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The RNA-based spray-induced gene silencing (SIGS) technology represents an

ecologically sustainable approach to crop protection and pathogen

management. Following the recent approval of Ledprona as the first sprayable

double-stranded RNA (dsRNA) biopesticide by the EPA at the end of 2023, SIGS

has emerged as a focal point in both academic and industrial sectors. This review

analyzes recent advances and emerging trends in SIGS. The application of SIGS

for crop protection, including the control of insects, fungal pathogens, and

viruses, is briefly summarized. Distinguishing this review from others, we delve

into practical aspects of the technology, such as the selection and screening of

target genes, large-scale production methods, and delivery systems, highlighting

major advancements in these areas and also addressing the remaining questions

and issues, particularly concerning safety concerns and controlling harmful

weeds. Finally, this review emphasizes the emerging trends in SIGS technology,

particularly its integration with nanotechnology and other methodologies.

Collectively, the rapid progress in SIGS studies is poised to accelerate the

maturation and application of this technology.
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1 Introduction

It was demonstrated that some pathogens can deliver small RNAs (sRNAs) into host

cells to suppress host immunity. Conversely, hosts also transfer sRNAs into pathogens and

pests to inhibit their virulence (Wang et al., 2016, 2017). Travel of sRNAs between

interacting organisms can induce gene silencing in the counter party, a mechanism termed

cross -kingdom RNA interference (RNAi) or trans-kingdom RNAi (Cai et al., 2018a). As an

example, trans-kingdom RNAi has been recently proposed for potential management of

Fusarium wilt disease (Huang et al., 2025). In fact, trans-kingdom RNAi can be achieved
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either by host-induced gene silencing (HIGS) or spray-induced

gene silencing (SIGS). The HIGS technology has become an

important disease-control method by transgenic expression of

pathogen gene-targeting double-stranded RNA (dsRNA) in plants

(Cai et al., 2018b; Koch and Wassenegger, 2021). However,

transgenic approaches have limitations during development and

promotion. To circumvent the release of genetic modified plants,

spray-induced gene silencing (SIGS), a phenomenon also referred

as environmental RNAi, has been explored by direct application of

dsRNAs or small interfering RNA (siRNA) onto host plants or post-

harvest products, which leads to silencing of the target microbe/pest

gene and confers efficient disease control (Lucena-Leandro et al.,

2022). Environmental RNAi is powerful, environment-friend, and

can be easily adapted to control multiple diseases simultaneously.

As a novel, eco-friendly approach for managing plant pests and

diseases, SIGS does not alter the host genome, therefore is widely

accepted as an alternative to HIGS that needs genetic modification

(Nityagovsky et al., 2022; Parise et al., 2024). Rooted in the natural

RNAi process, where RNA molecules inhibit gene expression by

neutralizing target mRNA, SIGS provides precise, targeted gene

regulation (Niehl et al., 2018; Vetukuri et al., 2021). Early studies

highlighted its potential to significantly reduce disease severity in

plants, particularly through the suppression of fungal pathogen

genes (Koch et al., 2016, 2019; Wu et al., 2024). SIGS has since

expanded into pest and disease control strategies, offering high

specificity, minimal off-target effects, and high environmental safety

(Zotti and Smagghe, 2015; Das and Sherif, 2020). Unlike traditional

pesticides, which persist in the environment and harm non-target

species, SIGS degrades naturally, reducing ecological and health

risks (Aktar et al., 2009; Imfeld and Vuilleumier, 2012). The

specificity of dsRNA in SIGS targets pathogen genomes without

affecting beneficial organisms such as insects, animals, or soil

microbiota, making it a sustainable tool for integrated pest

management (IPM) (Zotti and Smagghe, 2015; Christiaens et al.,

2020). Studies show that dsRNA degrades before crops reach

consumers, addressing concerns about pesticide residues in food

and complying with stringent food safety standards (Christiaens

et al., 2020). Moreover, SIGS supports soil health, as RNA

biodegradation prevents disruption of microbial diversity and soil

fertility, contrasting with the long-term detrimental effects of

chemical pesticides (Imfeld and Vuilleumier, 2012; Dubrovina

and Kiselev, 2019). This aligns SIGS with global initiatives like

the European Commission’s Go-Green plan to reduce pesticide use

by 2030 (Schebesta et al., 2020; Stojanovic, 2021). Research

advances in SIGS include optimizing dsRNA delivery, improving

stability, and exploring nanomaterials for enhanced uptake,

ensuring its viability for large-scale applications. Despite

challenges in foliar absorption due to leaf surface properties and

environmental factors like UV exposure, innovations such as clay

nanosheets and nanovesicles have extended dsRNA protection in

plants (Taning et al., 2020; Hoang et al., 2022). As costs for dsRNA

production decrease, products like Ledprona® demonstrate

promising commercial potential, positioning SIGS as a key

component of sustainable agriculture.
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2 SIGS for crop protection

The dsRNA-based SIGS technology involves applying dsRNA

to plant surfaces, allowing pathogens to absorb it and silence target

genes without requiring transgenic plants, making it a faster and

more adaptable solution (Beernink et al., 2024). By applying dsRNA

to foliage, plants absorb it, triggering RNAi that silences specific

genes in pests and pathogens by disrupting their life cycles, boosts

disease resistance. Once applied, dsRNA is processed into siRNAs

by Dicer, incorporated into the RISC complex, and binds to

complementary mRNA, leading to its degradation and enhanced

disease resistance in plants (Figure 1).

Importantly, SIGS offers a non-transgenic alternative with more

immediate applicability, although its effectiveness depends on

successful dsRNA uptake (Sang and Kim, 2020). To achieve the

desired RNAi response, sprayed dsRNA must ultimately be delivered

into responsive cells in the target organism at a sufficient level. The

absorption of dsRNA might be relied on endocytosis. On one side,

exogenous dsRNA can be directly absorbed by some pathogens or

pests. For example, it was demonstrated that Botrytis cinerea (B.

cinerea) can take up external dsRNAs, and applying dsRNAs on the

surface of fruits, vegetables and flowers significantly inhibits grey

mould disease (Wang et al., 2016). However, the ability to uptake

dsRNA varies among different pathogens, e.g., it was observed

efficient uptake in fungal pathogens, like B. cinerea, Sclerotinia

sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium

dahliae, but no uptake in Colletotrichum gloeosporioides, and weak

uptake in a beneficial fungus, Trichoderma virens (Qiao et al., 2021).

Effective uptake of dsRNAs in both Fusarium oxysporum and tomato

tissues has been presented by fluorescence tracing (Ouyang et al.,

2023). In contrast, we found weak uptake of dsRNA in Fusarium

graminearum, a prevalent pathogen causing fusarium head blight. It

was showed that uptake of dsRNA in Sclerotinia sclerotiorum through

clathrin-mediated endocytosis (Wytinck et al., 2020b). For insects,

the dsRNA molecules are absorbed through intestinal uptake

following feeding, allowing for systemic spread. This systemic

RNAi in nematodes is mediated by multiple SID proteins that are

dsRNA specific membrane channels (Whangbo et al., 2017; Wytinck

et al., 2020a). On the other side, sprayed dsRNA can be absorbed by

plant through different organs and then secreted exosome-like

extracellular vesicles to deliver sRNAs into fungal pathogen (Cai

et al., 2018b). It was reported that sRNAs can be efficiently taken up

and systemically transported to Malus domestica, Vitis vinifera, and

Nicotiana benthamiana based on trunk injection and/or petiole

absorption, and systemically transportation was strictly restricted to

the xylem and apoplast (Dalakouras et al., 2018). Anyhow, for the

indirect absorption after plant processing, dsRNA must travel from

the surface of a leaf through the waxy cuticle, and then traverse the

apoplast, cell wall, and plasma membrane to gain access to the plant

cell’s RNAi machinery (Bennett et al., 2020). Once inside the plant

cell, the applied dsRNA can move to adjacent cells through

plasmodesmata and subsequently to distal cells through the phloem

vasculature. Out of cell, trace amounts of dsRNA were detected in

plant root excretions and in small brown planthoppers honeydew,
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and hoppers could transfer dsRNA via vomit (Zhang et al., 2022).

