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Introduction: Residual film pollution has become a key factor that affects the

sustainable development of cotton, and intercropping may be an economical

and environmentally friendly method to reduce the negative effects of

nonmulched conditions on cotton growth. We hypothesized that optimizing

the cotton/cumin intercropping density would improve the soil environment and

increase crop productivity and resource utilization.

Methods: Therefore, in this study, singlecropping cotton (CK) was used as the

control, and three intercropping cumin seeding densities were used (plants ha-1:

5×105, ID1; 8×105, ID2; and 11×105, ID3). Through a two-year field experiment,

the effects of cotton-cumin intercropping on the soil moisture, temperature, salt,

respiration rate, weed density, cotton yield formation and intercropping

advantages were studied.

Results and discussion: Compared with the CK treatment, the ID2 treatment

decreased the water content in the 0–30 cm soil layer by 8.3%, increased the

water consumption by 9.1%, increased the soil temperature by 0.5°C, and

decreased the electrical conductivity of the 0–15 cm soil layer by 17.7%.

Compared with the CK treatment, the ID1 treatment significantly decreased

the soil respiration rate by 33.6%, and the weed density decreased in the

following order: CK>ID1>ID2>ID3. During the nonsymbiotic period, compared

with CK, ID2 increased the soil water content by 5.7%, increased the soil

respiration rate by 17.7%, and decreased the electrical conductivity by 15.6%.

Compared with those for CK and ID3, the seed yield for ID2 increased by 2.0%

and 5.8%, respectively, and that for ID1 decreased by 1.6%. However, the land

equivalent of the ID2 treatment was 4.3% greater than that for the ID1 treatment.

Therefore, intercropping cumin at a density of 8×105 plants ha-1 is beneficial for
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increasing surface coverage, significantly increasing crop water consumption,

increasing surface temperature, reducing soil electrical conductivity and carbon

emissions, and improving the crop yield and economic benefits. This model can

be used as an agroecologically friendly and sustainable planting model.
KEYWORDS

cotton/cumin intercropping, density, soil environment, crop productivity,
nonfilm cotton
1 Introduction

Cotton (Gossypium hirsutum L.) is a major cash crop and raw

textile material worldwide (Tung et al., 2018). China accounts for

23.3% of the global cotton production, and the total cotton acreage

and total production in Xinjiang account for 83.2% and 90.2%,

respectively, of the totals in China (National Bureau of Statistics of

China, 2022). The increase in cotton production in Xinjiang is due

mainly to plastic film covering technology (Feng et al., 2017);

currently, the amount of agricultural film produced in Xinjiang

has reached 261000 tons (National Bureau of Statistics of China,

2021), and the recovery rate of residual film is less than two-thirds

(Xue et al., 2021). The long-term accumulation of residual film can

damage the soil particle structure, reduce soil permeability, increase

the soil carbon dioxide concentration, inhibit root respiration,

prevent crop absorption of water and nutrients, and reduce the

crop yield (Wen et al., 2022; Li et al., 2023, 2024). In addition, the

mixing of residual film during machine picking is an important

cause of cotton quality degradation (Adeleke, 2023).

At present, the main methods used to prevent and control

mulch pollution are biodegradable landfilm substitution and timely

uncovering and recycling, but these methods are time-consuming,

laborious and costly (Xue et al., 2021; Yang et al., 2023). Researchers

have proposed cultivation models without film, which provide new

methods to solve the problem of residual film pollution (Li et al.,

2022a). However, the lack of a film has a strong negative effect on

the increase in temperature, moisture conservation and salt grass

suppression, which delays the fertility period and substantially

reduces the crop yield (Yang B. et al., 2022; Li et al., 2023). In our

previous research, we determined the optimal irrigation amount for

high cotton yields under the conditions of nonfilm deep drip

irrigation (Li et al., 2022a, 2022b). However, planting without

film causes serious grass damage, and weeds highly compete with

cotton for water and fertilizer resources, which reduces crop yields.

Previous studies have shown that establishing appropriately spaced

secondary crops (intercropping) that compete with weeds for

resources is an effective nonchemical approach for curbing weed

growth in nonfilm cotton fields (Weerarathne et al., 2017).

Intercropping has displayed significant advantages over

monocropping in terms of the efficient utilization of light,

temperature, water, and nutrient resources (Nyawade et al., 2019;
02
Liang et al., 2020), reducing carbon emissions from fields (Bulson

et al., 1997), suppressing weed growth and decreasing salt

accumulation (Weerarathne et al., 2017; Liang and Shi, 2021).

Intercropping also helps improve land utilization and crop

productivity (Liang et al., 2020; Roohi et al., 2022) because of the

spatial and temporal interspecific complementarity of intercropping

systems (Raza et al., 2019). Dense planting is the key to increasing

yield and efficiency in intercropping systems, and the planting

density affects the competition and compensation efficiency of

intercropping systems (Hauggaard-Nielsen et al., 2006). However,

an excessive intercropping density can negatively impact the light-

receiving structure of a population (Yang H. et al., 2022). Therefore,

exploring reasonable planting densities in intercropping systems is

conducive to optimizing the advantages of interspecific competition

and compensatory benefits to increase crop yields.

Cumin (Cuminum cyminum L.) is the second most popular spice

in the world (Sowbhagya, 2013). Cumin has notable intercropping

advantages when it is planted in combination with cotton, maize, and

other crops because of its high economic value, short growing period

(65–70 days), high adaptability, and ability to be intercropped with

few negative effects on light, water, and fertilizer patterns (Zhang

et al., 2021). Although the cotton/cumin intercropping approach is

widely used in plastic-film-mulched cotton fields in the southern

region of Xinjiang, limited research has been conducted on this

method in terms of the availability of soil water, temperature, salt, air,

crop growth, and crop development. Thus, it is hypothesized that

optimizing the cumin planting density in a cotton-and-cumin

intercropping system with deep drip irrigation and without film

can improve soil water availability, temperature and salt conditions,

air quality and land productivity to compensate for the cotton yield

and economic losses from not mulching.

