also demonstrates

considerable economic benefits, environmental advantages, and

operational feasibility (Miralles-Wilhelm, 2021). Moreover, the

restoration process enhances biodiversity, improves microclimate

conditions, and substantially increases regional ecosystem service

provisioning (Susňik et al., 2022). These benefits are achieved

through reduced soil erosion, improved water retention capacity,

and enhanced carbon sequestration, providing a critical pathway to

achieving ecosystem sustainability (Lal, 2020; Blanco-Canqui,

2024). However, to devise effective restoration strategies for
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mitigating or reversing cultivated land degradation, the primary

challenge is to scientifically identify and assess the types and severity

of cultivated land degradation.

Despite its importance, accurately determining the state of land

degradation and its driving factors remains a significant challenge.

cultivated land degradation exhibits complex spatiotemporal

characteristics at a global scale (He et al., 2024). Traditional large-

scale, generalized assessments of cultivated land degradation are often

costly and fail to support the refined and multidimensional demands

of cultivated land management. Incorporating prior knowledge is

therefore critical for identifying cultivated land degradation and

formulating effective restoration strategies. Vegetation, as an

essential indicator of ecosystem health, reflects changes in land

conditions (Gaitán et al., 2013). Remote sensing techniques, such as

calculating the Ratio Vegetation Index (RVI), Normalized Difference

Vegetation Index (NDVI), and Difference Vegetation Index (DVI),

have proven effective in identifying areas of soil stress due to their

high precision, temporal efficiency, and extensive coverage (Han and

Song, 2019). These methods provide a reliable foundation for precise

soil sampling and analysis, enabling a deeper understanding of the

extent of cultivated land degradation and informing targeted

restoration measures (Yan et al., 2021). Furthermore, the

complexity of cultivated land degradation processes is exacerbated

by the dual influences of climate change and human activities (He

et al., 2024). While traditional linear analysis methods can reveal

associations between natural conditions, socioeconomic factors, and

soil quality, they struggle to capture the nonlinear responses of

cultivated land quality to environmental changes (Zhang et al.,

2024a). Machine learning (ML) methods address this limitation, yet

challenges remain regarding the interpretability of their results

(Hussain et al., 2023). SHapley Additive exPlanations (SHAP), a

game-theory-based analytical approach, provides a solution by

offering a quantifiable and intuitive framework to explain complex

ML model outputs (Han et al., 2024). By calculating each feature’s

contribution to model predictions, SHAP facilitates the interpretation

of model results and enhances transparency in identifying the driving

factors behind cultivated land degradation.

Therefore, this study aimed to 1) construct a cultivated land

quality degradation diagnosis model for multiple cultivated land

quality degradation types by integrating a remote sensing index and

the physical and chemical properties of topsoil, enabling quantitative

degradation assessment across regions; 2) analyze the cultivated land

quality degradation driving factors based on machine learning and

SHapley Additive exPlanations (SHAP); and 3) propose vegetation-

based cultivated land restoration solutions tailored to different types

and levels of cultivated land degradation.
2 Materials and methods

2.1 Study area

The study area is located in Yugan County, Shangrao City, Jiangxi

Province (Figure 1). It has a total area of 2,350.36 km2 and spans from

28°21’36″ to 29°03’24″ N and 116°13’48″ to 116°54’24″ E (Figure 1).

It is under the jurisdiction of 9 towns and 11 townships, with a total of
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372 village committees. The topography of the city is dominated by

low hills and lakeside plains with high terrain in the southeast and

low terrain in the northwest. It belongs to a subtropical humid

monsoon climate, with an average annual precipitation of 1,548 to

1,692 mm, average annual temperature of 15.4°C to 19.5°C, and frost-

free period of 240 to 300 days. Land use mainly consists of arable land

and forest land, with arable land accounting for 37.44% of the total

area and forest land constituting 19% (Figure 2). Rice is the main

grain crop, accounting for more than 90% of the total grain

production. The soil types are dominated by rice and red soils and

vegetation by broad-leaved and coniferous forests. The concentration

of cultivated land and gentle slopes in the region make it ideal for

studying cropland degradation.

Yugan County represents the typical ecological and agricultural

conditions of the Poyang Lake region, characterized by the

concentration of cultivated land, gentle slopes, and proximity to

the lake’s dynamic water system. Its location within the Poyang

Lake basin makes it a hotspot for understanding the interactions

between land use, water resource dynamics, and soil degradation.

The area is subject to significant land degradation pressures,

including soil acidification, soil fertility decline, soil erosion, and

soil physical structure degradation, driven by intensive agricultural

practices, heavy fertilizer use, and terrain features conducive to

runoff and nutrient loss. These issues mirror broader degradation

trends across the Poyang Lake region, making Yugan County a

critical case for studying the mechanisms and drivers of farmland

degradation. Moreover, its role as a major agricultural producer in

the region highlights the broader environmental and socio-
Frontiers in Plant Science 03
economic implications of land degradation, such as the risks of

reduced crop yields, water eutrophication, and downstream

ecological impacts, underscoring its representative significance in

regional and national agricultural studies.
2.2 Dataset

The data sources covered a wide range of aspects and provided

solid support for scientific analysis (Table 1).