Furthermore, ingestion of consumer hoppers could also result in

localized RNAi in the midguts of the predator spiders, suggesting

transmission along food chain.

Since the discovery of RNAi, advances have enabled its

application in crop protection through precise, sequence-specific

gene targeting via complementary dsRNA molecules. This

specificity surpasses conventional pesticides, allowing for targeted

pest management with minimal off-target effects. While synthetic

pesticides, first widely used in the 1930s, have improved crop yields

and quality, they have also led to growing pesticide resistance,

particularly in insects (Mota-Sanchez and Wise, 2024). The advent

of RNAi, first elucidated in 1998, marked a significant advancement

in reverse genetics and pest management (Fire et al., 1998). As a

post-transcriptional gene silencing (PTGS) mechanism, RNAi

serves as a natural defense system in eukaryotic cells, targeting

and degrading specific mRNA to inhibit gene expression (Fire et al.,

1998; Baum and Roberts, 2014). This continued exploration of

RNAi-based methods highlights its potential as a sustainable and

precise alternative to traditional chemical solutions in modern

agriculture. In fact, RNAi technology is increasingly recognized

for its potential to manage various agricultural challenges, including

insect pests, fungal pathogens, and viruses.
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2.1 SIGS for insect control

The application of dsRNA for insect control typically involves

spraying it onto plant surfaces, allowing it to be directly ingested or

absorbed by plants and later ingested by insects during feeding from

plants (Pitino et al., 2011). The dsRNA passes through digestive

system and enters insect cells, where it is processed by the Dicer

complex into small interfering RNAs (siRNAs). These siRNAs are

then incorporated into the RNA-induced silencing complex (RISC),

which targets and cleaves complementary mRNA sequences,

preventing the production of essential proteins for insect survival

(Fire et al., 1998; Lundgren and Duan, 2013). This disruption affects

vital processes such as growth, reproduction, and metabolism,

ultimately leading to insect death (Bachman et al., 2013). As

summarized, some studies have demonstrated the effectiveness of

dsRNA in managing certain insect pests (Table 1). For example, a

study by Pinheiro et al. (2020) have reported that after three days of

injecting dsRNAs on Sri Lankan weevils for target genes, their

transcript levels were significantly reduced (up to 91.4%) whereas,

feeding of weevils with targeted dsRNAs showed significant decreases

in gene transcript levels and significant mortality of insects treated

with Prosa2 and Snf7 dsRNAs (78.6 to 92.7%). In another study,

microinjection of dsRNA into the larvae of Frankliniella occidentalis
FIGURE 1

Spray-Induced Gene Silencing (SIGS) technology uses foliar dsRNA sprays to protect crops by silencing target genes. dsRNA is processed into siRNAs
by Dicer, incorporated into the RISC complex, and binds to complementary mRNA, leading to its degradation and enhanced disease resistance in
plants. The lower panel highlights the molecular mechanism of dsRNA processing and gene silencing within pathogen cells.
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TABLE 1 Some reports of dsRNA-based SIGS for the control of insects on plants by foliar spray.

e(s) Effect and Results Reference

Reduced reproduction and survival (Christiaens et al., 2020)

increased the mortality of whitefly nymphs (Chen et al., 2015)

Demonstrated 50% mortality (Jin et al., 2021)

Higher larval mortality, reduced root feeding, protection of
maize roots

(Baum et al., 2007)

Demonstrated 50-60% mortality (Choi and Vander Meer, 2019)

Demonstrated 46% mortality
(Kottaipalayam-Somasundaram
et al., 2022)

e Significant reduction in beetle population, stunted growth, and death (San Miguel and Scott, 2016)

CL3, DCL4,
Increased the gene silencing (Kumar et al., 2012)

Increased mortality, reduction in body weight of feeding larvae (Ganbaatar et al., 2017)

Reduced mobility and survival (Beernink et al., 2024)

Decreased feeding and survival (Beernink et al., 2024)

rase
Reduced feeding, impaired neurotransmission, significant
larval mortality

Demonstrated 69-74% mortality (Sharath Chandra et al., 2019)

Decreased larval survival and growth (Sang and Kim, 2020)

Impaired cuticle formation and high mortality (Christiaens et al., 2020)

BP Demonstrated 70% mortality (Ramkumar et al., 2021)
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Scientific Name Common Name Host Crop Target Gen

Acyrthosiphon pisum Pea Aphid Pea Plant Cathepsin L

Bemisia tabaci Silverleaf Whitefly Hibiscus TLR7

Chilo suppressalis Asiatic rice borer Rice ND

Diabrotica virgifera virgifera Western corn rootworm Maize Snf7

Heliothis virescens Tobacco budworm Tobacco, cotton, tomato PBAN

Hyblaea puera Teak defoliator Tectona grandis HpEcR

Leptinotarsa decemlineata Colorado potato beetle Potato Actin, V-ATPas

Manduca sexta Tobacco Hornworm Tobacco
DCL1, DCL2, D
and DCL6

Mythimna separata Oriental Armyworm Chinese cabbage Chi

Myzus persicae Green Peach Aphid Peach Actin

Nilaparvata lugens Brown Planthopper rice V-ATPase

Plutella xylostella Diamondback moth Cabbage acetylcholineste

Plutella xylostella Diamondback moth cabbage, broccoli AChE

Spodoptera frugiperda Fall Armyworm maize Chitinase

Tribolium castaneum Red Flour Beetle stored grain pest Chitin Synthase

Tuta absoluta Tomato leaf miner Tomato v-ATPase B, JH
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thrips effectively silenced key genes (V-ATPase-B, CYP3653A2, and

ApoLp-II/I), confirmed at 48 and 72 hours post-injection during the

first and second instar stages, improving tissue health and survival

whereas silencing CYP3653A2 or ApoLp-II/I increased larval

mortality, proving their essential role in vitality (Han and

Rotenberg, 2024).However, sensitivity to dsRNA varies across

insect orders, with Coleopterans (beetles) being highly responsive,

requiring only small amounts of dsRNA to achieve significant

mortality by silencing key genes (Nitnavare et al., 2021). In

contrast, Hemiptera (sucking insects) and Lepidoptera (moths and

butterflies) display more variable responses, depending on their

feeding habits and RNAi pathway efficiency (Niehl et al., 2016;