The objectives of this study are (a) to analyze the effects of

different cumin planting densities on the spatiotemporal

distribution of soil water and temperature, (b) to explore the

moderating effects of cumin density on factors such as soil

salinity, respiration and weed growth, and (c) to identify the soil

environmental factors that improve crop productivity in this system

and to determine the optimum intercropping cumin density in this

ecologically friendly cotton area. The results of this study provide a

theoretical basis for the development of an efficient cultivation

model for nonfilm cotton.
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2 Materials and methods

2.1 Experimental site

The experiment was performed at the Experimental Station

for Efficient Water Use in Agriculture of the Ministry of

Agriculture and Rural Affairs in Shihezi, Xinjiang, China (45°38′
N, 86°09′E; 430 m above sea level) during the 2022 and 2023

growing seasons.

The cumulative rainfall during the cotton growing period (May

1 to October 18) in 2022 and 2023 was 157.0 and 156.3 mm,

respectively, where the daily average maximum temperatures were

30.1 and 29.5°C, and the daily average minimum temperatures were

14.9 and 15.0°C, respectively (Figure 1). The basic soil properties in

the 0–20 cm layer were as follows (Table 1). The previous crop was

cotton. The tested cotton variety was the early-maturing upland

cotton variety “Xinluzao 74” (growth period of 120 days) (Li et al.,

2022a), and the cumin variety was “Cumin King 3”.
2.2 Experimental design

The experiment consisted of four treatments with a randomized

complete block design and four replications. Three intercropping

cumin seedling densities (5×105 plants ha-1 (ID1), 8×105 plants ha-1

(ID2) and 11×105 plants ha-1 (ID3)) were selected, with

monocropped cotton used as a control (CK). The cotton plants
Frontiers in Plant Science 03
were spaced 5 cm apart, and the rows were 76 cm long. Two rows of

cumin were planted between every two rows of cotton; the distance

between the cumin rows and the neighboring cotton rows was

18 cm, whereas the distance between the two cumin rows was 40 cm

(Figure 2). Each plot measured 45.6 m2 (7.6 m × 6 m).

After land levelling, special underground drip irrigation tubes

were used (NETAFIM, Israel). The inner diameter of the dropper

was 16 mm, the flow rate was 2.0 L h-1, and the distance between the

emitters was 30 cm. Every two rows of cotton and every two rows of

cumin shared a drip irrigation tube. The distance between the

cotton rows and the drip irrigation tube was 38 cm, and the distance

between the cumin rows and the drip irrigation tube was 20 cm

(Figure 2). During the entire growth period, ordinary urea (46% N)

and potassium dihydrogen phosphate (34% K2O and 52% P2O5)

were applied with water droplets, resulting in 310 kg ha-1 N, 51 kg

ha-1 K2O, and 78 kg ha-1 P2O5. Foliar spray fertilizer was applied as

0.3% potassium dihydrogen phosphate 1 week before cumin

pollination and during the filling period. Cotton and cumin share

the same water source. The plants were irrigated three times during

the symbiotic period and six times during the nonsymbiotic period.

The irrigation volume was 348 mm over the entire growth period

(Li et al., 2021). Cotton and cumin were both sown on April 25,

2022, and April 26, 2023; the seedling emergence densities were

167000 plants ha-1 and 165000 plants ha-1, respectively. The cumin

was harvested on July 10, 2022, and July 14, 2023, respectively. The

other management practices used were identical to those used for

conventional cultivation techniques (Feng et al., 2024).
FIGURE 1

Monthly summary of the daily maximum/minimum temperature and precipitation during the cotton growing seasons in 2022 and 2023.
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2.3 Data collection

2.3.1 Soil water content, soil water consumption
and water use efficiency

The soil water content (SWC) was determined by drying

samples collected with a stainless-steel auger during each growth

period. Figure 2 shows the sampling position, and the measurement

depth ranged from 0–45 cm. The samples were stratified every

15 cm, mixed and placed in an aluminum box with three replicates.

The samples were dried in an oven at 105°C until a constant weight

was reached, after which the samples were weighed. The soil

moisture content was calculated as follows:

SWC =
M2 −M1

M1 −M0
� 100% (1)

where M2 is the mass of the aluminum box with wet soil (g), M1

is the mass of the aluminum box with dry soil (g), and M0 is the

mass of the aluminum box (g).
Frontiers in Plant Science 04
SC = 10on
i=1riHi(SWCi1 − SWCi2) + I + P (2)

The soil water consumption (SC, mm) of crops during different

growth stages can be determined via the water balance equation. In
FIGURE 2

(A–D) Different planting patterns and the installation locations of the measurement equipment. P1: cotton root position; P2: intercropping row
position. In D, the flowering process is described as follows: SS, seedling stage; FS, flowering stage; GF, grain filling stage; in the cotton germination
process: SS, seedling stage; FS, full squaring stage; IF, initial flowering stage; PF, peak flowering stage; FB, full boll stage; BO, boll opening stage.
TABLE 1 Physical and chemical properties of the 0–20 cm soil layer.

Characteristic Mean value

Soil bulk density (g cm-3) 1.30

pH 8.30

Electrical conductivity (mS cm-1) 510

Total nitrogen content (g kg-1) 1.30

Alkaline hydrolysis nitrogen (mg kg-1) 42.20

Available potassium (mg kg-1) 166.00

Available phosphorus (mg kg-1) 29.00

Organic matter (g kg-1) 23.00
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the equation, i is the number of soil layers, n is the total number of

soil layers, ri is the soil bulk weight of layer i (g cm-3), Hi is the

thickness of layer i (cm), SWCi1 is the water content of layer i at the

beginning of the growing period (%), SWCi2 is the water content of

layer i at the end of the growing period (%), i is the amount of

irrigation water during the reproductive period (mm), P is the

amount of rainfall during the reproductive period (mm), and

precipitation during the entire reproductive period can be

neglected (Li et al., 2022a).