The topsoil physical and chemical data, including soil organic

matter content, pH value, total nitrogen content, and bulk density,

along with fertilizer application amount, and straw return amount

data were obtained from the Soil Testing and Formula Fertilization

Dataset of Yugan County for 2012 and 2019.

Land use data, obtained from the Third National Land Survey of

China for 2019 were incorporated to map the spatial distribution of

land use types.

Remote sensing data, including Landsat 7 images, were

obtained from the Google Earth Engine platform and ASTER

GDEM V2 data were provided by the Geospatial Data Cloud

(http://www.gscloud.cn/).

Socioeconomic data were obtained from population data from

ORNL LandScan Viewer and The China GDP Spatial Distribution

Kilometer Grid Dataset - Data from the Registration and Publishing

System for Resource and Environmental Science Data (Xu, 2017).

For climate data, 1-km-resolution precipitation and temperature

data were provided by the National Tibetan Plateau/Third Pole
FIGURE 1

Location of the study area.
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Environment Data Center (Peng, 2024) and 1-km resolution month-

by-month mean temperature dataset (1901–2023) by the National

Tibetan Plateau Data Center (Peng, 2019) was used.
2.3 Diagnostic model of degree of
integrated cultivated land
quality degradation

Based on the Cultivated Land Quality Grade Standard (GB/

T33469-2016) and relevant documents issued by the Ministry of

Agriculture and Rural Affairs, the grading standards for the

physicochemical properties of the cultivated land in the study

area were determined through comprehensive consideration

(Table 2). Following the approach proposed by Tang et al. (2023),

which emphasizes the integration of natural condition assessments

and quality factor thresholds, we adopted a refined method for

evaluating cultivated land quality. Specifically, we incorporated

their equation for determining quality grades to ensure

consistency and accuracy in assessing the degradation thresholds

of cultivated land. Cultivated land quality grade was assessed using

the 2019 Third National Land Survey Cultivated Land Map as the

evaluation unit. The five indicators, including slope, soil organic

matter content, soil total nitrogen content, soil pH, and bulk weight,

were categorized into four grades based on their respective

thresholds. The cultivated land quality grade of each evaluation

unit was determined by the cumulative scoring of these indicators in

accordance with the method outlined in Equation 1, derived and
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adapted from the formula used by Tang et al. (2023). This approach

allows for a comprehensive evaluation of the degradation and

quality status of cultivated land while aligning with region-

specific thresholds for sustainable land management.

Equation 1 and its detailed parameters are elaborated to align

with the methodology proposed in Tang et al. (2023), ensuring a

robust framework for cultivated land quality assessment.

Grade

1, if  0 ≤ ni2 + ni3 ≤ 1, ni4 = 0,o
4

j=1
nij = 5

2, if  2 ≤ ni2 + ni3 ≤ 3, ni4 = 0,o
4

j=1
nij = 5

3, if  4 ≤ ni2 + ni3 ≤ 5, ni4 = 0,o
4

j=1
nij = 5 or ni4 = 1,o

4

j=1
nij = 5

4, if  2 ≤ ni4 ≤ 5,o
4

j=1
nij = 5

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(1)

where grade is the quality indicator for cultivated land quality

evaluation, n is the number of indicators, i respect the ith evaluation

unit, and j is the indicator grade. i is taken as 1,2,3…n and j is taken

as 1,2,3,4.

The level of degradation of cultivated land quality was

determined using the grade of the two-year cultivated land

quality evaluation, calculated using Equation 2.

Grade(d) = Grade12 − Grade19 (2)
FIGURE 2

Spatial distribution of sampling sites and land use categories in the study area.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1533855
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liao et al. 10.3389/fpls.2025.1533855
where Grade(d) is the degradation grade of arable land,

Grade12 is the quality grade of arable land in 2012, and Grade19

is the quality grade of arable land in 2019; a positive number

represents an increase in grade, that is, no degradation, and a

negative number represents a decrease in grade, that is, degradation.

The type of degradation was categorized into four grades: no

degradation (the evaluation grade remained unchanged or

increased), slight degradation (the grade decreased by one level),

moderate degradation (the grade decreased by two levels), and

severe degradation (the grade decreased by three levels or more).
Frontiers in Plant Science 05
2.4 Diagnostic model of the degree of
single type degradation of cultivated
land quality

2.4.1 Soil acidification
Soil acidification refers to the process of soil pH reduction owing

to the accumulation of acidic substances, leading to the deterioration

of soil physicochemical properties, which in turn affects plant growth

and ecosystem functioning (Yadav et al., 2020). The Ratio Vegetation

Index (RVI) is a remotely sensed ratio vegetation index that can

accurately reflect the degree and spatial distribution of soil

degradation (He et al., 2020). The main degradation factors affect

soil health and vegetation on the soil surface, leading to changes in

RVI. A past study found that RVI reflected soil acidification

conditions in southern hilly areas (Bouslihim et al., 2024).