Christiaens et al., 2020). For example, foliar application of dsRNA

targeting Leptinotarsa decemlineata (Colorado potato beetle) genes

such as Actin and V-ATPase resulted in reduced population growth,

while plant-mediated RNAi targeting the CYP6AE14 gene in

Helicoverpa armigera (cotton bollworm) led to impaired growth

and reduced survival (Mao et al., 2007; San Miguel and Scott,

2016). Additionally, dsRNA targeting V-ATPase or tubulin in the

western corn rootworm agar diet effectively increased Diabrotica

virgifera larval mortality and/or development stunting (Baum et al.,

2007). Similar dsRNA-based approaches have shown promising

results in controlling pests like Myzus persicae (green peach aphid),

Tuta absoluta (tomato leaf miner), and Plutella xylostella

(diamondback moth), reducing their reproduction, survival, and

feeding behavior (Pitino et al., 2011; Camargo et al., 2016). Various

delivery methods, including foliar sprays, artificial diet feeding, and

bacterial expression of dsRNA, have been employed to enhance

dsRNA efficacy (Zha et al., 2011; Sang and Kim, 2020; Beernink

et al., 2024). Delivering dsRNA via bacteria offers advantages over in

vitro synthesis, with studies showing significant mortality in

Leptinotarsa decemlineata larvae fed on E. coli expressing dsRNA

targeting multiple genes (Zhu et al., 2011). Similar RNAi effects have

been observed in pests like Spodoptera exigua, Tuta absoluta, and

Chilo infuscatellus following ingestion of bacteria-expressed dsRNA

(Tian et al., 2009; Vatanparast and Kim, 2017; Bento et al., 2020).

Anyhow, achieving effective gene silencing under field conditions

often requires larger quantities of dsRNA.
2.2 SIGS for the control of fungal
plant pathogens

Fungal plant diseases are a major threat to global food security,

leading to annual crop yield losses of up to 20% and post-harvest

losses of about 10% worldwide (Delgado-Baquerizo et al., 2020).

Traditional methods for managing fungal pathogens rely heavily on

fungicides, which have contributed to the rise of fungicide-resistant

in fungal pathogens (Fisher et al., 2018; Imran et al., 2021;

Wang et al., 2023a). To address this, eco-friendly alternatives such

as RNAi technologies have gained attention and recent discoveries

demonstrated that many fungal pathogens can absorb environmental

RNAs, which can then trigger gene silencing of fungal targets with

complementary sequences (Koch et al., 2016; Werner et al., 2020;

Qiao et al., 2021). This has enabled the development of SIGS where

dsRNAs or sRNAs targeting fungal virulence genes are applied to
Frontiers in Plant Science 05
plants to combat infections. Foliar application of dsRNA has been

effective in controlling several fungal pathogens by targeting specific

genes (Qiao et al., 2021). The uptake of dsRNA by fungi can inhibit

growth, reduce pathogenicity by targeting the specific genes and

cause mortality (Table 2), presenting a promising alternative to

conventional pesticides. However, the efficiency of dsRNA uptake

varies across fungal species, with some fungi showing negligible

uptake, limiting RNAi effectiveness (Zhang et al., 2016). For

instance, dsRNA targeting Botrytis cinerea genes DC-L1 and DC-L2

significantly reduced its growth and virulence in grapes, decreasing

lesion size by over 80% (Nerva et al., 2020). In another study,

application of sRNA or dsRNA target DCL1 and DCL2 genes in

botrytis and demonstrated significant reduction in gray mold disease

(Wang et al., 2016). Similarly, targeting ergosterol biosynthesis genes

in Fusarium graminearum (F. graminearum) reduced fungal

transcript levels by 58%(CYP51A), 50% (CYP51B), 48% (CYP51C)

in leaves sprayed with CYP3-dsRNA and decreased pathogen DNA

in barley (Koch et al., 2016). Targeting the ergosterol biosynthesis

pathway in F. graminearum not only restricted fungal growth but also

disrupted respiration, highlighting the link between ergosterol

production and fungal metabolism (Koch et al., 2016). Moreover,

dsRNA applied to combat Austropuccinia psidii (myrtle rust) showed

both preventive and curative effects, reducing disease severity

(Degnan et al., 2023). Studies also show the potential of dsRNA to

target key respiratory genes in fungi, leading to impaired

mitochondrial respiration, reduced ATP production, and overall

growth inhibition (Table 2). For example, targeting mitochondrial

TIM44 genes in B. cinerea resulted in decreased ATP synthesis,

affecting fungal energy metabolism (Koch et al., 2016). Similar results

were seen in Sclerotinia sclerotium, where dsRNA reduced respiratory

gene expression by 50%, correlating with lower ATP levels and

impaired growth (Wytinck et al., 2020b). Fungal pathogens

primarily take up dsRNA through clathrin-mediated endocytosis

(CME), with studies confirming that inhibiting clathrin-related

genes reduces dsRNA uptake and RNAi efficacy (Wytinck et al.,

2020b). While CME is the dominant mechanism, other less-

understood endocytic pathways may also contribute to dsRNA

absorption. Understanding these mechanisms is critical for

optimizing RNAi-based strategies to improve fungal disease

management in agriculture.
2.3 SIGS for the management of
plant viruses

Plant viruses are one of the most significant threats and

emerging challenge in agriculture, leading to severe crop losses,

from stunted growth to total crop failure, impacting both yield and

quality (Tatineni and Hein, 2023; Hamim et al., 2023).

Conventional control methods often fail due to the high mutation

rates of plant viruses, whereas RNAi-based approaches, particularly

dsRNA technologies, offer a promising, sustainable alternative for

managing viral diseases, and various studies have documented the

use of dsRNA for the control of plant viruses (Table 3). When plants

are infected, viral small RNAs (vsRNAs) are produced by RNAi

machinery of plants, which processes viral dsRNAs or hairpin
frontiersin.org
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TABLE 2 Some reports of dsRNA-based SIGS for the control of fungal plant pathogens by foliar spray.

ne(s) Effect and Results Reference

Significant reduction in disease symptoms (Wang et al., 2016)

fic genes Reduced gray mold incidence (Qiao et al., 2023)

Decreased disease severity (Patel et al., 2008)

Decrease in GFP level > 90% (Espino et al., 2014)

Decreased fungal virulence and disease incidence (Zhou et al., 2021)

Reduction of pathogen sensitivity to phenamacril with
lower infection

(Song et al., 2018)

Reduced fungal growth and FHB severity (Koch et al., 2016)

Reduced fungal infection and improved yield (Baldwin et al., 2018)

3150, Fg06123 Reduction in disease development (Kim et al., 2023)

, Effective silencing, enhanced fungal sensitivity (Gu et al., 2019)

Reduced fungal growth and wilt symptoms (Singh et al., 2020)

Reduced wilt symptoms (Fan et al., 2024)

Inhibition of fungal development and reduced lesion size (Sarkar and Roy-Barman, 2021)

Lower rust infection and fungal development (Zhu et al., 2017)

Lower fungal biomass and disease symptoms (Zhao et al., 2021)

Reduced infection and fungal biomass (Mukherjee et al., 2024)

Suppressed fungal growth and disease symptoms (Wang et al., 2024a)

K1 Significant reduction in disease development (Wang et al., 2024b)
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Fungal Pathogen Disease Caused Host Crop Target Ge

