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Introduction: Asparagus is a valuable vegetable, and its edible part is a tender

stem. The color of the tender stem epidermis is an important trait. In particular,

purple asparagus is rich in anthocyanins. However, the molecular mechanisms

underlying anthocyanin accumulation in purple asparagus remains unclear.

Methods: The white variety ‘Jinguan’ (JG), the green variety ‘Fengdao 2’ (FD), and

the purple variety ‘Jingzilu 2’ (JZ) were compared using physiological and

transcriptomic analysis. High-performance liquid chromatography and real-

time quantitative polymerase chain reaction were employed to detect

anthocyanins and validate gene expression.

Results: Cyanidin 3-glucoside and cyanidin 3-rutinoside were detected as the

main anthocyanins in JZ. Transcriptome data demonstrated that 4,694 and 9,427

differentially expressed genes (DEGs) were detected in the JZ versus FD and JZ

versus JG control groups, respectively. These DEGs were significantly enriched in

pathways associated with anthocyanin accumulation, including phenylalanine

metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. A total of

29 structural genes related to anthocyanin biosynthesis were identified. The

expression of these structural genes was higher in JZ than in FD and JG, thereby

activating the anthocyanin biosynthesis pathway. Additionally, a candidate gene,

AoMYB114, was identified based on transcriptomic data. The expression of

AoMYB114 was associated with anthocyanin accumulation in different tissues.

Further research found that overexpression of AoMYB114 activated the

anthocyanin biosynthesis pathway. It promoted leaf pigment accumulation in

transgenic Arabidopsis.

Discussion: These findings demonstrate that AoMYB114 positively regulated

anthocyanin biosynthesis. This study elucidates the molecular mechanism

underlying purple coloration in asparagus. It provides important insights for

improving asparagus quality and for breeding high-anthocyanin varieties.
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1 Introduction

Plants exhibit various colors due to pigmented substances

within their cells. Pigments absorb some of the sun’s rays, while

other rays are perceived by vision through reflection. Plant

pigments are divided into four main categories: chlorophylls,

carotenoids, flavonoids, and alkaloids. Chlorophylls are primarily

green, and carotenoids are orange-red. Anthocyanins from the

flavonoid group are the most significant color-developing

substances (Smeriglio et al., 2016). It is widely present in plants

and influences the color and quality of flowers, fruits, and

vegetables. Many anthocyanins exist in nature, but their basic

body structures remain the same. The primary differences are the

type and number of substituent groups, binding sites, and glycosidic

ligands (Tanaka et al., 2008). The commonly available anthocyanins

currently include six groups: pelargonidin, cyanidin, delphinidin,

peonidin, petunidin, and malvidin (Tanaka et al., 2008; Kong et al.,

2003). Plant flowers, leaves, and fruit color differ depending on the

anthocyanin substrate and chemical modification. Its accumulation

also plays a role in many biological processes, including ultraviolet

radiation absorption (Quina et al., 2009), insect attraction for

pollination (Ogutcen et al., 2020), participation in biotic stresses,

and responses to abiotic stresses, including low temperatures,

drought, and high salinity (Kovinich et al., 2015, 2014). In

addition, anthocyanins have the function of scavenging free

radicals and improving the antioxidant capacity of organisms

(Cappellini et al., 2021). Due to their natural activity reducing

oxidative stress in the body, they also have a positive role in

maintaining cardiovascular health in humans (Krga and

Milenkovic, 2019).

The anthocyanin biosynthesis pathway is relatively conserved

and has been characterized in many plants (Tanaka et al., 2008;

Holton and Cornish, 1995). The pathway is derived from the

phenylalanine pathway (Sunil and Shetty, 2022) and involves in

several key enzymes. This pathway primarily includes early

biosynthetic enzymes, including chalcone synthase (CHS),

chalcone isomerase (CHI), and flavonoid 3-hydroxylase (F3H),

and late biosynthetic enzymes, such as dihydroflavonol 4-

reductase (DFR) and anthocyanin synthase (ANS) (Colanero

et al., 2020; Tanaka and Brugliera, 2013). Structural genes

encoding these enzymes have been identified and correlated in

numerous species, including petunia (De Paoli et al., 2009),

mulberry (Chao et al., 2021), and eggplant (Wu et al., 2020). The

specific functions of these proteins have been verified.

Transcription factors, microRNAs and long non-coding RNAs

regulate the expression of structural genes in the anthocyanin

biosynthetic pathway (Yang et al., 2019). Myeloblastosis (MYB),

basic helix-loop-helix (bHLH), and W40 repeat domain proteins

(WD40) are major transcription factors. These three transcription

factors can form MYB-bHLH-WD40 complex (MBW) via protein

interactions (Xu et al., 2015). R2R3-MYB transcription factors are

critical for activating the MBW complex (Liu et al., 2018). Most can

positively regulate anthocyanin accumulation, while a few can

negatively regulate it. This has been verified in various liliaceous

plants. For example, LhMYB12 expression in an Asian hybrid lily

(Lilium spp.) corresponds to anthocyanin pigmentation in the
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perianth, filaments, and patterns. Simultaneously, LhMYB6

regulates anthocyanin spot development in the perianth.