Therefore, this study used the GEE cloud-computing platform to

perform the band-ratio operation (Equation 3) on remote sensing

images and extracted the RVI to indicate the degree of acidification of

the soil. RVI was calculated as follows:

RVI = NIR
RED (3)

where NIR is the reflectance in the near infrared band and RED

is the reflectance in the red band.

The change in RVI was significantly correlated with the change

in soil pH (P<0.01). We first screened cultivated lands with

decreasing RVI and then determined the degree of soil

acidification based on the change in pH level.

2.4.2 Soil fertility decline
Soil fertility decline is the process by which the ability of the soil

to supply fertilizer and support plant growth declines because of

nutrient depletion, particularly total nitrogen, or a reduction in

organic matter (Kimetu et al., 2008). Organic matter improves the

soil structure, promotes water infiltration and root growth, and

provides plants with the necessary nutrients to enhance their water

and fertilizer retention capacity and resistance. While nitrogen, as

an essential element for plant growth, directly affects nitrogen

uptake, utilization, and crop yield (Nguemezi et al., 2020). There

was a strong positive correlation between the organic matter and

total nitrogen contents(P<0.01); therefore, the organic matter

content was chosen as the main soil fertility evaluation index.

Normalized Difference Vegetation Index (NDVI) indirectly

characterizes soil fertility by reflecting vegetation cover and

effectively predicting soil organic carbon content (Zhang et al.,

2019). NDVI was calculated as follows:

NDVI = NIR−RED
NIR+RED (4)

NDVI was significantly positively (P<0.01) correlated with soil

organic matter and total nitrogen (P<0.01); therefore we chose the

area with a declining NDVI tendency and determined the degree of

soil fertility decline through changes in soil organic matter

content levels.
TABLE 1 Sources of data used in the study.

Typology Name Source

Vector data

Soil sample data
Yugan County Soil Testing
and Formula
fertilization Dataset

Landmark data
2019 Third National Land
Survey Cultivated Land

Remote
sensing data

Landsat 7 imagery

Google Earth Engine (GEE)
https://
developers.google.com/earth-
engine/datasets/catalog/
landsat-7

ASTER GDEM V2
Geospatial Data Cloud
https://www.gscloud.cn/
sources/accessdata

NASA DEM

EARTH DATA https://
earthdata.nasa.gov/esds/
competitive-programs/
measures/nasadem

Socioeconomic
data

Population density

ORNL LandScan Viewer -
Oak Ridge National
Laboratory:
https://landscan.ornl.gov

Gross domestic product

Registration and Publishing
System for Resource and
Environmental Science Data
(Xu, 2017)

Climate data

Mean annual precipitation

1-km monthly precipitation
dataset for China (1901–
2023). National Tibetan
Plateau/Third Pole
Environment Data Center
(Peng, 2024)

Mean annual temperature

China 1-km resolution
month-by-month mean
temperature dataset (1901–
2023). National Tibetan
Plateau Data Center
(Peng, 2019)

Fertilizer
management
data

Fertilization data
Yugan County Soil Testing
and Formulation Dataset

Straw return data
Yugan County Soil Testing
and Formulation Dataset
The above data in ArcGIS 10.8.1 unified coordinate system.
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2.4.3 Soil erosion
Soil erosion refers to the erosion of the top layer of soil caused

by rainfall, surface runoff, wind erosion, or irrational land use,

which manifests as soil loss, an increase in the sand content of

rivers, a decrease in land fertility, and ecosystem degradation

(Morgan, 2005). The factors related to soil erosion on cultivated

land include slope, water flow, and fertility. Slope is an important

factor for measuring the steepness of a terrain, with the greater the

slope, the greater the risk of soil erosion (Mei et al., 2024). Soil

moisture status is a key indicator for assessing the quality of

cultivated land, and the Differential Vegetation Index (DVI) can

effectively reflect the regional soil moisture content (Wang et al.,

2021). DVI was calculated as follows:

DVI = NIR − RED (5)