Botrytis cinerea Gray mold Tomato, Grapevine Bc-DCL1
Bc-DCL2

Botrytis cinerea Gray Mold tomato Botrytis-speci

Botrytis cinerea Gray Mold Grapevine bcsod1

Botrytis cinerea Gray mold ‐‐‐ mgfp4

Colletotrichum gloeosporioides Anthracnose Mango, Chili CgLAC

Fusarium asiaticum ‐‐‐ wheat Myosin 5

Fusarium graminearum FHB Wheat, Barley Fg-CYP51

Fusarium graminearum FHB Wheat Tri5

Fusarium graminearum FHB Barley Fg10360, Fg1

Fusarium asiaticum ‐‐‐ Multiple crops b1, b2-tubulin

Fusarium oxysporum Wilting Tomato, Banana Fg-ERG11

Fusarium oxysporum Wilting Tomato Tup1

Magnaporthe oryzae Rice blast Rice MoDES1

Puccinia striiformis f. sp. tritici Stripe rust Wheat PsFUZ7

Rhizoctonia solani Sheath blight Rice Rstps2

Sclerotinia sclerotiorum White mold multiple crops SsAgo2

Verticillium dahliae Verticillium wilt Cotton VdThit

Rhizoctonia solan tobacco target spot Tobacco endoPGs/RPM
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RNAs (hpRNAs). These vsRNAs degrade complementary viral

single-stranded RNAs, acting as a natural antiviral defense (Agius

et al., 2012). Building on this, dsRNA-based silencing technologies

targeting viral genes have been developed, including engineered

dsRNAs or hpRNAs (Marjanac et al., 2009; Guo et al., 2016;

Hameed et al., 2017). The key advantage of SIGS technology in

the control of viral diseases is its ability to provide targeted control

of plant viruses with minimal off-target effects on non-target

microorganisms (Baulcombe, 2015; Mitter et al., 2017b; Rêgo-

MaChado et al., 2023). Once dsRNA corresponding to viral genes

is introduced into the plant, the RNAi pathway is activated, leading

to viral RNA degradation and suppression of viral replication,

without harming beneficial organisms in the ecosystem (Delgado-

Martıń et al., 2022). This systemic effect can extend protection

beyond the treated areas, enhancing overall plant health and

resilience (Mitter et al., 2017b). The uptake of dsRNA by plant

cells is facilitated through natural pathways like endocytosis or via

viral assistance (Mitter et al., 2017a). Inside the plant cells, Dicer-

like (DCL) enzymes cleave dsRNA into small interfering RNAs

(siRNAs), which are then incorporated into the RNA-Induced

Silencing Complex (RISC). This complex cleaves complementary

viral RNA, preventing viral replication (Zotti et al., 2018). The

RNAi response can spread throughout the plant via the vascular

system, amplifying the silencing signal and enhancing viral defense

(Singh et al., 2019). The ability of dsRNA to target essential viral

genes makes it a versatile tool for managing various viral threats in

agriculture (Mitter et al., 2017b; Cagliari et al., 2019). For example,

it was demonstrated that SIGS significantly delayed symptoms of

Tomato spotted wilt virus (TSWV) (Tabein et al., 2020), and

dsRNA stability was enhanced through delivery methods like

nanoparticle encapsulation and biopolymer incorporation (Mitter

et al., 2017a). Additionally, dsRNA applied to crops like papaya,

zucchini, and cucumber significantly reduced viral symptoms and

virus accumulation (Delgado-Martıń et al., 2022; Rêgo-MaChado

et al., 2023). Studies have also shown that dsRNA targeting specific

viral genes (e.g., RP gene in pepper against mild mottle virus, HC

gene in tobacco against tobacco etch virus, RNA3 gene in alfalfa

against alfalfa mosaic virus) can lower viral loads and delay systemic

symptoms (Tenllado and Dıáz-Ruıź, 2001; Tenllado et al., 2003).
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Similarly, hpRNA targeting Sugarcane mosaic virus (SCMV) in

maize reduced viral load, and dsRNA targeting the Nib gene in

potato enhanced resistance to potato virus Y (PVY) (Gan et al.,

2010; Sun et al., 2010). Tobacco mosaic virus was also controlled by

targeting multiple viral genes (MP, CP, RP, RNA) with dsRNA and

hpRNA, significantly reducing viral loads and infection rates

(Konakalla et al., 2016). Thus, SIGS-dsRNA technology shows

great potential for managing viral pathogens. Advances in dsRNA

stabilization techniques, such as UV protection and temperature

resilience, will be key to improving the practicality and commercial

viability of SIGS in agriculture. Additionally, the immune-priming

effects of dsRNA may improve plant resilience to other pathogens

and stressors, promoting better nutrient uptake and overall

plant vigor.
3 Major advancements in
the technology

Recent developments in the use of dsRNAs for plant protection

have focused on target selection because optimized targets allow the

precise gene silencing of specific pests or diseases, minimizing

collateral damage to beneficial microbiota and microorganisms,

and ultimately promoting ecosystem health. The integration of

biomarkers into the target selection process enables researchers to

predict biological responses with greater accuracy, thereby refining

SIGS application to enhance the effectiveness while reducing non-

target impacts. Simultaneously, advancements in the production

methods aim to scale up the availability of these siRNAs, making

them more accessible for sustainable agricultural practices.

Improved microbial and enzyme-based synthesis techniques,

alongside innovations in nanotechnology, significantly enhanced

the scalability and practicality of dsRNA applications in agriculture.

Furthermore, optimizing dsRNA design, considering factors such as

length and nucleotide composition, enhances the silencing

efficiency by improving cellular uptake and initiating RNAi more

effectively. These advancements not only lower production costs but

also improve the stability and delivery efficacy of dsRNA under

various environmental conditions, protecting it from rapid
TABLE 3 Some reports of dsRNA-based SIGS for the control of plant viruses.

Target virus Host crop Target Gene(s) Effect and Results Reference

Bean Common
Mosaic Virus

Tobacco, cowpea NIb, CP Reduced infection rate (Worrall et al., 2019)

Pepper Mottle Virus Tobacco RP Viral load reduction, phenotype resistance (Tenllado et al., 2003)

Pepper Mottle Virus Cowpea, tobacco RP Reduction of viral load, slight infection (Mitter et al., 2017a)

Plum pox virus Tobacco IR 54
1/10 dilution reduced/no disease symptoms at life
cycle completion

(Tenllado et al., 2003)

Sugarcane Mosaic Virus Maize CP Viral load reduction, no or mild systemic symptoms (Gan et al., 2010)

Sugarcane Mosaic Virus Maize CP Inhibition of SCMV infection (Gan et al., 2010)

Tobacco Mosaic Virus Tobacco RP, MP suppression of local and systemic viral dissemination (Namgial et al., 2019)

Tomato Mosaic Virus Tobacco, quinoa CP, MP Lower infection rate (Rego-MaChado et al., 2020)
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degradation. Consequently, these innovations ensure the prolonged

effectiveness of SIGS applications, expanding their utility across

diverse crops and agricultural settings and opening new horizons in

sustainable agricultural production.
3.1 Screening and selection of targets

The success of SIGS relies heavily on the precise selection and

screening of target genes (Zhao et al., 2024). Identifying the genes

that are crucial for survival, virulence, or reproduction of insect

pests and plant pathogens is essential for effective control strategies.