LhMYB12 and LhMYB6 positively regulate anthocyanin

biosynthesis (Yamagishi et al., 2010). MaAN2, an anthocyanin-

related R2R3-MYB gene, was identified from transcriptome data of

grape hyacinth (Muscari armeniacum). Anthocyanin accumulation

and MaAN2 expression were also positively correlated. They also

play a positive role in anthocyanin biosynthesis (Chen et al., 2017).

In addition, TgMYB4, an R2R3-MYB transcription factor, has been

isolated from the petals of tulip (Tulipa gesneriana L.). Tobacco

plants overexpressing TgMYB4 exhibited white or light pink petals

with less anthocyanin accumulation than control plants. Therefore,

TgMYB4 inhibits the regulation of anthocyanin biosynthesis during

anthocyanin deposition (Hu et al., 2024).

Asparagus (Asparagus officinalis L.) is a perennial herb

belonging to the genus Asparagus in the Liliaceae and is native to

the Mediterranean coast. It is renowned for its nutritional value and

unique flavor. It is also known as the king of vegetables and one of

the world’s top 10 famous dishes (He et al., 2024; Xiao et al., 2024).

Asparagus is classified into three categories: white, green, and

purple, depending on the color of the tender stem. Purple

Asparagus is rich in anthocyanins and possesses stronger

antioxidant properties than white and green asparagus (Olas,

2024). It also has various biological activities, including anti-

inflammatory and antibacterial. Consequently, it plays an

essential role in human health (Krga and Milenkovic, 2019; Wang

and Ng, 2001). Anthocyanin biosynthesis and regulation have been

intensively studied in many plants. However, few studies have

reported anthocyanins in tender asparagus stems. Only the

environmental regulation of anthocyanin biosynthesis is involved.

Liang (Liang et al., 2022) indicated that high temperatures inhibit

anthocyanin accumulation in purple asparagus. Dong (Dong et al.,

2019) indicated that anthocyanin accumulation in asparagus is

light-dependent. Overall, it is difficult for previous studies to

comprehensively explore the molecular mechanisms involved in

purple asparagus stem formation. Particularly, the cloning,

isolation, and characterization of transcription factors related to

controlling epidermal purple traits have not been reported. In this

study, the transcriptional differences in different epidermal colors

were investigated. The functions of MYB transcription factors

involved in anthocyanin biosynthesis were verified. This laid an

important foundation for a further comprehensive and in-depth

interpretation of the color mechanism of purple asparagus

tender stems.
2 Materials and methods

2.1 Plant materials

In this study, three-year-old asparagus of white variety ‘Jinguan’

(JG), green variety ‘Fengdao 2’ (FD), and purple variety ‘Jingzilu 2’

(JZ) were selected. Three varieties were cultivated in the asparagus

base of the Enyang District, Bazhong City, Sichuan Province

(106.56°E, 31.65°N) at an altitude of 580 m. Robust tender

asparagus stems with essentially uniform growth conditions and
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free from pests and diseases were selected as samples in June 2022.

Samples were obtained by cutting the epidermis downward from

the tip. Three biological replicates were used for each variety. All

samples were immediately frozen in liquid nitrogen and stored in an

ultra-low-temperature refrigerator at −80 °C.
2.2 Determination of pigment content and
color parameters

Chlorophyll and carotenoid levels in the asparagus epidermis

were measured using spectrophotometry. The total anthocyanin

content in the asparagus epidermis was measured using the pH

differential method. Anthocyanin components were determined

using high-performance liquid chromatography (HPLC), as

described by Fan et al. (2023), with minor modifications. An

Agilent 1260 liquid chromatograph equipped with a ComatexC18

column (250 × 4.6 mm, 5 mm) was used for determination. Mobile

phase A was a pure acetonitrile solution, whereas mobile phase B

was a 1.6% aqueous formic acid solution. The gradient elution

procedure is presented in Supplementary Table S1. Standard curves

were generated using pure standard samples of cornflowerin-3-O-

glucoside and cornflowerin-3-O-rutinoside (purity ≥ 98%, Solarbio

Technology, Beijing, China). The color of the asparagus stems was

measured using a CR-400 colorimeter (Konica Minolta,

Tokyo, Japan).
2.3 Transcriptome sequencing and
data analysis

RNA was extracted from three different colors of the asparagus

stem epidermis using the Trizol method. The quality of the

asparagus RNA was controlled using an Agilent Bioanalyzer 2100

(Agilent Technologies, Santa Clara, CA, USA). A cDNA library was

constructed and sequenced using the Illumina HiSeq 6000 platform.

Transcriptome sequencing was performed by Novogene Biotech

(Beijing, China). Reads with adapter reads containing N (N

indicates that base information cannot be determined) and low-

quality reads (reads with Qphred ≤ 20 base number accounting for

> 50% of the entire read length) were eliminated to ensure the

quality and reliability of the data analysis. High-quality clean reads

were obtained.