There was a significant correlation (P<0.01) between DVI,

slope, and organic matter. Based on the soil sampling protocol of

this study and previous research findings, we selected cultivated

land with slopes greater than 5° that showed a increasing tend in

DVI and assessed the degree of soil erosion by examining the

changes in soil organic matter content (Mei et al., 2024).
2.4.4 Soil physical structure degradation
Soil physical structure degradation is the process of disruption

of the soil aggregate structure, reduction in porosity, and increase in

compactness, resulting in the deterioration of water permeability,

aeration, and root growth conditions (Hillel, 1998). Bulk density is

the mass per unit volume of soil, usually expressed in grams per

cubic centimeter or grams per liter (Ferreras et al., 2000). Bulk

density reflects the structure and compactness of the soil and has an

important influence on soil fertility and aeration. High volumetric

weights indicate dense soils with impeded root growth, poor water

permeability, and limited gas exchange, all of which affect crop

growth (McLenaghen et al., 2017). In contrast, low bulkiness may

indicate loose soil with smoother root growth and good water

permeability, which favors gas exchange but may also lead to water

and nutrient loss (Garcıá-Orenes et al., 2005; Omuto, 2008). The

higher the soil bulk weight, the lower the soil water content, and the
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tighter the soil (Fernández-Ugalde et al., 2009). In this study,

changes in DVI were significantly negatively correlated with

changes in soil bulk density (P<0.01); therefore, these factors were

combined to determine the degree of degradation of the soil

physical structure. In this study, we selected cultivated land with

a DVI declining tendency and then determined the degree of

fertility decline via the changes in their soil bulkiness levels.

The types of degradation were categorized into four classes: no

degradation (no change or increase in the evaluation rating), slight

degradation (one level down), moderate degradation (two levels

down), and severe degradation (three levels down).
2.5 Random forest model

Random forest (RF) is a widely used integrated learning method

for classification and regression tasks, proposed by Breiman and

Cutler in 2001. The core idea is to improve the overall accuracy and

robustness of the model by constructing multiple mutually

independent decision trees and synthesizing the prediction results

for each tree (Sheykhmousa et al., 2020; Smith and Wang, 2020).

The construction of decision trees by randomly selecting features

and data subsets greatly improves the resistance of the model to

overfitting and performs well in dealing with high-dimensional

data, noisy data, and nonlinear relationships (Jain and Jana, 2023).

RF has been widely used in remote sensing image classification and

for predicting forest degradation (Gong et al., 2018; Zhou et al.,

2023). In this study, the RF model was implemented using the

Scikit-learn library for Python 3.11.4. Environmental variables such

as topography and climate were selected as inputs, and a spatial

distribution map of soil attributes with spatial information was

generated by training the model.

The optimal parameters of the model were configured as

follows: number of estimation trees (n_estimators) = 300,

maximum tree depth (max_depth) = 30, and maximum number

of features (max_features) = 1.0. 10-fold cross-validation was used

during the model training process and the random seeds of both the

training and test datasets were set to 30 to ensure the stability and

reproducibility of the results.
TABLE 2 Classification criteria for evaluation indicators of arable land.

Category First class Second class Third class Fourth class

SOM (g/kg)
Dryland ≥20 15~20 10~15 <10

Paddy field ≥30 25~30 15~25 <15

TN (g/kg)
Dryland ≥20 15~20 10~15 <10

Paddy field ≥30 25~30 15~25 <15

pH
Dryland >=6.0 5.5~6.0 4.5~5.5 <4.5

Paddy field >=5.5 5.0~5.5 4.5~5.0 <4.5

BD
Dryland

1.00~1.25 1.25~1.35, 0.90~1.00 1.35~1.45 ≥1.45, <0.90
Paddy field

SLOPE
Dryland

<=5° 5°~8° 8°~18° >18°
Paddy field
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2.6 Light gradient boosting machine
modeling with SHAP

SHAP is a game theory-based analytical method for interpreting

the output of complex machine learning models (Huang et al.,

2023a). By calculating the contribution of each feature to the model

predictions, SHAP provides an intuitive and quantifiable

framework for model interpretation. Its core is based on the

Shapley value, an assignment method derived from cooperative

game theory that measures the impact of each feature on model

predictions fairly, thus providing a solid theoretical foundation for

the interpretation of complex models (Han et al., 2024). In recent

years, SHAP has been widely used in biomedicine, environmental

monitoring, and other fields to help decision-makers better

understand the importance of features and their impacts on the

final results by explaining the prediction mechanism of machine

learning models (Zhang et al., 2023a; Du et al., 2024). The

contribution rate of each characteristic variable to the target

variable, represented by the Shapley value, can be calculated using

the following formula.

ji(v) =
1
Kj j !o

R
½v(SiR ∪ ) − v(SiR)� (6)

Where ji represents the Shapley value for feature i, SiR is the

subset of features preceding i in a permutation R, ∣K∣ is the total

number of features, and v(SiR) denotes the predictive contribution of

subset SiR. The Shapley value quantifies the average marginal

contribution of feature iii across all possible feature subsets.

Light Gradient Boosting Machine (LightGBM) is an efficient

machine learning algorithm based on gradient boosting designed

for processing large-scale data and high-dimensional features (Wei

et al., 2021). Its core innovation lies in the leafwise growth strategy,

which generates a deeper tree structure and improves the prediction

accuracy of the model by prioritizing the leaf nodes with the largest

error reduction during expansion. In addition, LightGBM

discretizes features using a histogram-based algorithm, which

significantly reduces memory occupation and computational cost
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and improves training efficiency (Wang et al., 2023a). Compared to

traditional gradient boosting models, LightGBM can efficiently

handle sparse data and large-scale datasets while maintaining

good prediction performance and scalability (Lokker et al., 2024).