Advancements in bioinformatics and multi-omics technologies

have significantly improved the efficiency of this gene-targeting

process (Sigoillot et al., 2012; Ahmed et al., 2015). Among these

technologies, high-throughput sequencing and gene expression

profiling have enabled the researchers to identify differentially

expressed genes during the infection or infestation, making the

genes as a prime candidate for silencing. In contrast, comparative

genomics have facilitated the identification of conserved genes

across multiple pest species, ensuring that SIGS technology

maintains a broad spectrum of effectiveness. An illustrative

example is the Functional Representation of Gene Signatures

(FRoGS) technology, which employs machine learning to enhance

target prediction by integrating the gene functions within a

comparative analysis framework (Namba et al., 2022) and this

approach has demonstrated greater accuracy in identifying the

potential therapeutic targets compared to traditional identity-

based methods (Chen et al., 2024). Moreover, combining

transcriptomic data with genetic perturbation signatures allow the

researchers to differentiate between inhibitory and active targets,

thereby refining the selection process for SIGS applications in crop

protection. Advanced bioinformatics approaches streamline the

target identification through in silico analyses, which significantly

reduce the time and resources required for experimental validation

and this optimization is critical for developing effective and precise

SIGS strategies.
3.2 Production Methods for SIGS dsRNAs

In SIGS technology, the production methods have evolved to

meet the growing demand for effective gene silencing agents in

agricultural applications. Traditional methods, such as chemical

synthesis and in vitro transcription, are now replaced by advanced

techniques such as recombinant fermentation and cell-free

synthesis, which facilitate the large-scale production of RNA

molecules essential for SIGS and ensuring a consistent supply of

high-quality silencing agents.

Recombinant fermentation utilizes genetically modified

organisms (GMOs) for producing specific RNA sequences,

offering several advantages for dsRNA production. Utilizing

microorganisms like Escherichia coli or yeasts such as Pichia

pastoris allow the rapid growth and high-density cultures, making

this approach more cost-effective and efficient (Vieira Gomes et al.,

2018). Additionally, recombinant fermentation provides the precise
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control over production process, allowing the optimization of

conditions like temperature and nutrient supply to enhance the

yield and quality (Ross et al., 2024; da Rosa et al., 2024). Thus,

recombinant fermentation emerges as a reliable and scalable

solution for producing high quality silencing agents in

agricultural biotechnology.

Cell-free synthesis (CFS) facilitates the direct assembly of RNA

molecules without the need for living cells, presenting lower

contamination risks and faster production and this makes the

CFS particularly suitable for rapid response scenarios in

managing insect pests. Further, CFS allow the quick adjustments

of target sequences by simply altering the DNA template which

enables the simultaneous production of multiple dsRNA targets

within a single reaction vessel (Hough et al., 2022). The scalability of

CFS significantly enhances its cost-effectiveness, allowing the rapid

production and flexibility in manufacturing processes. Unlike

traditional cell-based systems that often require lengthy culture

periods and complex scaling procedures, CFS can reduce

production time from weeks to hours, facilitating the rapid

market response thereby decreasing the labour costs associated

with cell maintenance and culture management. Furthermore, CFS

systems can be easily scaled up or down without compromising the

yield or quality, accommodating the specific production needs

without substantial additional costs and this adaptability is

beneficial particularly for producing the small batches of

specialized products. However, a major bottleneck of CFS is the

stability and cost of transcriptase.

Ongoing research on optimizing these production methods to

enhance the yield and reduce the costs should be prioritized.

Innovations in bioprocessing technologies can improve SIGS

production efficiency and promote wider adoption in crop

protection strategies against insects, fungi and viruses. These

advancements in production methods are fundamental for

enhanced efficacy and applicability of SIGS technology in

agriculture and ultimately pave the way for sustainable crop

protection and promote green agriculture. Once upon a time, cost

is one primary factor constraining the large-scale application of

SIGS. However, this is not a problem now. In fact, the cost for

dsRNA production is quickly decreased along with the

industrialization. For example, RNAGri had the ability to produce

tons of dsRNA at a cost of 1$/g (Guan et al., 2021), while Greenlight

Biosciences further reduced the cost of dsRNA synthesis by

combination of microbial fermentation and CFS technologies

(https://www.greenlightbiosciences.com/how-do-we-make-rna).
3.3 Delivery efficiency of SIGS

Efficient delivery of dsRNA remains a core challenge in

achieving effective outcomes in SIGS, particularly for protecting

the crops from a variety of insect pests and pathogens. The delivery

vehicle should safeguard the RNA molecules from environmental

degradation, and may also facilitate their uptake into plant tissues

because successful delivery requires that dsRNA reaches the target

organism in sufficient quantities to elicit a silencing response. As

summarized in Figure 2, the current delivery approaches include
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microinjection, controlled release, feeding of dsRNA-containing

diet, foliar spray, and trunk inoculation (Wuriyanghan et al.,

2011; Pinheiro et al., 2020). The choice of carriers significantly

influences the delivery efficiency. Many recent studies have focused

on enhancing RNA stability and controlled release through diverse

nanocarrier systems and encapsulation technologies (Pal et al.,

2024). Thus, various carriers including nanoparticles (NPs), have

been explored to improve the stability and uptake by target

organisms (Koch et al., 2019).

To optimize these conditions, various NPs, such as chitosan,

polyethyleneimine, and layered double hydroxide (LDH) clay

nanosheets, have been explored. They can not only protect the

RNA from environmental degradation but also demonstrate

facilitated absorption by target pathogens thereby significantly

increased the gene silencing efficacy. Studies have demonstrated

that chitosan and LDH considerably improved the dsRNA stability,

and prolonged the protective effects against pathogens for up to 20

days, making them highly suitable for agricultural applications where

durability is the most crucial factor (Koch et al., 2019). A study has

highlighted the effectiveness of NPs in delivering dsRNA for targeted

protection against Rhizoctonia solani, the pathogen responsible for

rice sheath blight, where RsAGO1 and RsAGO2 were identified as the

effective targets for dsRNA interference (Wang et al., 2023b). NPs of

protamine, carbon quantum dots and graphene quantum dots

demonstrated the ability to form stable nanoparticle-dsRNA
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structures and effectively silenced MGV1 and RAS1 genes of F.

graminearum (Gyawali et al., 2024). Notably, carbon quantum dots

and chitosan/SPc complexes enhanced the dsRNA loading capacity

by maintaining the functionality with only a 7% reduction in

fluorescence intensity post-nuclease treatment (Wang et al., 2023b).

Some other carriers, like liposomes and carbon nanotubes, have also

been utilized as NPs offer superior stability and delivery efficiency,

which makes them the optimal for SIGS applications because NP

carriers reduce the frequency of applications and minimize the

chemical runoff into ecosystems (Mittal et al., 2020). This targeted

delivery effectively silences the specific genes in pests and pathogens

without affecting non-target organisms by reducing the reliance on

broad-spectrum pesticides. Additionally, these biodegradable carriers,

derived from renewable resources, also mitigate the environmental

toxicity associated with traditional chemical treatments.
4 Remaining questions and concerns
in SIGS

Despite the promising potential of SIGS technology for crop

protection, several critical challenges must be addressed to optimize

its efficacy and safety. One of the primary concerns is the stability of

the RNA molecules utilized in gene silencing, as various

environmental factors and enzymatic activities in plants can
FIGURE 2

Delivery efficacy of dsRNA in SIGS technology. The figure highlights multiple dsRNA delivery methods: nanoparticle-based delivery for effective gene
silencing and insect mortality, controlled release mechanisms, dsRNA injection into plant tissues, foliar/trunk inoculation via sprays, and feeding diets
containing dsRNA for targeted pest control. These approaches improve stability, delivery, and efficiency of dsRNA in crop protection.
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degrade these RNA molecules. Although researchers have

documented that the structural modifications to RNA can

enhance its stability, these modifications may also influence

silencing efficiency (Dubrovina and Kiselev, 2019). Achieving

consistent delivery and expression levels in targeted plants

remains a significant challenge, as variations in plant responses to

SIGS treatments can lead to inconsistent outcomes. This variability

highlights the necessity for further optimization of application

protocols and formulations. To tackle these issues, researchers

have investigated various encapsulation methods, and embedding

dsRNA in protective nanocarriers considerably increased the

stability and persistence on plant surfaces (Guo et al., 2022; Pal

et al., 2024). For example, the delivery of dsRNA to soybean aphid

Aphis glycines demonstrated rapid penetration into the body wall

within 4 hours with the help of nanocarrier. Through the topical

application effectively silenced the target gene expression with the

knockdown effects ranging from 86.86 to 58.87% and demonstrated

higher mortality up to 81.67% (Yan et al., 2020). Among these

nanocarriers, clay nanosheets have demonstrated considerable

potential by effectively shielding the dsRNA from degradation due

to UV exposure and heat while facilitating a gradual release. This

sustained release allows for a prolonged presence of RNA on the

plant, thereby maintaining the bioactivity of the molecules and

dwindling the gap for gene silencing effects (Mitter et al., 2017a).