The water use efficiency (WUE) was calculated as follows:

WUE =
Y
SCt

(3)

where Y is the total crop yield (kg ha-1; formula 3) and SCt is the

total crop water consumption (mm).
2.3.2 Soil temperature
A right -ang l e ground thermomete r (Grea t Wal l

Instrumentation Factory, China) was used. The temperature was

measured in the range of -20-50°C, and the accuracy was 0.5°C. The

temperatures in the 5-, 15-, and 25-cm soil layers were measured

during each growth period, and Figure 1 shows the locations of the

measurements. The average temperatures in the morning (8:00), at

noon (14:00) and in the evening (20:00) were selected as the daily

average soil temperatures. Daily changes in temperature in the 5-cm

soil layer were measured at the initial flowering stage (symbiotic

period) and the full boll stage (nonsymbiotic period) of cotton. The

temperatures were recorded every 2 h from 8:00 am to 20:00 pm.
2.3.3 Soil electrical conductivity
Soil salinity sampling and moisture sampling were conducted in

the same batch. Samples from the 0–15, 15–30, and 30–45 cm soil

layers were placed in self-sealing bags, naturally air-dried, and

ground to pass through a sieve with a 1 mm mesh size. The

conductivity of the soil (EC, soil/water =1:5, uS cm-1) was

determined via a conductivity meter (DS-307, China).

2.3.4 Soil respiration rate
Soil respiration was measured in the field via an automated soil

carbon flux measurement system (LI-8100A, LI-COR, USA) during

each growth period. A sunny day with little wind or clouds was

selected, and each measurement was from 10:00–13:00 Beijing time.

Changes in the soil respiration rate were measured at the initial

flowering stage (symbiotic period) and full boll stage (nonsymbiotic

period) every 2 hours from 9:00–19:00 pm. To avoid errors in the

test system caused by differences in measurement times, a cyclic

measurement method was adopted for different treatments.

To reduce interference with the soil surface, the soil respiration

chamber was placed on a measuring base, which was a polyvinyl

chloride (PVC) ring with a height of 11 cm and a diameter of 20 cm.

The measuring base was embedded in the soil and exposed to the

soil surface for 2 cm. The measurement site was located in the

middle of the cotton and cumin fields. The day before each

measurement began, all fallen material, live plants and fauna were
Frontiers in Plant Science 05
removed from the soil surface at the measurement site, and the

burial position of the measurement site remained unchanged

throughout the measurement process (Qin et al., 2013).

2.3.5 Weed density and strain control effects
In accordance with the methods of Dang et al. (2017), weed

populations were surveyed in 2022 at the seedling and full squaring

stages of cotton and in 2023 at the seedling, full squaring, and initial

flowering stages of cotton. Three 50 cm × 50 cm uniformly growing

subplots were randomly selected in each plot to investigate the

number of weeds in the sample plot and calculate the weed density.

WD =
N
S

(4)

where WD is the weed density (plant m-2), N is the number of

weed plants (plant), and S is the survey area (m2).

After the number of weeds in the sample plot was investigated,

all the weeds in the sample plot were removed, washed and weighed

fresh. The corresponding formula is as follows:

strain control effect (%)= (number of weeds in the control group

- number of weeds in the treatment group)/number of weeds in the

control group×100%.

Fresh weight control effect (%)= (weed fresh weight in the

control group - weed fresh weight in the treatment group)/weed

fresh weight in the control group×100%.

2.3.6 Yield, land equivalent ratio and aggressivity
Seed cotton was manually picked in a unit area (2 m × 1.52 m)

during the cotton harvest (October 13, 2022, and October 16, 2023),

and the numbers of plants and bolls (diameter >3 cm) per unit area

(3 ×1.52 m) were determined. Ten cotton bolls were randomly

collected from each plot to measure the weight of each boll and

calculate the theoretical yield. In the cumin harvest season, a unit

area (1.05 m × 2 m) sample subplot was selected in each plot; then, a

sample from each subplot was evenly uprooted, naturally air-dried,

and weighed. Finally, the grain yield was calculated.

The densities of monocropped and intercropped cumin were

identical at identical planting densities and net sown areas.

Monocultures cumin was used to calculate indicators related to

interspecific competition.

The land equivalent ratio (LER) was calculated as follows (Mead

and Willey, 1980):

LER =
Yic

Ymc

� �
+

Yif

Ymf

� �
(5)

where Yic and Yif are the yields of intercropped cotton and

cumin, respectively, and Ymc and Ymf are the yields of monocropped

cotton and cumin, respectively. An intercropping advantage occurs

when LER>1.0, and an intercropping disadvantage occurs

when LER<1.0.

The aggressivity of cotton relative to cumin was calculated as

follows:

Am =
Yic

Ymc

� �
� Yif

Ymf

� �
(6)
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When Am=0, there is no competition between the two crops;

when Am>0, cotton has a greater competitive advantage than

does cumin.
2.4 Statistical analysis

The data were processed via Microsoft Excel 2021 software.