Gene expression levels were calculated using FPKM (one

thousand base transcript fragments per million drawn).

Differentially expressed genes (DEGs) between colors were

analyzed using DESeq2 software (1.20.0, Bioconductor, Boston,

MA, USA). The screening criteria were |log2(Fold Change)| ≥ 1

and padj ≤ 0.05 (Anders and Huber, 2010). Gene Ontology (GO)

and Kyoto encyclopedia of genes and genomes (KEGG) enrichment

analyses of DEGs were performed using the cluster Profiler software

(version 3.8.1) to elucidate the signaling pathways involved in the

differential genes. The predicted transcription factors were screened

and categorized using the PlantTFDB database (http://

planttfdb.gao-lab.org/).
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2.4 Verification of gene expression levels

Gene-specific primers were designed using Primer Premier 6

(Supplementary Table S2). RNA was extracted using the Plant Total

RNA Isolation Kit (Foregene, Chengdu, China), and cDNA was

reverse transcribed from the extracted RNA using Goldenstar™

RT6 cDNA Synthesis Mix RNasin (Tsingke, Beijing, China). Real-

time quantitative polymerase chain reaction (RT-qPCR) was

performed using a fluorescence RT-qPCR system Bio-Rad

CFX96TM and SYBR Green I (Tsingke, Beijing, China). The data

were analyzed using the 2−DDCt method (Livak and Schmittgen,

2001). AoUbiq, a ubiquitin long-tail gene (Ma et al., 2023), was used

as a reference gene to normalize RT-qPCR results for asparagus.
2.5 Cloning of AoMYB114, overexpression
vector construction, and Arabidopsis
genetic transformation

AoMYB114, a transcription factor, was selected based on the

transcriptome sequencing annotation information and gene

expression of tender asparagus stems. The cDNA of JZ was

amplified using a template. The sequence of cloning primers is

presented in Supplementary Table S2. The fragment was cloned to a

pUCm-T vector (Sangon Biotech, Shanghai, China) and

transformed into Escherichia coli DH5a (Tsingke, Beijing, China).

The plasmid was extracted, identified using PCR, and sequenced by

Tsingke (Beijing, China). Recombinant primers were designed

according to the gene and vector sequences (Supplementary Table

S2). BamHI and SacI restriction sites were selected, and the

AoMYB114 gene was amplified using recombinant primers and

recombined into the pCAMBIA-1301 vector. The recombinant

plasmid transformed Escherichia coli DH5a, and the positive

bacterial liquid detected by PCR was sent to Tsingke (Beijing,

China) for sequencing.

Genetic transformation of Arabidopsis thaliana was conducted

using the binary expression vector pCAMBIA-1301. The vector

contained the GUS reporter gene and the Kan resistance gene. The

recombinant plasmid, pCAMBIA1301-AoMYB114, was transferred

into Agrobacterium GV3101. Genetic transformation of

Arabidopsis thaliana was performed using the floral dip method

(Zhang et al., 2006). Transgenic Arabidopsis plants were screened

on 1/2 MS solid medium containing hygromycin. The transgenic

strains were further verified using PCR amplification and

GUS staining.
2.6 Determination of total anthocyanin
content and components in transgenic
Arabidopsis thaliana and expression
analysis of genes related to
anthocyanin biosynthesis

The methods of total anthocyanin determination and gene

quantitative analysis of Arabidopsis thaliana were the same as
frontiersin.org
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above. The RT-qPCR results for Arabidopsis thaliana were

normalized using AtActin2 as a reference gene. The RT-qPCR

procedure and primers for Arabidopsis thaliana have been

previously described (Xu et al., 2017). Primer sequences are

presented in Supplementary Table S2.
3 Results

3.1 Pigmentation analysis of
different asparagus

The anthocyanin accumulation in plants can affect the

coloration of plant tissues. The differences in appearance among

the three asparagus were primarily in the epidermis of the tender

stems (Figure 1A). FD was green, and some of its scales were darker.

JZ appeared bright purple, and JG appeared pale yellowish-white.

To further quantify the color differences, colorimeter was used to

measure the L*, a*, and b* values of the tip, middle, and base
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sections of the asparagus. The results, shown in Figures 1E–G,

reveal stable values that correspond closely to the visual appearance

of the colors in each section. Figure 1B shows that only FD and JZ

contain chlorophyll and they all contained less carotenoid than

chlorophyll. However, carotenoid was significantly more abundant

in JG than the other two varieties, possibly due to its yellowish color.