Another significant challenge associated with SIGS is the risk of

off-target effects. While SIGS is designed to specifically target certain

genes, the inherent specificity of RNAi relies heavily on the sequence

complementarity between the dsRNA/siRNA and the intended target

gene. Unintended interactions with non-target genes can lead to

adverse effects on plant health and development, as evidenced by

studies documenting off-target silencing due to sequence homology

(Chen et al., 2021). To mitigate these risks, bioinformatics tools,

including homology-based sequence screening and predictive

modelling, are increasingly utilized to refine target selection and

minimize off-target effects. Nevertheless, extensive in vivo testing

across diverse plant species remains crucial for further assessing and

mitigating these risks, underscoring the need for robust methods to

predict and evaluate off-target activity (Dubrovina and Kiselev, 2019;

Vetukuri et al., 2021). As dsRNA might persist in soil and enter the

food chain, posing potential risks to biodiversity and human health

(Papadopoulou et al., 2020). Thus, addressing these challenges

requires developing the biosafety frameworks and advanced

predictive models to assess dsRNA persistence and its pathways in

non-target organisms (San Miguel and Scott, 2016). The integration

of SIGS with traditional chemical controls and advanced

nanotechnology offers promising potential for sustainable IPM

strategies. This combination may significantly enhance the

effectiveness of agricultural practices in managing plant pathogens

and pests.

In addition, weed species significantly reduce agricultural

productivity by competing for essential resources, such as water,

light, and nutrients (Horvath et al., 2023). Their rapid reproduction

is aided by traits like deep root systems and allelopathic substance

release, which inhibit crop growth and promote pathogens,

ultimately increasing cultivation costs (Trognitz et al., 2016).

Studies across Europe have identified numerous weed species in
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various crops, with notable examples including Fallopia convolvulus

and Amaranthus retroflexus (Gerhards et al., 2017; Hofmeijer et al.,

2021). A patent has explored SIGS to combat herbicide resistance,

such as restoring glyphosate efficacy in Amaranthus palmeri

(Sammons et al., 2011). An interesting study designed three types

of RNAi-based herbicides that specifically silenced endogenous

target genes and controlled the growth of Mikania micrantha

Kunth (Mai et al., 2021). In particular, the study shown that weed

leaves turned yellow and eventually wilted after spray of dsRNA

targeting Chlorophyll a/b-binding protein. However, genetic

similarity between crops and weeds complicates the design of

dsRNAs that risking off-target effects in related crops. Addressing

the challenges of delivering stable siRNA formulations and

enhancing genomic knowledge of weeds is crucial for making

SIGS a viable alternative to conventional herbicides (Zabala-

Pardo et al., 2022). Despite advancements in RNAi for insect

pests and viruses, its application for weed management remains

limited, and to the best of our knowledge and based on

available literature.

Generally, SIGS technology offers targeted pest control, rapid

response, and reduced pesticide reliance, enhancing crop resilience.

However, in almost all of these studies pathogens were inoculated

simultaneously with or shortly after dsRNA treatment, which is

different from the real situation. Under natural conditions,

pathogens often have already existed in the plant tissue, therefore

limiting the value in application. Meanwhile, most of the studies

were conducted using disease models and little field studies were

conducted. From a practical point, SIGS also faces challenges like

variable efficacy, regulatory hurdles, and high costs, including risks

like off-target effects, resistance development, and concerns about

dsRNA stability and public perception of genetic manipulation

(Figure 3). Thus, to enhance the application of SIGS technology,

several key scientific questions need exploration, which includes

identifying the specific RNA modifications that improve stability

while preserving silencing efficiency, refining predictive models for

off-target effects to increase accuracy across diverse plant species,

and assessing the ecological impacts of dsRNA persistence in soil on

non-target organisms. Additionally, understanding how SIGS

integration with other pest management strategies can influence

the resistance development in target pathogens is vital, and

establishing the regulatory frameworks for the safe application of

SIGS under field conditions is essential. Thus, addressing these

questions will be crucial for optimizing the efficacy and safety of

SIGS in sustainable agricultural practices.
5 Emerging trends

In green agriculture, fungal and bacterial communities are

emerging as effective biocontrol agents in sustainable agriculture

due to their eco-friendly performance (Aldayel et al., 2024; Imran

et al., 2024). These biocontrol agents produced various volatile

metabolites and hydrolytic enzymes that can enhance the efficacy

of dsRNA applications for pest and pathogen management because

these compounds serve as signalling molecules, triggering plant

defence mechanisms and complementing the effects of dsRNA,
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which targets specific genes in pests and pathogens to inhibit their

growth (Imran et al., 2022). Further, these species respond to the

volatile compounds emitted from pathogens and upregulate

biocontrol-related genes, thereby producing antifungal metabolites

(Giorgio et al., 2015; Li et al., 2018). This interaction not only

amplifies the inhibitory effects of dsRNA but also bolsters plant

resilience against biotic stresses, suggesting that combining volatile

compounds with dsRNA strategies could yield synergistic benefits.

High-throughput screening methods for identifying effective bacterial

biocontrol agents can further enhance the application of dsRNA

technologies, allowing simultaneous screening of thousands of

candidates and improving overall biocontrol strategies (Hough

et al., 2022; Kjeldgaard et al., 2022). Emerging trends in SIGS

technology highlight its potential to revolutionize crop protection

through innovative applications and methodologies as it enables

targeted gene silencing to control pests and pathogens by delivering

dsRNA molecules to crops, positioning it as a promising alternative

to traditional pesticides. Further, it offers a more sustainable, targeted,

and environmentally friendly solution. Current trends in SIGS

emphasize overcoming these challenges by integrating new

technologies, particularly focusing on nanotechnology and the

production of dsRNA by biocontrol agents to enhance the efficacy

of RNA-based applications.
5.1 Combination with nanotechnology

The integration of nanotechnology into SIGS represents a

significant advancement in enhancing the stability, delivery
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efficiency, and targeted action of dsRNA molecules. Encapsulating

dsRNA within NPs protects it from environmental factors that

influence its effectiveness under open field conditions, thereby

extending its functional longevity. This encapsulation reduces the

frequency of applications needed for gene silencing and minimizes

the costs. Various NP carriers, including liposomes, biopolymer

nanoparticles, and virus-like particles (VLPs), have been explored

(Pal et al., 2024) for their potential to deliver dsRNA effectively. For

example, liposomes encapsulate dsRNA in lipid bilayers that mimic

cellular membranes, facilitating the absorption by plant cells, while

biopolymer NPs derived from natural or synthetic polymers offer

biocompatibility and controlled release properties, making them

more suitable for agricultural applications (Ghosh et al., 2023).