Statistical analyses were performed via SPSS 19.0 software (SPSS,

Chicago, USA). Significance tests were performed via Duncan’s

method (P<0.05). Images were plotted with Origin 2023b and

SigmaPlot 12.5 software.
Frontiers in Plant Science 06
3 Results

3.1 Soil water content and crop
water consumption

The cotton/cumin intercropping system significantly affected

the horizontal and vertical changes in SWC, where the SWC

decreased in the following order: monocropping > intercropping

and P1 < P2 (Figure 3). The differences among the treatments were

not significant in the 0–15 cm soil layer during the cotton/cumin

intercropping symbiotic period. At point P1 in 2022, compared

with the CK treatment, the ID1 and ID3 treatments significantly
FIGURE 3

Dynamic changes in soil water content in the 0-45-cm soil layer under different treatments. Cotton/cumin intercropping symbiotic period: seeding
stage (SS), full squaring stage (FS), peak flowering stage (IF); cotton/cumin intercropping nonsymbiotic period: peak flowering stage (PF), full boll
stage (FB), boll opening stage (BO). P1: cotton root position; P2: intercropping row position.
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(P<0.05) decreased the SWC in the 15-45 cm soil layer at the initial

flowering stage by 18.7% and 11.5%, respectively; however, there

was no significant (P>0.05) difference between the CK and ID2

treatments. The ID2 treatment displayed the greatest soil moisture

retention at point P2. In 2023, the SWC at the full squaring stage

significantly decreased in all the treatments; in the 30-45 cm soil

layer from the seedling stage to the full squaring stage, all the

treatments significantly (P<0.05) reduced the SWC by 19.6-51.3%

compared with that in CK. During the nonsymbiotic period, ID1,

ID2, and ID3 had 11.5%, 17.5%, and 18.7% (P<0.05) higher average

SWC, respectively, in the 0–15 cm layer than did CK, and there was

no significant (P>0.05) difference among the treatments in the 15–

45 cm soil layer.

During the cotton/cumin intercropping symbiotic period, the

soil water consumption (SC) in the 0–45-cm soil layer followed the

order of intercropping > monocropping; the SC in the 0–15-cm and

30–45-cm layers increased and decreased, respectively, with

increasing intercropping cumin density (Table 2). In 2022, the SC

in the 15-45 cm layer was significantly greater in each intercropping

treatment than in the monoculture, but there was no significant

difference among the other soil layers. During the nonsymbiotic
Frontiers in Plant Science 07
period, no treatment had a significant effect on the SC, which was

greater in the monoculture treatment than in the intercropping

treatment at P2. Thus, over the entire growth period, cotton/cumin

intercropping reduced the SC in the 0–15 cm layer but had no

significant effect in the other soil layers. The population density

during the symbiotic period had a significant (P<0.01) effect on the

SC in the 0–30 cm layer at P2 in all cases, as did the planting year in

the 0–45 cm layer at P2. The treatment × year interaction

significantly (P<0.05) affected the SC in the 15–30 cm layer at P2.
3.2 Soil temperature

The effect of the cotton/cumin intercropping system on the soil

temperature (ST) varied with the planting density. The ranking of

the STs at P1 during the entire growth period was monocropping <

intercropping (Figure 4). ST peaked at the full squaring stage in

2022. During the entire growth stage, the STs at point P1 exhibited

the following ranking: ID1 > ID2 > ID3 > CK, where ID1, ID2, and

ID3 had 8.4%, 7.2%, and 2.8% higher STs than CK, respectively. At

P2, the 15-cm layer in the SS-FS intercrop was 0.4–1.7°C cooler
TABLE 2 Soil water consumption (mm) in the 0–45 cm layer under the different treatments.

Growth period Treatment
P1 P2

0-15 cm 15-30 cm 30-45 cm 0-15 cm 15-30 cm 30-45 cm

2022 CK 63.58a 70.02b 79.64b 62.56b 66.19a 74.33b

Symbiosis period

ID1 63.93a 87.39a 87.96a 63.78ab 68.03a 89.06a

ID2 67.67a 86.89a 81.07ab 65.52ab 69.18a 84.42a

ID3 67.92a 84.24a 83.02ab 66.97a 67.26a 84.97a

2023 CK 63.81b 73.82a 91.57a 65.11b 65.44b 65.19a

Symbiosis period

ID1 64.71ab 77.03a 103.99a 72.13a 77.30a 73.92a

ID2 65.44ab 77.15a 102.11a 72.86a 83.26a 70.43a

ID3 70.44a 79.58a 99.41a 73.20a 77.14a 67.08a

Nonsymbiosis period

CK 283.45a 313.80a 331.02a 286.95a 316.33a 307.90a

ID1 286.56a 310.62a 331.90a 288.13a 308.86a 289.52a

ID2 289.10a 322.33a 341.64a 287.85a 316.71a 299.68a

ID3 289.21a 319.97a 331.66a 288.28a 310.46a 296.65a

Entire growth period

CK 347.26b 387.62a 422.59a 352.06ab 381.77a 373.09a

ID1 351.27ab 387.65a 435.89a 360.25a 386.16a 363.44a

ID2 354.54ab 393.48a 443.75a 360.71a 397.96a 366.76a

ID3 359.65a 399.56a 431.07a 365.47a 389.60a 367.08a

P value during symbiosis period

Treatment ns ns ns ** ** ns

Year ns ns ns ** ** **

Treatment × year ns ns ns ns * ns
Intercropping symbiotic period: seedling stage (SS), full squaring stage (FS), peak flowering stage (IF); Intercropping nonsymbiotic period: peak flowering stage (PF), full boll stage (FB), boll
opening stage (BO). P1: cotton root position, P2: intercropping row position. Means within a column followed by a different letter are significantly different (P < 0.05) according to Duncan’s
multiple range test. *p<0.05, **p<0.01, ns: p>0.05.
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than that in the monocrop, and the P2 point was not significantly

different among the treatments at different growth stages. In 2023,

in the 5–15 cm soil layer at the P1 point, compared with that in the

CK treatment, the soil temperature increased by 2.5–11.2% and 0.7–

9.3% in the symbiotic periods ID1 and ID2, respectively. The soil

temperature was significantly (P<0.05) greater at FS and IF than

CK. The soil temperature was significantly (P < 0.05) lower in the 5-

cm soil layer at point P2 in the intercropping treatment than in the

monocropping treatment and was lowest in the ID3 treatment

during the other periods.