This study employs LightGBM and SHAP to identify the

importance of multiple factors and explore the primary drivers of

cultivated land quality degradation. Eleven factors from five aspects of

topography, climate, location, socioeconomics, and agricultural

management were selected that may affect cultivated land quality

degradation, including Digital Elevation Model (DEM), Slope

Direction (ASPECT), Slope Gradient (SLOPE), Mean Annual

Precipitation (MAP), Mean Annual Temperature (MAT), Distance to

the Rivers (Dist. Rivers), Distance to the Rodes(Dist. Roads), Population

Density (POP), Gross Domestic Product (GDP), Straw Return Rate

(SRR), Fertilizer Application Rate (FAR). This comprehensive selection

ensures that various dimensions influencing land quality, such as

physical environment, climatic conditions, accessibility, human

activity, and agricultural practices, are represented in the model.

The integration of these factors into the LightGBM model,

combined with the interpretative power of SHAP, enables a robust

analysis of the underlying mechanisms and key contributors to

farmland degradation in the study area.
3 Results

3.1 Analysis of the integrated cultivated
land quality degradation

Using the cultivated land quality degradation type identification

model and degradation degree evaluation method, this study presents

a comparative table of the degradation degree of each degradation type

in the study area during the decade (Table 3). The overall health of

cultivated land quality degradation in the study area was good, with

only approximately 11.86% showing signs of degradation, of which

lightly degraded cultivated land accounted for 11.81% of the total

cultivated land, with very little moderate degradation and no heavily
TABLE 3 Levels of cultivated land quality degradation.

Degradation
type

No
degradation

Slight
degradation

Moderate
degradation

Severe
degradation

Total
degradation

All types
Area (km2) 783.0586 104.9531 0.3884 0 105.3416

Percentage (%) 88.1426 11.8137 0.0437 0 11.8574

soil acidification
Area (km2) 853.5768 34.3451 0.4783 0 34.8234

Percentage (%) 96.0802 3.8659 0.0538 0 3.9198

fertility decline
Area (km2) 643.6857 226.9326 17.7661 0.0158 244.7145

Percentage (%) 72.4545 25.5440 1.9998 0.0018 27.5455

soil erosion
Area (km2) 887.2728 0.8959 0.2306 0.0008 1.1274

Percentage (%) 99.8731 0.1008 0.0260 0.0001 0.1269

Physical
structural
degradation

Area (km2) 888.1472 0.2530 0 0 0.2530

Percentage (%) 99.9715 0.0285 0 0 0.0285
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degraded cultivated land. To visualize the spatial distribution of the

degree of degradation of the overall quality of cultivated land in Yugan

County, we measured the degree of degradation in each township and

constructed a spatial distribution map (Figure 3). Degradation was

mainly concentrated in the central and western plains and along the

rivers in the southern hilly areas, whereas the degradation degree of

the northern lakeshore plain was the least significant.
3.2 Analysis of each degradation form of
the cultivated land quality

Soil acidification accounted for 3.92% of the total cultivated land

area, primarily at the slight degradation level (3.87%), followed by

moderate degradation (less than 0.1%) (Table 3). Fertility decline

made up 27.55% of the total cultivated land quality degradation,

predominantly light degradation, which accounted for 25.54% of the

total cultivated land area. Moderate degradation represented 2% of the

total cultivated land area, significantly higher than other types of

degradation, while heavy degradation was observed in only 0.002% of

the plots. Soil erosion contributed to 0.03% of total cultivated land

quality degradation, mostly slight degradation, with almost no

moderate or severe degradation. Lastly, physical structure
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degradation accounted for 0.13% of the total cultivated land quality

degradation, with no cases of moderate or severe degradation. Taken

together, most of the degradation types predominantly resulted in

slight degradation, especially soil acidification and soil physical

structure degradation. However, the proportion of moderate

degradation of fertility decline and soil erosion was relatively high,

which needs to be studied further. Heavy degradation is rare and

occurs only during fertility declines and soil erosion.