Contrary to VLPs, which resemble viruses but lack infectious

genetic material, also deliver dsRNA by evading the host defense

that typically degrades foreign genetic material and enhances the

stability and precision (Sarkar and Roy-Barman, 2021; Ghosh et al.,

2023). One notable advantage of NP use is the improved stability of

dsRNA in alkaline environments, such as insect guts, where it

would otherwise degrade rapidly, as studies have shown that specific

NP formulations can protect the dsRNA from high pH and

enzymatic changes, prolonging its activity and enhancing its

insecticidal efficacy (Qiao et al., 2023). This is particularly

relevant for controlling pests with alkaline gut environments,

where traditional dsRNA applications may fail without NP

protection (Yang et al., 2022). Furthermore, nanotechnology

enables controlled release mechanisms that enhance the

persistence of RNAi agents on plant surfaces by minimizing their

application frequency required for effective pest management
FIGURE 3

An overview of the core advantages, potential risks and drawbacks of dsRNA application in agriculture associated with SIGS technology for
crop protection.
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(Dhandapani et al., 2022). Thus, the combination of SIGS with

nanotechnology not only addresses RNA stability challenges but

also paves the way for more targeted and efficient crop

protection strategies.
5.2 Consideration of mycovirus

As major drivers for controlling host populations and evolution,

viruses are potential biological control agents (Wagemans et al.,

2022). Mycoviruses are viruses that infect fungi, and some

mycoviruses may alter fungal host pathogenicity resulting in

hypervirulence or hypovirulence and therefore could be used for

plant protection. Hypovirulence-inducing mycoviruses represent a

powerful means to defeat fungal epidemics on crop plants.

Infections of fungi by mycoviruses are sometimes fatal, as they

perturb sporulation, growth, and, if applicable, virulence of the

fungal host. A dsRNA chrysovirus-like mycovirus (FgV-ch9)

debilitates Fusarium graminearum, the causal agent of fusarium

head blight (Bormann et al., 2018). The chrysovirus FodV1 also

induces hypovirulence of its host F. oxysporum, which causes

vascular wilt in carnation by decreasing the colonizing efficiency

of its fungal host (Torres-Trenas et al., 2019). A novel mycovirus,

designated as PtCV1, from the fungus Pestalotiopsis theae (P.

theae), a pathogen of tea, has four dsRNAs as its genome. PtCV1

can significantly reduce the growth rates of its host fungus in vitro

and abolish its virulence in planta, converting its host fungus to a

non-pathogenic endophyte on tea leaves, while PtCV1-free isolates

were highly virulent (Zhou et al., 2021). Moreover, the presence of

PtCV1 conferred high resistance to the host plants against the

virulent P. theae strains. In fact, it was found that a large proportion

of Fusarium isolates (46%) were infected with mycoviruses and five

mycoviruses were shared between F. graminearum and F.

culmorum (Buivydaitė et al., 2024). Therefore, the presence of

these hypovirulence-inducing mycoviruses may reduce the fitness

of a fungal pathogen and enhance the effectiveness of RNAi-based

control. For example, it was found a fungal host’s RNAi machinery

is upregulated in the presence of mycovirus that lacks a virus-

encoded suppressor (VSR), compared to one that has an active VSR

(Zhang et al., 2008).

On the other side, the presence of mycoviruses may disrupt

the fungal RNAi and derail the efficacy of SIGS control strategy,

which requires functional RNAi in the target cell. This is because

some mycoviruses produce VSRs, that disrupt their host’s RNAi

(Aulia et al., 2021; Ko et al., 2021). These VSRs either suppress

the transcription of key enzymes (like DCL2 and AGL2) or reduce

the accumulation of siRNA to repress fungal RNAi (Rodriguez

et al., 2022; Myers and James, 2022). For example, Aspergillus virus

1816 was capable of suppressing RNAi and this resulted in reduced

siRNA in A. nidulans (Hammond et al., 2008). Similarly, the

Rosellinia necatrix mycoreovirus 3 showed VSR activity and

suppressed RNAi in Nicotiana benthamiana, possibly by less
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accumulation of siRNA (Yaegashi et al., 2013). Therefore, these

VSRs might be novel add-on targets for dsRNA-based SIGS, as

silencing them can maintain or even enhance the RNAi

machinery of the fungal host. Meanwhile, co-application of

mycovirus that lacks VSRs and dsRNA will probably enhance the

stability of dsRNA by counteracting degradation, achieving

prolonged and effective gene silencing. Moreover, mycovirus can

be engineered by inserting the target transcript in both sense and

antisense orientations, which can convert pathogenic fungi into

hypovirulent strains by silencing the target gene. As reported, a

mycovirus, FgGMTV1, has been successfully engineered and

efficiently triggered gene silencing in F. graminearum (Zhang

et al., 2023). This is highly promising, as the strategy combined

the infectious property of mycovirus and the RNAi mechanism, also

simplified the requirements for production and storage.
6 Conclusion and prospects

Plants utilize dsRNA for producing siRNA, driving gene

silencing and enhancing resistance to pathogens, and this RNAi

mechanism allows crops to downregulate critical genes, effectively

preventing their further development while minimizing unintended

effects through precise, targeted action. However, enhancing target

specificity through multi-omics gene selection approaches

can minimize off-target effects by preserving the biodiversity,

but for this, long-term field studies are required that will

inform the regulatory guidelines. Besides, integrating SIGS with

IPM and precision agriculture can reduce crop losses and

support soil health and beneficial microbiota, as topical

application of dsRNA can trigger a protective response, providing

reliable control without the adverse impacts associated with

traditional chemicals.

Further research on optimal dsRNA concentration, stability,

and delivery systems is crucial for realizing the potential of SIGS

in sustainable crop disease management. Efficient carriers, such as

nanoparticles and bio-based polymers, can enhance dsRNA

uptake, while cost-effective production methods like microbial

fermentation and cell-free synthesis make SIGS accessible to

resource-limited farmers in the form of powders and gels by

simplifying transportation and application. To some extent,

recent advancements have addressed the production costs,

stability, and off-target effects, positioning RNAi as a promising

eco-friendly alternative to synthetic pesticides. In SIGS, pathogen-

specific genes are employed to inhibit the growth and pathogenicity,

which offers a viable alternative and minimizes the adverse effects to

non-target species. However, in-depth addressing of these

challenges can effectively scale this technology in a broad

spectrum. With ongoing advancements, SIGS is poised to play a

pivotal role in meeting global food demands, aligning with the

“Third Green Revolution” to ensure effective crop protection and

food security.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1527944
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1527944
Author contributions

CC: Funding acquisition, Investigation, Methodology, Writing –

original draft, Writing – review & editing. IM: Writing – original draft,

Writing – review& editing. XF: Data curation, Formal analysis,Writing

– review & editing. XS: Conceptualization, Project administration,

Supervision, Writing – review & editing. ZS: Conceptualization,

Funding acquisition, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. Supported by

the Open Project Program of State Key Laboratory for Crop Stress

Resistance and High-Efficiency Production (CSBAAKF2021005);