The soil temperature first increased but subsequently decreased

over time (Figure 5). The STs at P1 and P2 reached their peaks at 18:00

and 14:00, respectively. At 10:00–18:00, compared with those of the

CK and ID3 treatments, the average ST of ID1 was significantly greater

by 3.4–1.8°C and 3.1–0.4°C, respectively (Figures 5A, B); at FB-P2, the

ST in ID1 at 12:00 was 3.3 and 1.2°C greater than those in the ID3 and

CK treatments, respectively (Figure 5D). There were no significant

differences among the treatments at other times. In 2023, the ID3

treatment had the highest soil temperature at 16:00 under FB-P1

conditions, with significant (P<0.05) increases of 3.8 and 2.1°C

compared with those of CK and ID2, respectively. However, the ST

at P2 in ID2 significantly (P<0.05) differed from that in the CK

treatment but did not significantly differ from that in the ID1
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treatment (except at 14:00) (Figure 5A); at FB-the P1, the

temperature in ID1 was 5.8–7.7% higher than those in the other

treatments from 12:00–20:00 (Figure 5C).
3.3 Soil electrical conductivity

The soil electrical conductivity (EC) tended to gradually

increase with increasing soil depth (except for 2022-P1) and

longer growth period. In the horizontal direction, EC displayed

the relation of P1 > P2 (Figure 6). At points P1 and P2 in 2023, the

0-15-cm soil layer had 6.4-37.0% and 7.3-19.1% lower EC than did

the 15-30-cm layer and 12.7-41.7% and 13.8-28.7% higher EC than

did the 30-45-cm layer, respectively. During the symbiotic period,

in the 0–15 cm soil layer, the EC of each treatment decreased in the

order of CK > ID1 > ID2 > ID3, and the ID2 and ID3 treatments

had 6.0–41.6% and 8.2–20.4% lower EC than the CK treatment did.

However, in the 30–45 cm soil layer, at point P1, the EC displayed

the order of ID3 > ID2 > ID1 > CK. During the nonsymbiotic

period, at points P1 and P2, the CK and ID1 treatments had the

highest and lowest ECs in the 0-45 cm soil layer, respectively.

Compared with CK, the ID1, ID2 and ID3 treatments decreased the

EC by 13.0–42.3%, 12.0–19.6% and 18.1–28.6%, respectively.
FIGURE 4

Dynamic changes in soil temperature at 0–25 cm depth under different treatments. Intercropping symbiotic period: seedling stage (SS), full squaring
stage (FS), peak flowering stage (IF); Intercropping nonsymbiotic period: peak flowering stage (PF), full boll stage (FB), boll opening stage (BO). P1: cotton
root position, P2: intercropping row position. (A-C) represent the 5, 15, and 25 cm soil layers in the cotton root position (P1), and (D–F) represent the 5,
15, and 25 cm soil layers in the intercropping row position (P2), respectively. Different lowercase letters indicate significant differences between
treatments (p<0.05).
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3.4 Soil respiration rate

The soil respiration rate (SR) in the treatments in the cotton/

cumin intercropping system peaked at the IF (Figure 7). During the

cotton/cumin intercropping symbiotic period, the CK and ID1

treatments had the highest and lowest SRs, respectively.

Compared with those for the CK treatment, the SRs of the ID2

and ID3 treatments were significantly (P<0.05) lower (by 27.6% and

18.9% and by 31.2% and 22.7%, respectively). Compared with the

CK treatment, the ID2 and ID3 treatments significantly (P<0.05)

increased the SR by 17.9% and 5.5%, respectively, during FB in

2022, whereas there was no significant difference between the ID1

and CK treatments. In the PF to FB stages in 2023, ID2 exhibited

14.9% and 19.4% higher SRs than did CK and ID1, respectively, but
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there was no significant difference between ID2 and ID3, and there

was no significant treatment difference at BO.

At IF, the SR first increased, peaked at 15:00, and subsequently

decreased over time (Figure 8A). In 2022, the average daily SRs of

CK, ID1, ID2, and ID3 were 6.9, 5.4, and 6.4, respectively; in 2023,

the average daily SRs of CK, ID1, ID2, and ID3 were 5.8 and 7.5, 5.3,

7.2, and 5.9 mmol m-2 s-1, respectively. Compared with those in CK,

the daily average SRs in ID3 and ID1 were significantly (P<0.05)

lower by 27.6% and 17.8% in 2022 and 33.1% and 23.1% lower in

2023, respectively, whereas there was no significant difference

between CK and ID2. ID3 and CK presented the highest and

lowest SRs during FB, respectively (Figure 8B). Compared with

those for CK and ID1, the mean daily SR for ID3 significantly (P <

0.05) increased by 17.9% and 10.2% in 2022, respectively. During
FIGURE 5

Daily variation in soil temperature in the 5-cm soil layer at the initial flowering (IF) and full-boll (FB) stages under different treatments. (A, B) represent
the cotton root position (IF-P1) and intercropping row position (IF-P2) at initial flowering; (C, D) represent the cotton root position (FB-P1) and
intercropping row position (FB-P2) at the full boll, respectively. Different lowercase letters indicate significant differences between
treatments (p<0.05).
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FIGURE 6

Dynamic changes in soil electrical conductivity in the 0–45 cm soil layer under different treatments. Intercropping symbiotic period: seedling stage
(SS), full squaring stage (FS), peak flowering stage (IF); Intercropping nonsymbiotic period: peak flowering stage (PF), full boll stage (FB), boll opening
stage (BO); P1: cotton root position, P2: intercropping row position.
FIGURE 7

Dynamic changes in the soil respiration rate at different growth stages under different treatments. Intercropping symbiotic period: seedling stage
(SS), full squaring stage (FS), peak flowering stage (IF); Intercropping nonsymbiotic period: peak flowering stage (PF), full boll stage (FB), boll opening
stage (BO). Different lowercase letters indicate significant differences between treatments (p<0.05).
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the period of 09:00–15:00 in 2023, ID3 significantly (P < 0.05)

increased the SR by 29.5% and 17% compared with those of CK and

ID2, respectively, and there was no difference among the treatments

after 15:00.
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3.5 Weed suppression effect

As shown in Table 3, in 2022, compared with the CK treatment,

ID1, ID2 and ID3 significantly (P < 0.05) decreased the weed
FIGURE 8

Daily variation in the soil respiration rate at the initial flowering (A, IF) and full-boll B, FB) stages under different treatments. Different lowercase letters
indicate significant differences between treatments (p<0.05).
TABLE 3 Inhibitory effects of different treatments on field weeds during the symbiotic period.