To visualize the spatial distribution of different types of

cultivated land quality degradation and their degree of

degradation in Yugan County, we measured the degradation types

and degree of degradation in each township and drew

corresponding spatial distribution maps (Figure 4). The results

showed that the spatial differentiation pattern of cultivated land

quality degradation presented obvious regional differences. Soil

acidification was widely distributed throughout the county, with a

lower degree of acidification in the northern lakeshore plain area,

whereas acidification is more severe in the central and southern

hilly areas, especially in the central area, where acidified cultivated

land is more concentrated (Figure 4A). In contrast, fertility decline

has the widest impact and is particularly problematic in the central,

river, and lake littoral areas (Figure 4B). Soil erosion was mainly

concentrated in the southern hilly areas and along rivers and lakes.
FIGURE 3

Spatial patterns of integrated cultivated land quality degradation.
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Although the overall distribution was small, it had significant

impacts in localized areas (Figure 4C). In contrast, the area of soil

erosion was limited, and the degree of degradation was relatively

mild. The physical structure of the soil was degraded to the least

extent and was mainly distributed in the southern hilly area, with a

relatively scattered and limited range (Figure 4D). Comprehensive

analysis showed that fertility decline in the central part and soil

acidification in the south were the most prominent problems,

whereas the impacts of soil erosion and physical structure

degradation were more localized.
3.3 Drivers influencing the cultivated land
quality degradation

In this study, 11 factors influencing the degradation of

cultivated land quality were systematically selected, encompassing

five dimensions: topography, climate, geographic location, socio-
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economic conditions, and agricultural management practices. After

the VIF test (VIF < 5) for the 11 factors, it was confirmed that there

was no multicollinearity problem for these independent variables.

On this basis, the influence characteristics of each driving variable

on the degradation of comprehensive quality of cultivated land and

different cultivated land quality degradation types were analyzed by

the SHAP value interpretive method, and the results are shown in

Figure 5 and Figure 6. The target variable for this study is the score

for a particular type of degradation, where an increase in the score

indicates mitigation of degradation and vice versa. For example, an

increase in the soil acidification score mitigates acidification,

whereas a decrease in the score intensifies acidification.

By analyzing the SHAP values, this study revealed the main factors

influencing the degradation of each type of cultivated land. Overall,

MAP and agricultural management factors had significant effects on

the different types of degradation but the drivers of each degradation

type differed. For soil acidification, MAP was the most important

mitigating factor, and its increase significantly reduced the
FIGURE 4

Spatial patterns of degradation levels categorized by degradation types (A) soil acidification, (B) soil fertility decline, (C) soil erosion, and (D) soil
physical structure degradation.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1533855
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liao et al. 10.3389/fpls.2025.1533855
FIGURE 5

Importance ranking of impact factors based on LGB-SHAP mode.
FIGURE 6

Importance ranking of impact factors for different degradation types based on the LGB-SHAP model (A) spatial distribution of soil acidification, (B)
spatial distribution of soil fertility decline, (C) spatial distribution of soil erosion, and (D) spatial distribution of soil physical structure degradation.
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acidification risk, whereas the excessive application of fertilizers

exacerbated the acidification process. The fertility decline was

mainly driven by precipitation and straw return rate, both of which

increased to help mitigate the fertility decline, whereas excessive

fertilizer application exacerbated this problem. Soil erosion was

mainly affected by slope, with larger slopes exacerbating erosion;

however, appropriate increases in annual precipitation and rational

fertilizer use helped to mitigate it. The degradation of the soil physical

structure was more mitigated by the straw return rate; however, it

tended to be exacerbated in areas with greater slopes and the

degradation was more pronounced farther away from the river.

Changes in the overall cultivated land quality were also positively

correlated with precipitation and straw return rate but excessive

fertilizer application negatively affected the overall quality.
4 Discussion

4.1 Tendency of cultivated land
quality degradation

This study indicates that cultivated land in the Poyang Lake area

is facing a series of degradation risks, including soil acidification,

soil fertility decline, soil erosion and soil physical structure

degradation, a finding that is consistent with existing research.

For example, Zeng et al. conducted a spatial assessment of farmland

soil pollution across China, revealing similar degradation trends in

other regions, such as a decline in soil fertility and the accumulation

of heavy metals, which may lead to significant ecological and health

risks (Zeng et al., 2019). In the Poyang Lake area, the long-term

application of chemical fertilizers has led to a decline in soil organic

matter content, looser and less stable soil structure, and fertility

decline (Liu et al., 2023). Excessive use of nitrogen and phosphorus

fertilizers breaks the acid-base balance of the soil, which affects the

healthy growth of the crops and increases the risk of soil

acidification (Huang et al., 2012). Intensive land use in areas with

high precipitation and complex terrain has led to the destruction of

vegetation and degradation of the soil physical structure, triggering

serious soil erosion and nutrient loss (Yuan et al., 2016; Zhang et al.,

2021b). These issues are further corroborated by Zeng et al., who

highlighted the widespread challenges of soil fertility decline and

contamination across China (Zeng et al., 2019). If these issues are

not addressed, they could lead to a series of environmental and

socio-economic problems, including water eutrophication (Cai

et al., 2017), acid rain, and a decline in crop yields (Zhang et al.,

2021a), which would severely impact both the environment and

local livelihoods. This study further highlights that the most

prominent risk in the region is the degradation of arable land

fertility, which poses a significant threat to sustainable agriculture.