The total anthocyanin content of JZ was significantly higher than

that of FD and JG, further supporting the appearance characteristic

of JZ showing purple color. HPLC was used to detect anthocyanin

aglycones in the epidermis of three types of asparagus tender stems

to precisely analyze the specific components of asparagus

anthocyanins . These results revealed that the HPLC

chromatogram of JZ primarily consisted of two peaks

(Figure 1C). The retention times for cyanidin 3-glucoside and

cyanidin 3-rutinoside were 17.3 and 18.0 min, respectively. The

cyanidin 3-rutinoside content was particularly high, 8.86 times that

of cyanidin 3-glucoside (Figure 1D). In contrast, white and green

asparagus did not exhibit a characteristic peak, indicating a low

anthocyanin content, which is almost negligible.
FIGURE 1

Three different colors of asparagus and analysis of differences. (A) Phenotypic images of three kinds of asparagus, from left to right: FD, JZ, and JG.
(B) Chlorophyll, carotenoid and total anthocyanin content of the three asparagus varieties. (C) HPLC analysis of anthocyanins in JZ. (D) Bar graph of
the anthocyanin glycoside content in JZ. (E) Heatmap of L* distribution. (F) Heatmap of a* distribution. (G) Heatmap of b* distribution. T-test at the
significance level (p < 0.05), with different letters (a, b, and c) indicating significant differences and the same letters indicating non-
significant differences.
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3.2 Transcriptome sequencing and analysis
of DEGs

The cDNA libraries were constructed and sequenced using the

Illumina NovaSeq 6000 platform to further investigate

transcriptome changes in the epidermis of asparagus stems of

varying colors. Nine cDNA libraries were created comprising

three asparagus colors and three biological repeats. A total of

400,509,822 raw reads were generated. A total of 387,268,684

high-quality clean reads were obtained by screening. On average,

80.66% of the clean reads were mapped to the asparagus genome

(Supplementary Table S3). Principal component (PCA) and

correlation analysis (Supplementary Figures S1A, B) indicated the

high reproducibility of the three biological replicates within each

group and significant differences between the groups.

Figure 2A shown the number of DEGs for each combination of

comparisons. Among the three pairs of comparison groups, the JG

versus JZ comparison group exhibited the highest number of DEGs,

with 4,512 downregulated and 4,915 upregulated genes.
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Furthermore, the Wayne plot illustrates that the greatest number

of DEGs was identified between the JG versus FD comparison group

and the JG versus JZ comparison group, amounting to 4,978

(40.4%) of the total (Figure 2B). A total of 752 genes were

expressed in all three comparison groups, while 2,020 genes were

expressed exclusively in the JG versus JZ comparison group. Further

analysis revealed that these DEGs are involved in multiple biological

pathways, particularly those related to anthocyanin biosynthesis,

including phenylalanine metabolism, phenylpropanoid

biosynthesis, and flavonoid biosynthesis. These findings are in

strong agreement with the metabolic pathways identified in the

subsequent annotation analysis, providing valuable insights into the

molecular mechanisms underlying anthocyanin biosynthesis. A

hierarchical clustering heatmap of 12,324 DEGs was constructed

using the normalized FPKM Z-score values (Figure 2C). The

hierarchical clustering heatmap demonstrated comparable

expression patterns for JZ and FD genes but distinct expression

patterns for JG genes. K-means clustering identified four subclasses

with varying mean expressions (Figure 2D). Cluster 1 was the most
FIGURE 2

Characterization of the distribution of DEGs in the three different comparison combinations. (A) Number of DEGs in two different comparisons. Blue
indicates downregulated DEGs, and pink indicates upregulated DEGs. (B) Wayne plots of prevalent and unique expressions in pairwise comparisons,
presenting the number of DEGs versus proportion. (C) Hierarchical clustering of DEGs in all samples. (D) K-means clustering of gene expression trends.
The grey line represents the relative corrected expression level of each gene, and the blue line represents the mean expression level of each gene.
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abundant cluster. JZ exhibited high and low expression levels in

clusters 1 and 3, respectively. In contrast, JG exhibited a high

expression level of 3,930 genes in cluster 2 and 12 genes in cluster 4,

indicating significant alterations in expression patterns.
3.3 DEGs annotation analysis

Transcriptome profiles of diverse germplasms were analyzed to

investigate the dynamic expression patterns of specific genes

associated with anthocyanin accumulation. GO analysis was used

to categorize the annotations of DEGs. The top 10 significantly

enriched annotated terms were selected, including three main GO

categories: cellular components (CC), biological processes (BP), and

molecular functions (MF) (Figure 3). Most DEGs were enriched in

MF, followed by CC and BP. These genes are associated with

anthocyanin accumulation and may play pivotal roles in MF.

Regarding BP, the most abundant subcategories were peptide

biosynthetic process (GO:0043043), peptide metabolic process
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(GO:0006518), and amide biosynthetic process (GO:0043604).

The number of genes enriched in the amide biosynthetic process

(GO:0043604) was highest in the FD versus JG and JZ versus JG

comparison groups. In contrast, FD and JZ were primarily enriched

in iron ion binding (GO:0005506), heme binding (GO:0020037),

and tetrapyrrole binding (GO:0046906) in MF. These findings

indicated that the color difference observed in asparagus stems

was associated with anthocyanins and photosynthetic pigments.