Year Survey indicators Treatments SS FS IF

2022
Weed density
(plant m-2)

CK 29.00a 18.00a —

ID1 21.50b 17.00a —

ID2 22.00b 14.50b —

ID3 18.50b 9.00c —

2023

Weed density
(plant m-2)

CK 22.40a 14.40a 11.20a

ID1 20.00a 13.60a 7.20ab

ID2 12.00b 12.80a 5.60b

ID3 8.80b 11.20a 4.80b

Strain control effect (%)

ID1 10.71b 5.56a 36.71ab

ID2 46.43a 11.11a 50.00a

ID3 60.71a 22.22a 57.14a

Fresh weight control
effect (%)

ID1 67.25b 47.24c 45.48b

ID2 83.76ab 59.50b 72.94a

ID3 89.56a 78. 86a 81.98a
Intercropping symbiotic period: seedling stage (SS), full squaring stage (FS), peak flowering stage (IF); Means within a column followed by a different letter are significantly different (P < 0.05)
according to Duncan’s multiple range test.
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density by 25.9%, 24.1% and 36.2%, respectively, during the

seedling stage, and there was no significant difference among the

treatments in the intercropping system. Compared with the CK

treatment, ID2 and ID3 significantly (P < 0.05) decreased the weed

density by 19.4% and 50.0%, respectively, in the full squaring stage,

and there was no significant difference between ID1 and CK. In

2023, during the seedling and initial flowering stages, ID2 and ID3

significantly (P < 0.05) decreased the weed density by 46.4% and

60.7% and by 50.0% and 57.1%, respectively, compared with CK,

whereas ID1 did not significantly differ from CK. In the full

squaring stage, ID2 and ID3 had 25.6% and 66.9% stronger fresh

weight control effects than did ID1, respectively; in the initial

flowering stage, these (P < 0.05) differences were significant and

reached 60.3% and 80.3%, respectively.
3.6 Crop yield and land equivalent ratio

Cotton/cumin intercropping had effects on the cotton yield and

the total number of cotton bolls but had no significant effect on boll

weight (except in 2022). In 2022 and 2023, compared with those in

the CK treatment, the seed cotton yields in the ID1 and ID2

treatments increased by 1.9% and 1.1% and 5.4% and 2.1%,

respectively, whereas the seed cotton yields in the ID3 treatment

decreased by 6.3% and 0.7%, respectively. In 2022, ID1 had the

greatest total boll number, and ID2 had the greatest boll weight,

which significantly (P < 0.05) increased by 4.8% and 3.8% compared

with those in the CK treatment, respectively, although there was no

difference from those in the other treatments. In 2023, the seed

cotton yield and total number of bolls in the ID1 treatment

significantly (P < 0.05) increased by 6.2% and 3.8%, respectively,

compared with those in the ID3 treatment. The yields of

intercropped cumin were ID2>ID3>ID1, and ID2 displayed an

11.7–66.6% greater cumin yield than the other treatments did.

Water utilization was greater under intercropping than

under monocropping.

The LER ranged from 1.59-1.75, and the Am ranged from 0.26-

0.41. The population density significantly (P < 0.05) affected the

seed yield and intercropped cumin yield. The planting year had a

significant effect on the intercropped cumin yield. However, the

treatment × year interaction had no significant effect on the results.
3.7 Correlation analysis

During the cotton/cumin intercropping symbiotic period, the

principal components on the first axis accounted for 64.0% and

60.3% of the total variation in 2022 and 2023, respectively

(Figure 9). The land equivalent ratio was positively correlated

with the ST in the 25-cm layer at point P1 and with the SC and

EC in the 15-30-cm layer. However, the land equivalent ratio was

negatively correlated with the SWC in the 15–45 cm layer, SR in the

full squaring stage, WD at the seedling stage in 2022 and initial

flowering stage in 2023, and EC in the 0–15 cm layer in the full

squaring stage (Figure 9A). This finding indicates that the two crops
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strongly competed for water during the symbiotic period, the crop

roots fully absorbed water from the 15-45 cm soil layer, and surface

cover increased the temperature and promoted yield formation. In

2023, the percentage variances of the principal components on the

first and second axes in the nonsymbiotic period were 61.1% and

10.6%, respectively (Figure 9B). The CK treatment significantly

differed from the other treatments, where the PC1 land equivalent

ratio had the largest loading value of 0.30, followed by P1-25 cm ST

at FB. The LER was positively correlated with ST at 25 cm at the

peak flowering–full boll stage, SWC in the 0–15-cm layer and SR at

the full boll stage. The LER was negatively correlated with EC at 0–

45 cm and SWC at 30–45 cm at P1.
FIGURE 9

Principal component analysis of the soil microenvironment and
yield. (A) Cotton/cumin intercropping symbiotic period; (B) Cotton/
cumin intercropping nonsymbiotic period. LER is the land equivalent
ratio, SWC is the soil water content, EC is the electrical conductivity,
ST is the soil temperature, SR is the soil respiration rate, and SC is
the soil water consumption.
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4 Discussion