Given the urgency of this issue, it is critical to implement nature-

based solutions (NbS) and other adaptive management strategies to

mitigate the negative impacts and restore soil health.
Frontiers in Plant Science 11
4.2 Drivers influencing cultivated land
quality degradation

The mean annual precipitation, straw return rate, and fertilizer

application rate exhibited important effects on various types of

cultivated land quality degradation. High precipitation exacerbates

soil erosion, especially on slopes or in areas where soil and water

conservation measures have not been implemented. Precipitation in

the Poyang Lake Basin is concentrated during the rainy season and

its complex topography makes precipitation-induced erosion a

serious problem (Chen et al. , 2020). Under excessive

precipitation, topsoil is easily washed away, leading to the loss of

soil organic matter and nutrients, a gradual decline in soil fertility,

and destruction of the physical structure of the soil, making it loose

and unstable (Zhan et al., 2023). In addition, precipitation affects

the acid-base balance of the soil and can exacerbate soil

acidification, especially under the condition of long-term

application of nitrogen fertilizer (Guo et al., 2018). Higher

precipitation increases the risk of nutrient loss, especially soluble

nutrients, such as nitrogen and phosphorus, which are more likely

to be leached by rainfall into groundwater or discharged into river

systems, weakening soil fertility (Siddique et al., 2020). In terms of

soil structure, excessive precipitation leads to the dispersion of soil

particles, weakening the water-holding and carrying capacity of the

soil, making it more susceptible to erosion, and thus accelerating the

degradation of the physical structure of the soil (Jin et al., 2021).

Straw returning can increase soil organic matter content, improve

soil structure, and alleviate soil acidification (Hu et al., 2023b). Straw

returning strengthens the carbon and nitrogen cycles and increases soil

microbial activity, thus enhancing the water and fertilizer retention

capacity of the soil and reducing the risk of soil erosion (Shi et al.,

2022). In addition, straw returning can reduce the dependence on

chemical fertilizers and the associated problems stemming from their

overuse, including increased soil degradation (Wang et al., 2023b) and

acidification and decreased soil fertility (Islam et al., 2023).

Runoff and leaching transport excess fertilizer nutrients into

water bodies, aggravating eutrophication and pollution problems

(Zhang et al., 2021a). To address overfertilization, fertilizer

management strategies such as soil testing and formulation have

been developed. Precise fertilization plans can reduce the waste of

chemical fertilizers and alleviate soil acidification and water

pollution (Smith and Siciliano, 2015). Appropriate farmland

management practices, such as the combination of straw return

and rotational cropping systems, can also significantly improve soil

health and promote the sustainable use of arable land (Zhang

et al., 2024b).

This study found that the effect of river distance on the

degradation of soil physical structure in the Poyang Lake area was

particularly significant, supporting the results of past studies (Yuan

et al., 2016; Li et al., 2021a). Simultaneously, population growth had

a significant effect on the fertility decline of arable land, which was

observed in past studies (Bao et al., 2021; Liu et al., 2021).
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4.3 NbS measures for addressing the
degradation of cultivated land quality

Vegetation-based cultivated land restoration solutions offer

ecologically friendly and economically feasible strategies for

addressing cultivated land degradation by optimizing vegetation

selection and management (Feng et al., 2022). These solutions

leverage the ecological functions and regulatory capacities of

vegetation to effectively mitigate various types of soil degradation

(Seddon et al., 2020). In the Poyang Lake region, such approaches

have shown significant potential and effectiveness in tackling key

challenges, including soil acidification, soil fertility decline, soil

erosion, and soil structural degradation (Zhang et al., 2023b).

Soil acidification, the prominent degradation issue in the Poyang

Lake region, often results from prolonged fertilizer use and acid rain. In

this context, Cerda et al. (Spain) found that planting acid-tolerant

species and employing vegetative cover are essential for mitigating soil

acidification. For example, in acidic soils, Lolium perenne and Trifolium

repens improve soil microbial activity and enhance buffering capacity

through root exudates (Cerdà et al., 2022). Furthermore, straw

incorporation has proven to be a highly effective strategy for

neutralizing acidic soils. Research shows that applying 6–10 tons of

straw per hectare significantly raises soil pH and increases the

availability of calcium and magnesium ions. This method chemically

balances soil acidity through the release of organic carbon and

carbonate ions during straw decomposition (Chen et al., 2023). Such

integrated vegetation management strategies provide a scientific

foundation for the sustainable development of agriculture in the region.

Cultivated land fertility decline, largely caused by long-term

monocropping and nutrient overexploitation, remains a critical

issue. A typical approach is to plant cover crops, such as legumes

like Medicago sativa and Trifolium repens, which, by forming

symbiotic relationships with rhizobia, significantly increase soil

nitrogen content and improve microbial activity in the soil (Lal,

2022). Furthermore, implementing crop rotation and intercropping

systems, such as alternating leguminous crops with cereal crops,

effectively alleviates nutrient depletion caused by monoculture

practices and promotes nutrient cycling (Zhang et al., 2016).