Subsequently, DEGs were mapped to the KEGG database to

study metabolic pathways. The numbers of DEGs in the three

comparison groups were 1,512, 2,737, and 3,319, respectively. These

genes were assigned to 116, 117, and 117 metabolic pathways,

respectively. Twenty metabolic pathways with significant

expression were selected to generate heatmaps (Figure 4). Some

DEGs were mapped to anthocyanin biosynthesis-related pathways,

including phenylpropane biosynthesis, phenylalanine metabolism,

and flavonoid biosynthesis. The phenylpropane biosynthesis

pathway was significantly enriched for all three combinations.

The flavonoid biosynthesis and phenylalanine metabolism
FIGURE 3

GO for the top 10 enrichment items in each pair comparison (p ≤ 0.05). The bar chart presents the error-finding rate values. BP, biological
processes; MF, molecular function; CC, cell component.
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pathways exhibited significant enrichment exclusively in the FD

versus JZ comparison groups. However, some chlorophyll-related

metabolic pathways, including photosynthesis-antenna proteins,

porphyrin, chlorophyll metabolism, and photosynthesis, were

significantly enriched in the FD versus JG and JZ versus JG

comparison groups. Furthermore, the carotenoid biosynthesis

pathway was identified as being significantly enriched in the FD

versus JG comparison group. Thus, these differences in pigment

metabolic pathways may underlie purple asparagus formation.
3.4 Analysis of key structural genes related
to anthocyanin biosynthesis

A schematic diagram of the anthocyanin synthesis pathway in

asparagus was constructed based on the key enzymes involved in

anthocyanin biosynthesis related to the color formation

(Figure 5A). The asparagus transcriptome revealed 29 genes

involved in anthocyanin biosynthesis. These genes are involved in

the phenylpropanoid, flavonoid, and anthocyanin biosynthesis

pathways and encode 10 enzymes (Supplementary Table S4).

Among these biosynthesis pathways, phenylpropanoid

biosynthesis pathway serves as the common starting point for

various metabolic pathways. It is capable of providing precursor

substances. Flavonoid biosynthesis pathway can furnish a carbon
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framework for the synthesis of anthocyanins, and anthocyanin

biosynthesis pathway is able to transform colorless anthocyanins

into colored ones. The expression levels of the 12 structural genes

encoding phenylalanine ammonia-lyase (PAL) and p-coumaroyl

CoA ligase (4CL) were either upregulated or downregulated across

all three asparagus varieties. This complex and irregular expression

pattern may be due to their involvement in the shared flavonoid

metabolic pathway. Four genes encoding CHS and CHI were highly

expressed in JZ. The elevated expression of these genes may be

associated with flavonoid accumulation. The expression levels of

genes encoding F3H, flavanone 3’-hydroxylase (F3’H), DFR, and

ANS were significantly elevated in JZ. These genes play pivotal roles

in determining the structural and chromatic characteristics of

anthocyanins. Therefore, this may be related to the accelerated

accumulation of anthocyanins during this phase. The

anthocyanidin 3-O-glucosyltransferase expression was

significantly reduced in JG. The diverse modifying effects

observed at this stage altered asparagus coloration. This may be

associated with the absence of anthocyanins that form a

stable structure.

To ascertain the veracity of the RNA-seq data, eight genes

involved in anthocyanin synthesis were randomly selected for RT-

qPCR (Figure 5B). The phenylpropane biosynthesis pathway genes

PAL (LOC109851603) and 4CL (LOC109822869) exhibited the

highest expression in JZ and were significantly upregulated, with
FIGURE 4

DEG enrichment analysis of comparative pairs using KEGG. The graph is based on the q-value of enrichment in the pathway. The redder the color,
the more obvious the enrichment. The top 20 enrichment paths are listed below. Significant differential genes were determined according to error
discovery rate ≤ 0.05 and (|log2 ratio| ≥ 1).
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one- and eight-fold increases, respectively, compared to JG. The

expression of cinnamate 4-hydroxylase (C4H) (LOC109846559)

was highest in JG and lowest in JZ. Flavonoid biosynthesis

pathway genes, including CHS (LOC109823892), F3H

(LOC109848156), and DFR (LOC109843175), exhibited the

highest expression levels in JZ. The lowest expression of CHI

(LOC109850953) was observed in JG, while the highest

expression was observed in CHI (LOC109829369). These findings

align with the transcriptomic sequencing results.
Frontiers in Plant Science 08
3.5 Differential expression transcription
factor analysis