4.1 Effects of cotton/cumin intercropping
on the spatial and temporal distributions of
soil water and temperature

Moisture plays a key role in crop growth and development (Bai

et al., 2023), and the planting density can alter crop competition for

water and nutrients (Zheng et al., 2018; Da Silva et al., 2023). In this

study, during the cotton/cumin intercropping symbiotic period, the

soil water content in the intercropping system was 2.4–31.2% lower

than that in the monoculture system (Figure 3), which is different

from the results of previous studies of cotton/wheat intercropping

(Wu et al., 2022b). This difference may be due to the vigorous

growth of cumin in the early stage (Zhang et al., 2021), during

which soil water consumption is high. The water consumption in

the intercropping system was 0.6–27.2% greater than that in the

monoculture system, and the 0–15 cm soil layer displayed the

highest water consumption (Table 2), likely because the cumin roots

were distributed mainly in this soil layer, which accelerated water

absorption and consumption. In addition, ID1 had the highest soil

water consumption in the 15-45 cm layer, likely because the lower

crop cover increased soil evapotranspiration (Chai et al., 2011; Da

Silva et al., 2023). ID2 exhibited the greatest SWC in the 0–30 cm

layer during the nonsymbiotic period (Figure 3). These findings

indicate that an appropriate cotton/cumin intercropping density

can enhance soil moisture utilization in layers and alleviate

problems such as ineffective evaporation and loss of water

resources in the early stage of growth for nonfilmed cotton plants.

Soil temperature is a comprehensive indicator of the thermal

status of the soil, which acts directly or indirectly on the various

processes of crop growth and development (Jacobs et al., 2011).

Different row spacing configurations and planting densities lead to

differences in soil temperature (Moreira et al., 2015), and the soil

temperature of mulched soil is 2–4°C greater than that of nonfilm

mulched soil (Braunack et al., 2015). This study revealed that in the

5–25 cm layer during the entire growth period, the soil temperature

in ID1 and ID2 was 1.0–2.0°C greater than that in CK (Figure 4),

whereas previous results showed that intercropping reduced the soil

temperature (Nyawade et al., 2019; Ai et al., 2021). First, this

difference could be due to slow surface warming and the large

temperature difference between day and night for bare ground

plantings. The difference in temperature between ID1 and ID2

compared with CK at 8:00 and 20:0 during IF was 0.4–1.3°C

(Figure 5). Second, the soil moisture decreased and the soil

temperature increased because the intercropping treatments

consumed more water than monocropping did (Onwuka and

Mang, 2018). Thus, these findings indicate that cotton/cumin

intercropping provides a general warming benefit throughout

the entire growth period, which reduces the risk associated with

low temperatures during early planting. In addition, intercropping

systems have greater soil temperature stability than monocropping

systems do (Ai et al., 2021), and intercropping mitigates the drastic
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interseasonal and diurnal changes in soil temperature caused by the

lack of plastic film mulching (Wang et al., 2022b; Li et al., 2023),

which increases the stability of the soil temperature.
4.2 Effects of hydrothermal changes on soil
salinity and weed growth

Under nonmulching cultivation, strong surface evaporation and

severe surface salt aggregation occur during the cotton reproductive

period (especially the early reproductive period), which discourages

cotton seed germination and seedling growth (Munawar et al., 2021;

Wang et al., 2022a). Research on intercropping cotton with Suaeda

salsa has shown that intercropping can effectively reduce soil salinity

and improve soil water productivity and cottonseed yield (Liang and

Shi, 2021). This study revealed that in the 0–15-cm soil layer during

the entire growth period, compared with the CK treatment, ID1 and

ID2 reduced the soil salinity by 1.0–38.8% and 6.0–35.2%,

respectively. However, in the 15–45 cm soil layer during the

symbiosis period, the soil conductivity at point P1 followed the

order of intercropping > monocropping and increased with

increasing intercropping cumin density (Figure 6). This pattern

may be due to the varying ground cover densities, which increase

the soil temperatures and consequently reduce surface evaporation,

preventing salt from returning from the soil surface to deeper soil

layers (Bi et al., 2010). During the nonsymbiotic period, the

conductivity was highest in the CK treatment and lowest in the

ID1 treatment in the 30-45 cm soil layer. On the one hand,

intercropped cotton enters a rapid growth phase, consumes more

crop water, and absorbs more salt in the soil (Liang and Shi, 2021).

On the other hand, subsurface irrigation after cumin harvesting

transports salts upward, and the damage caused by salt to roots in

deep soil layers is reduced (Chen et al., 2024).

Planting cover crops is an effective weed suppression method

that inhibits weed growth and aids in reducing pesticide use by

occupying the ecological niches of weeds and directly competing

with weeds for resources such as light, water, and nutrients during

the early stages of crop growth (Pouryousef et al., 2015; Jha et al.,

2017). Previous studies have shown that the weed suppression effect

increases with increasing cover crop planting density (Majid et al.,

2022), which is consistent with the results of this study. However,

excessive intercropping can increase the degree of competition

between cover crops and main crops, which is detrimental to

yield. The period of 4–8 weeks after cotton emergence is critical

for competition between weeds and cotton, and the effectiveness of

weed control during this period is directly related to crop yield

(Manalil et al., 2017). In this study, the bud stage (4–6 weeks after

seedling emergence) was associated with cumin growth (Zhang

et al., 2021) and high water requirements (Table 2). With increasing

density of intercropped cumin, the soil water content significantly

decreased (Figure 3), whereas the weed strain control effect and

fresh weight control effect gradually increased with increasing weed

inhibition (Table 3).
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4.3 Effects of soil microenvironmental
changes on cotton yield and the land
equivalent ratio