Studies in the Poyang Lake region indicate that incorporating 6–

10 tons of straw per hectare, combined with moderate nitrogen

fertilization (30–50 kg/ha), can substantially increase soil organic

matter and enzyme activity, thereby enhancing nutrient availability.

This practice releases significant amounts of nutrients during straw

decomposition while optimizing microbial community structure,

effectively restoring soil fertility (Lin et al., 2017; Hu et al., 2023a).

Soil erosion presents a major challenge for sloped cultivated

lands in the Poyang Lake region, particularly during the rainy

season. Vegetative buffer strips, an essential vegetation-based

solution, effectively reduce surface runoff and soil erosion. The

research conducted in the Poyang Lake region showed that using

vegetative buffer strips with species such as Salix spp. and

Phragmites australis along sloped cultivated lands not only

reduces sediment loss but also contributes to stabilizing soil

structure (Huang et al., 2023b). Similarly, straw mulching has

proven highly effective in preventing soil erosion. Studies reveal
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that applying 6–8 tons of straw per hectare can reduce soil erosion

rates by 35%–50% (Xing et al., 2023). In southern China, deep-

rooted plants such as Medicago sativa significantly improve soil

infiltration and stability, reduce erosion and enhance water

retention and utilization efficiency (Xie et al., 2022). Additionally,

Robinia pseudoacacia, used as a biological barrier, provides effective

runoff interception and enhances soil stability on sloped lands

through its deep-root system and dense canopy (Pan et al., 2024).

Soil physical structural degradation, characterized by

compaction, reduced porosity, and poor aeration, significantly

impairs root growth and water circulation. In the Poyang Lake

region, planting deep-rooted crops like Brassica napus and Beta

vulgaris effectively addresses these issues. The deep roots of these

crops penetrate compacted layers, improving aggregate stability and

enhancing soil aeration and water retention (Zhang et al., 2014).

Additionally, incorporating biochar derived from straw into the soil

has emerged as an innovative solution. This practice not only

increases soil porosity and water retention but also creates

favorable habitats for microorganisms, further enhancing soil

ecological functionality (Xu et al., 2021). These solutions provide

a scientific pathway for restoring heavily degraded cultivated land in

the Poyang Lake region while underscoring the critical role of

vegetation in soil health management.

In conclusion, vegetat ion-based natural solut ions

fundamentally improve soil health and ecosystem service capacity

through scientific vegetation management (Qiu et al., 2024). From

employing cover crops to enhance fertility to utilizing deep-rooted

plants and straw incorporation technologies to improve soil

structure, these strategies highlight the central role of vegetation

in mitigating cultivated land degradation. Additionally, straw

incorporation, as a circular utilization of vegetative resources,

demonstrates comprehensive benefits in enhancing soil fertility,

alleviating acidification, and stabilizing soil structure. Moving

forward, integrating digital agriculture technologies and region-

specific management strategies will be crucial for optimizing these

solutions and achieving greater ecological and economic benefits.
4.4 Study limitations

While this study advanced the understanding of cultivated land

quality degradation risks and drivers in the Poyang Lake area, there

were some limitations. First, although the use of LightGBM and

SHAP improved the accuracy to a certain extent, these models have

limitations in capturing complex nonlinear relationships and may

fail to comprehensively reflect all potential influencing factors. In

addition, key variables, such as socioeconomic factors, were not

fully incorporated into the analytical framework, which may have

led to the limited comprehensiveness of some of the findings.

Furthermore, the data and indicators used in this study may have

some measurement errors, and the accuracy of the soil’s physical

and chemical properties may have been affected by differences in

local monitoring methods. Therefore, future studies should

consider expanding the scope of data collection, incorporating

more variables, and exploring different analytical models to
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comprehensively reveal the complex mechanisms of cultivated land

quality degradation.
5 Conclusions

This study analyzed cultivated land quality degradation in Yugan

County, examining the spatial distribution characteristics of different

degradation types and their driving factors using remote sensing, GIS

technologies, LightGBM, and SHAP. The results revealed significant

spatial differences in cultivated land return degradation, with fertility

decline being particularly serious. The mean annual precipitation,

straw return rate, and chemical fertilizer application rate were the

main driving factors of cultivated land quality degradation. The

degree of soil acidification was higher in the central and southern

hilly areas and lower in the northern lakeshore plains. Fertility decline

was especially obvious in the central area and along the rivers and

lakes, soil erosion was mainly concentrated in the southern hilly areas

with larger slopes, and soil physical structure degradation was

concentrated in the southern hilly areas but with a fragmented

distribution and relatively small influence.

This study not only reveals the spatial pattern of cultivated land

quality degradation in Yugan County but also provides a scientific

foundation for understanding the primary drivers of different types

of degradation. These findings offer valuable guidance for the

development of regional strategies for cultivated land

unprotection and degradation management, particularly in

addressing acidification and fertility decline in the central and

southern parts of Yugan County to promote the sustainable

development of regional agriculture.
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