The TFs of DEGs were analyzed, and nomenclature was assigned

using the Plant Transcription Factor Database. A total of 604 DEGs

were identified as TFs and classified into 34 distinct families, including

MYB, bHLH, WRKY, NAC, FAR1, and others (Figure 6A). The three

families with the highest numbers of genes containing TFs wereMYB (n

= 133), bHLH (n = 54), and WRKY (n = 46). The heatmap of the gene
FIGURE 5

(A) Schematic diagram of anthocyanin synthesis pathway and expression changes in related structural genes in asparagus. Red (upregulated) and
blue (downregulated) in the heatmap represent the gene expression trends. * indicates that the gene is DEG. (B) RT-qPCR analysis of the key
pathway genes. The bar graph represents the relative expression of genes in RT-qPCR, and the triangular curve represents the RNA sequencing data.
Each column represents the mean ± standard deviation (SD). T-test at the significance level (p < 0.05), with different letters (a, b, and c) indicating
significant differences and the same letters indicating non-significant differences.
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expression levels for each TF family member demonstrated that MYB,

bHLH, and WRKY were expressed in all treatments (Figure 6B). In the

JZ versus FD comparison group, 15 MYB, six bHLH, and four WRKY

genes exhibited increased expression. In the JZ versus JG comparison

group, 16 MYB, 10 bHLH, and four WRKY genes exhibited increased

expression. These differences in expression indicate that TFs regulate

anthocyanin synthesis via multiple mechanisms.
3.6 Cloning of AoMYB114 and expression
patterns in different asparagus varieties

MYB transcription factors have many members and the most

intricate functions, and they are the most significant transcriptional

regulatory factors in plant metabolic networks. Based on the analysis of

the existing transcripts of major genes regulating epidermal anthocyanin

biosynthesis, four MYB transcription factors were screened (Figure 7A).

The expression levels of the three asparagus varieties were significantly

different, with JZ displaying the highest expression levels. In contrast,

expression levels were relatively lower in FD and JG. In particular,

LOC109833295 (AoMYB114) exhibited minimal expression in the white

epidermis and the highest expression in the purple epidermis. Therefore,

based on transcriptome data, the transcription factorAoMYB114, related

to anthocyanin synthesis in asparagus, was preliminarily identified. It

was cloned from the JZ (Supplementary Figure S2A), and sequencing

results demonstrated that AoMYB114 contained an open reading frame
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of 711 bp, encoding 236 amino acids (Supplementary Figure S2B).

Homology analysis of AoMYB114 (Supplementary Figures S2C, D)

revealed a high degree of homology with R2R3-MYB transcription

factors from other species. For example, the following sequences were

identified: Hippeastrum hybrid cultivar (WHL30745.1), Muscari

armeniacum (AVD68967.1), Allium cepa (AQP25671.1), Phoenix

dactylifera (UHT46070.1), Freesia hybrid cultivar (QJW70307.1),

Magnolia liliiflora (AHJ60260.1), Rubroshorea leprosula (GKV47092.

1), Magnolia sinica (XP_058071391.1) and Elaeis guineensis

(XP_010931211.1). They all possessed conserved structural domains of

R2 and R3 and contained a bHLH-binding motif within the R3 domain.

The expression pattern of AoMYB114 in tender asparagus stems

was studied using RT-qPCR (Figure 7B). In JZ, AoMYB114 relative

expression level was significantly higher in the epidermis than in the

interior. Furthermore, its expression was low in FD and JZ. These

findings suggest that AoMYB114 is specifically expressed in tissues

with a high anthocyanin content.
3.7 Overexpression of the AoMYB114 in
Arabidopsis thaliana

A plant overexpression vector, pCAMBIA1301-AoMYB114, was

constructed to ascertain the function of AoMYB114. Genetic

transformation of Arabidopsis thaliana was performed using the

Agrobacterium GV3101 mediated floral dip method. Four lines were
FIGURE 6

Differentially expressed transcription factors in asparagus. (A) The transcription factor family, the corresponding number of transcription factors, and
the percentage of each family. (B) Specific expression of the transcription factors. Blue to red indicates expression from low to high. Expression was
calculated using log2 (FPKM+1), and the heatmap depicts the transcription factor families of more than 10 family members.
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isolated from the 1/2 MS agar plates. The transgenic Arabidopsis lines

(OE-1 and OE-3) were selected for further experiments. PCR

amplification of AoMYB114 was conducted using cDNA derived

from wild-type (WT) and transgenic Arabidopsis. PCR products of

approximately 700 bp were detected in the two transgenic lines,

whereas no PCR products were detected in the WT. Transgenic

Arabidopsis plants exhibited GUS activity (Supplementary Figure S3).

As shown in Figure 8A, the majority of T1 generation Arabidopsis
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seeds exhibit a purple color, indicating that the gene is effectively

expressed in T1 seeds. Moreover, the same purple phenotype was

observed in T3 generation Arabidopsis seedlings, suggesting that the

gene has demonstrated genetic stability in this generation. The total

anthocyanin content of the two transgenic Arabidopsis was

significantly higher than that of the WT (Figure 8B). The total

anthocyanin content of the OE-1 line reached 0.87 mg/100 g FW.