Selecting reasonable intercropping ratios and density collocation

points facilitates crop vegetative organ biomass accumulation and an

appropriate distribution to improve crop economic yields (Zhang

et al., 2020). The cotton yield is closely related to factors such as soil

water, temperature, salt levels and air quality (Wang et al., 2021; Wu

et al., 2022a). In this study, during the cotton/cumin intercropping

symbiosis period, the land equivalent ratio was significantly

negatively correlated with the electrical conductivity in the 0–15 cm

soil layer, the soil water content in the 30–45 cm soil layer, the soil

respiration rate, and weed density. These findings indicate that during

the intercropping symbiosis period, deep soil moisture is fully

utilized, effectively reducing soil surface salinity and suppressing

soil carbon emission and weed growth. In addition, previous

studies showed that when jujube trees are intercropped with

cotton, a higher cotton planting density corresponds to more bolls

and a greater yield. However, this study revealed that ID3 had fewer

bolls and a lower boll weight than did CK in terms of seed cotton

yield (Table 4). This decrease may be due to increased competition

for water and nutrients from intercropped high-density cumin

(Zhang et al., 2020), which significantly delays the early

development of cotton (Du et al., 2016), shortens the boll opening

stage and decreases the total number of bolls. In addition, there was

no significant difference in seed cotton yield among ID1, ID2 and CK.

ID1 and ID2 promoted the use of deep water by nonmulching crops

by maintaining a high soil temperature and deep water consumption

during the symbiotic period, which increased the crop yield (Table 4).

The crop yield with intercropping increases with water consumption
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and soil temperature (Wu et al., 2022a; Ai et al., 2021). These findings

indicate that a suitable cotton/cumin intercropping density does not

significantly reduce the yield of seed cotton.

Interspecific interactions and competition affect crop growth and

development; however, the factors that influence interspecific

relationships include the crop mix, spatial distribution of plants, and

environmental factors (Yin et al., 2020). Notably, the proportion of

planted intercrops, the spacing between rows and the length of the

symbiotic period affect the crop yield (Hailu, 2015). This study

revealed that there was no significant difference in LER among the

intercropping treatments (Table 4), and ID2 had a significantly greater

Am than did ID1 in 2022. According to the “competition-recovery

production principle”, early-harvest crops potentially support the

growth of late-harvest crops (Zhang et al., 2021), but an excessive

planting density intensifies intraspecific competition, which is not

conducive to crop growth (Zhang et al., 2020). In this study, although

the seed cotton yields of the ID1 and ID2 treatments were 3.5% and

4.5% lower than the average yield of mulched cotton in Xinjiang

(National Bureau of Statistics of China, 2022), the nonfilmed

intercropping planting pattern increased the land output while

reducing the use of drip irrigation materials, water, and fertilizer

and decreasing the labor requirement. Compared with the CK

treatment, the ID2 treatment had more obvious resource utilization

and yield advantages, which comprehensively improved the economic

benefits of nonfilmed cotton fields and compensated for the economic

and yield losses caused by not covering the crop with film.

Under conditions of nonfilm cultivation, planting early-

maturing cotton plants can shorten the growth period and

promote early boll opening. However, intercropped cumin

exacerbates the lag in the cotton reproductive period and shortens

the cotton boll opening time, which affects yield. Future research on
TABLE 4 Effects of cotton/cumin intercropping on crop yield and the land equivalent ratio.

Year Treatments

Seed
yield
(kg
ha-1)

Total number
of bolls

(×104 ha-1)

Boll
weight
(g)

Intercropping
cumin yield
(kg ha-1)

WUE LER Am

2022

CK 5813.62a 115.13ab 5.04ab —— —— —— ——

ID1 5921.47a 120.68a 4.90b 237.88c —— 1.63a 0.41a

ID2 5859.62a 105.42b 5.23a 426.24a —— 1.70a 0.22b

ID3 5449.08a 109.58ab 4.98b 305.16b —— 1.59a 0.28ab

2023

CK 5716.70ab 111.08ab 5.24a —— 5. 05b —— ——

ID1 6027.50a 117.46a 5.14a 364.88b 5.45a 1.71a 0.39a

ID2 5902.27ab 116.01ab 5.08a 548.44a 5.34ab 1.72a 0.34a

ID3 5677.02b 113.16ab 4.86a 491.17a 5.15ab 1.67a 0.32a

P value

Treatment * NS NS ** —— NS NS

Year NS NS NS ** —— NS NS

Treatment
× year

NS NS
NS NS

—— NS NS
WUE, water use efficiency; LER, land equivalent ratio; Am, aggressivity. Means within a column followed by a different letter are significantly different (P < 0.05) according to Duncan’s multiple
range test. *p<0.05, **p<0.01, ns: p>0.05.
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intercropping productivity should focus on the suppression of crop

growth by interspecific competition during the symbiotic period

and on the water and fertilizer management of late-maturing crops

to ensure that the intercropping of cotton and cumin results in an

optimized yield and efficiency under no-film conditions.
5 Conclusions

The combination of nonfilmed deep drip irrigation and cotton/

cumin intercropping can exploit the interspecific advantages of

hydrothermal resources through temporal and spatial stratification,

suppress salt accumulation and weed growth, and improve crop

productivity. Compared with monocropping, intercropping with

dense cumin (ID2) significantly increased crop water consumption

and bare surface temperatures; ID2 also reduced soil electrical

conductivity, soil carbon emissions, and weed density by increasing

crop surface coverage. The ID1 treatment had the highest seed yield

and aggressivity, whereas the ID2 treatment had the highest land

equivalent ratio, and ID2 did not significantly differ from ID1 in

terms of seed cotton yield. Therefore, to ensure crop yield and

economic benefits, when the intercropping density of cumin

reaches 8×105 plants ha-1, to ensure that the cotton production is

not reduced, water, heat and land resources are fully utilized to obtain

greater economic benefits. The results of this study are highly

practical for facilitating efficient resource utilization and

environmental protection in the cotton industry in the future.
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