The anthocyanin content in plants is usually related to the expression
FIGURE 8

AoMYB114 was overexpressed in Arabidopsis. (A) The phenotypes of transgenic Arabidopsis and WT Arabidopsis, from left to right, are WT, transgenic
Arabidopsis OE-1, and transgenic Arabidopsis OE-3, with T3 generation Arabidopsis seedlings on top and T1 generation Arabidopsis seeds on the bottom.
(B) Comparison of total anthocyanin content between transgenic and WT Arabidopsis. The error line represents the standard deviation of the data (SD, n =
3), and lowercase letters represent significant differences (p < 0.05). (C) Relative expression levels of structural genes of the anthocyanin synthesis pathway
in transgenic and WT Arabidopsis. Different letters (a, b, and c) indicating significant differences and the same letters indicating non-significant differences.
FIGURE 7

(A) Heatmap of the expression abundance of the four MYB transcription factors in different-colored asparagus transcriptomes. Data are represented as
Log2 (FPKM+1). (B) Expression analysis of the asparagus AoMYB114 gene in different asparagus and different parts of the asparagus. T-test at the
significance level (p < 0.05), with different letters (a, b, and c) indicating significant differences and the same letters indicating non-significant differences.
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of structural genes. The effect of AoMYB114 gene overexpression on

structural gene expression of the anthocyanin biosynthesis pathway in

transgenic Arabidopsis was examined by RT-qPCR. The expression

levels of all structural genes in the transgenic lines were higher than

those in WT (Figure 8C). In particular, AtDFR, AtLDOX, and AtCHS

gene expression reached the highest level in OE-1 and significantly

increased by 32, 16, and 15 times compared to WT. These differences

suggest that AoMYB114 is overexpressed by enhancing the structural

gene expression for anthocyanin biosynthesis.
4 Discussion

Commercial asparagus can be classified into three categories based

on its color: white, green, and purple. Studies on anthocyanin content

in asparagus have revealed that purple varieties have the highest

anthocyanin concentration (Slatnar et al., 2018). This study also

corroborates the finding that the anthocyanin content of purple

asparagus tender stems was significantly higher than that of non-

purple asparagus. In contrast to other flavonoids, anthocyanins were

highly unstable in their free state. Anthocyanins typically undergo

glycosylation to form stable anthocyanidin glycosides to enhance

stability. Sakaguchi et al. (2008) isolated anthocyanins from purple

asparagus and identified them as cyanidin 3-[3″-(O-b-d-
g lucopyranosy l ) -6″ - (O-a- l - rhamnopyranosy l ) -O-b -d-
glucopyranoside] and cyanidin 3-rutinoside. Li et al. (2012) identified

three principal anthocyanin glycosides in the purple asparagus extract:

cyanidin-3-glucoside-(rhamnopyranosyl)-5-glucoside, cyanidin-3-

rutinoside, and peonidin-3-rutinoside. In this study, the presence of

two anthocyanidin glycosides, cornflower-3-O-glucoside, and

cornflower-3-O-rutinoside, in purple asparagus tender stems was

confirmed using HPLC analysis. The concentration of cornflower-3-

O-rutinoside was 8.86 times greater than that of cornflower-3-O-

glucoside. In contrast, the JG variety of white asparagus and the FD

variety of green asparagus did not exhibit characteristic peaks, and the

anthocyanin content was exceedingly low. The principal anthocyanin

constituent of JZ was identified as cornflower-3-O-glucoside, consistent

with the findings of Slatnar et al. (2018). This provides a foundation for

further investigation into the mechanisms underlying the purple

pigmentation of asparagus.

Anthocyanin biosynthesis is an important branch of the flavonoid

pathway. Although the types and accumulation patterns of

anthocyanins differ among different species, the synthesis process is

the same. A series of structural genes regulate these genes. In this study,

29 structural genes involving the encoding of 10 enzymes were

identified. CHS and CHI play important roles in flavonoid

accumulation; however, the anthocyanin biosynthesis pathway is

non-specific. For example, the anthocyanin content in Clivia miniata

is closely related to CHS expression (Viljoen et al., 2013). However, in

the three peony varieties (red-purple, white, and yellow), CHI was

highly expressed throughout the developmental stage (Zhao et al.,

2012). The TfCHI expression level initially decreased and then

increased (Yuan et al., 2013). In this study, seven structural genes

encoded CHS and CHI. The CHI (LOC109850014) gene was highly

expressed in all three colors of asparagus, and only four were highly

expressed in purple asparagus. The high expression of these genes may
Frontiers in Plant Science 11
be involved in the early stages offlavonoid biosynthesis, which provides

precursors for anthocyanin synthesis. F3H can catalyze the conversion

of naringenin to dihydroflavone and biosynthesize flavanols and

anthocyanins. The F3H downregulation in strawberries decreased the

flavanol and anthocyanin contents (Jiang et al., 2012). The F3H

expression level in mulberry fruits rich in anthocyanins was

positively correlated with anthocyanin accumulation (Dai et al.,

2022). DEGs encoding F3H and F3’H expression levels were also

upregulated in purple asparagus. DFR and ANS are key enzymes in late

synthesis. When activated by transcription factors, the StANS gene can

promote anthocyanin synthesis in potato tubers (Zhang et al., 2020). In

this study, DEGs encoding DFR and ANS were significantly

upregulated in purple asparagus. These structural genes are key

genes that regulate the color of asparagus tender stems. The

flavonoid biosynthesis pathway is the key metabolic pathway

involved in the purple formation of asparagus tender stems. The

phenylpropane metabolic pathway is the common starting point for

various metabolic pathways, including flavonoids, lignin, and tannins

(Dong and Lin, 2021). Since p-coumaroyl-CoA is the central

metabolite that connects anthocyanin and lignin biosynthesis, it’s the

compound that both secondary metabolic pathways compete for. The

DEG encoding C4H was significantly upregulated in white asparagus.

This could be due to the metabolism moving to other branches.

Structural genes directly influence anthocyanin biosynthesis by

encoding key enzymes. Transcription factors precisely regulate the

expression pattern and intensity of these structural genes, thereby

controlling the temporal and spatial expression changes in

anthocyanins. This intricate regulation forms the basis for pigment

formation in plants, which is crucial for plant adaptation to

environmental changes and for the coloration of plant organs (Yan

et al., 2021). Currently, MYB, bHLH, and WD40 are the major

transcription factors that regulate anthocyanin biosynthesis (Ramsay

and Glover, 2005). These transcription factors regulate the expression of

key enzymes in the anthocyanin biosynthetic pathway either

cooperatively or independently. The cooperative action of these

transcription factors forms a stable transcriptional regulatory network,

while their positive or negative regulatory roles vary depending on

environmental changes and physiological state (Jun et al., 2015). In the

transcriptome analysis of this study, a total of 604 transcription factors

were identified, belonging to 34 transcription factor families, with the

MYB and bHLH families having the highest number of genes. This

finding further emphasizes the importance of MYB and bHLH families

in plant anthocyanin biosynthesis. MYB transcription factors, in

particular, play a central role in plant pigment synthesis due to their

structural specificity and regulatory diversity. Transcription factors can

also interact with structural genes to regulate the accumulation and

distribution of anthocyanins. Some studies have demonstrated that

GMYB10 is involved in anthocyanin synthesis in the leaves and flowers

of Gerbera hybrida. This is primarily accomplished through interaction

with bHLH factor GMYC1 to activate DFR (Elomaa et al., 2003).

Meanwhile, some MYB transcription factors exert negative regulatory

effects. For example, AtMYBL2, a negative regulator, plays a role in

inhibiting anthocyanin biosynthesis (Matsui et al., 2008). These

phenomena indicate that MYB transcription factors may function

within complex regulatory networks in different plant varieties or

tissues, adapting to various environmental conditions and growth states.
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R2R3-MYB transcription factors play an important role in

anthocyanin biosynthesis. They are generally considered more

specific (Zhang et al., 2014). These transcription factors show

significant spatiotemporal expression differences across various

developmental stages and tissues of plants. For example, MaMybA

had the highest expression level, primarily in the S3 stage of flower

development, whereas the relative expression level in roots, bulbs, and

leaves was low (Chen et al., 2019). Similarly, LhMYB12-Lat contributed

to the formation of splashes on the petals of Lilium spp. but did not

cause complete pigmentation of the perianth and spots (Yamagishi

et al., 2014). These studies highlight the high spatiotemporal specificity

of different R2R3-MYB transcription factors in various plant species

and developmental stages, which is an essential feature of their role in

regulating anthocyanin biosynthesis. In this study, AoMYB114 was

specifically expressed in asparagus tissues with high anthocyanin

content. This result suggests that AoMYB114 may play an important

regulatory role in anthocyanin biosynthesis in asparagus. More

importantly, ectopic AoMYB114 overexpression in Arabidopsis

activates structural genes associated with anthocyanin biosynthesis. It

significantly promoted AtCHS, AtDFR, and AtLODX gene expression,

thereby increasing anthocyanin accumulation in Arabidopsis. This

finding indicates that AoMYB114 not only plays an essential

regulatory role in asparagus but can also effectively regulate

anthocyanin biosynthesis in an exogenous expression system, further

demonstrating the universality and regulatory potential of the

AoMYB114 transcription factor in plant pigment synthesis.
5 Conclusion

This study demonstrated that anthocyanin accumulation

primarily influenced the coloration of JZ tender stems. The purple

coloration of the tender asparagus stems was predominantly due to

cyanidin 3-glucoside and cyanidin 3-rutinoside. The structural genes

associated with anthocyanin biosynthesis exhibited heightened

expression in tender purple stems. Thus, the anthocyanin

biosynthesis pathway was activated. RT-qPCR confirmed this

differential expression. Based on asparagus transcriptome sequencing

results, AoMYB114 was identified in JZ. This gene was specifically

expressed in tissues with a high anthocyanin content and exhibits high

homology with MYB transcription factors related to anthocyanin

synthesis in various plants. Moreover, AoMYB114 overexpression

induces anthocyanin biosynthesis in Arabidopsis. Consequently,

AoMYB114 positively regulates anthocyanin biosynthesis and may

play a pivotal role in developing purple epidermal traits in asparagus.

These findings are important in optimizing asparagus quality and

breeding high-anthocyanin plant varieties.
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