Training Plan of Young Backbone Teachers in Colleges and

Universities of Henan Province, China (2021GGJS139); the Key

Scientific and Technological Project of Henan Province,

China (242102110214).
Frontiers in Plant Science 13
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Agius, C., Eamens, A. L., Millar, A. A., Watson, J. M., and Wang, M. B. (2012). RNA
silencing and antiviral defense in plants. Methods Mol. Biol. 894, 17–38. doi: 10.1007/
978-1-61779-882-5_2

Ahmed, F., Dai, X., and Zhao, P. X. (2015). Bioinformatics tools for achieving better
gene silencing in plants. Methods Mol. Biol. (Clifton N.J.) 1287, 43–60. doi: 10.1007/
978-1-4939-2453-0_3

Aktar, W., Sengupta, D., and Chowdhury, A. (2009). Impact of pesticides use in
agriculture: their benefits and hazards. Interdiscip. Toxicol. 2, 1–12. doi: 10.2478/
v10102-009-0001-7

Aldayel, M. F., Alrajeh, H. S., Sallam, N. M. A., and Imran, M. (2024). Bacillus
amyloliquefaciens IKMM and zinc nanoparticles as biocontrol candidate induce the
systemic resistance by producing antioxidants in tomato plants challenged with early
blight pathogen. J. Crop Health 76, 87–103. doi: 10.1007/s10343-023-00942-0

Aulia, A., Hyodo, K., Hisano, S., Kondo, H., Hillman, B. I., and Suzuki, N. (2021).
Identification of an RNA silencing suppressor encoded by a symptomless fungal
hypovirus, cryphonectria hypovirus 4. Biology 10 (2), 100. doi: 10.3390/biology10020100

Bachman, P. M., Bolognesi, R., Moar, W. J., Mueller, G. M., Paradise, M. S.,
Ramaseshadri, P., et al. (2013). Characterization of the spectrum of insecticidal
activity of a double-stranded RNA with targeted activity against Western Corn
Rootworm (Diabrotica virgifera virgifera LeConte). Transgenic Res. 22, 1207–1222.
doi: 10.1007/s11248-013-9744-1

Baldwin, T., Islamovic, E., Klos, K., Schwartz, P., Gillespie, J., Hunter, S., et al. (2018).
Silencing efficiency of dsRNA fragments targeting Fusarium graminearum TRI6 and
patterns of small interfering RNA associated with reduced virulence and mycotoxin
production. PloS One 13, e0202798. doi: 10.1371/journal.pone.0202798

Baulcombe, D. C. (2015). VIGS, HIGS and FIGS: small RNA silencing in the
interactions of viruses or filamentous organisms with their plant hosts. Curr. Opin.
Plant Biol. 26, 141–146. doi: 10.1016/j.pbi.2015.06.007

Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., et al.
(2007). Control of coleopteran insect pests through RNA interference. Nat. Biotechnol.
25, 1322–1326. doi: 10.1038/nbt1359

Baum, J. A., and Roberts, J. K. (2014). “Advances in insect physiology,” in Progress
Towards RNAi-Mediated Insect Pest Management. Eds. T. S. Dhadialla and S. S. Gill
(Elsevier, London, UK), 249–295. doi: 10.1016/B978-0-12-800197-4.00005-1

Beernink, B. M., Amanat, N., Li, V. H., Manchur, C. L., Whyard, S., and Belmonte, M.
F. (2024). SIGS vs. HIGS: opportunities and challenges of RNAi pest and pathogen
control strategies. Can. J. Plant Pathol. 46, 1–15. doi: 10.1080/07060661.2024.2392610

Bennett, M., Deikman, J., Hendrix, B., and Iandolino, A. (2020). Barriers to Efficient
Foliar Uptake of dsRNA and Molecular Barriers to dsRNA Activity in Plant Cells.
Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00816

Bento, F. M., Marques, R. N., Campana, F. B., Demétrio, C. G., Leandro, R. A., Parra,
J. R. P., et al. (2020). Gene silencing by RNAi via oral delivery of DsRNA by bacteria in
the South American tomato pinworm, tuta absoluta. Pest Manage. Sci. 76, 287–295.
doi: 10.1002/ps.5513

Bormann, J., Heinze, C., Blum, C., Mentges, M., Brockmann, A., Alder, A., et al. (2018).
Expression of a structural protein of the mycovirus FgV-ch9 negatively affects the transcript
level of a novel symptom alleviation factor and causes virus infection-like symptoms in
Fusarium graminearum. J. Virol. 92, e00326–e00318. doi: 10.1128/JVI.00326-18
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Christiaens, O., Whyard, S., Vélez, A. M., and Smagghe, G. (2020). Double-stranded
RNA technology to control insect pests: current status and challenges. Front. Plant Sci.
11. doi: 10.3389/fpls.2020.00451

Dalakouras, A., Jarausch, W., Buchholz, G., Bassler, A., Braun, M., Manthey, T., et al.
(2018). Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by
trunk injection and petioleaAbsorption. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01253

da Rosa, J., Viana, A. J. C., Ferreira, F. R. A., Koltun, A., Mertz-Henning, L. M.,Marin, S.
R. R., et al. (2024). Optimizing dsRNA engineering strategies and production in E. coli
HT115 (DE3). J. Ind. Microbiol. Biotechnol. 51, kuae028. doi: 10.1093/jimb/kuae028
frontiersin.org

https://doi.org/10.1007/978-1-61779-882-5_2
https://doi.org/10.1007/978-1-61779-882-5_2
https://doi.org/10.1007/978-1-4939-2453-0_3
https://doi.org/10.1007/978-1-4939-2453-0_3
https://doi.org/10.2478/v10102-009-0001-7
https://doi.org/10.2478/v10102-009-0001-7
https://doi.org/10.1007/s10343-023-00942-0
https://doi.org/10.3390/biology10020100
https://doi.org/10.1007/s11248-013-9744-1
https://doi.org/10.1371/journal.pone.0202798
https://doi.org/10.1016/j.pbi.2015.06.007
https://doi.org/10.1038/nbt1359
https://doi.org/10.1016/B978-0-12-800197-4.00005-1
https://doi.org/10.1080/07060661.2024.2392610
https://doi.org/10.3389/fpls.2020.00816
https://doi.org/10.1002/ps.5513
https://doi.org/10.1128/JVI.00326-18
https://doi.org/10.1016/j.virusres.2024.199462
https://doi.org/10.3389/fpls.2019.01319
https://doi.org/10.1016/j.mib.2018.02.003
https://doi.org/10.1126/science.aar4142
https://doi.org/10.7717/peerj.2673
https://doi.org/10.1038/s41467-024-46089-y
https://doi.org/10.1080/15476286.2020.1868680
https://doi.org/10.1186/s12896-015-0170-8
https://doi.org/10.1093/jee/toy356
https://doi.org/10.3389/fpls.2020.00451
https://doi.org/10.3389/fpls.2018.01253
https://doi.org/10.1093/jimb/kuae028
https://doi.org/10.3389/fpls.2025.1527944
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1527944
Das, P. R., and Sherif, S. M. (2020). Application of exogenous dsRNAs-induced RNAi
in agriculture: challenges and triumphs. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.00946

Degnan, R. M., Shuey, L. S., Radford-Smith, J., Gardiner, D. M., Carroll, B. J., Mitter,
N., et al. (2023). Double-stranded RNA prevents and cures infection by rust fungi.
Commun. Biol. 6, 1234. doi: 10.1038/s42003-023-05618-z

Delgado-Baquerizo, M., Guerra, C. A., Cano-Dıaz, C., Egidi, E., Wang, J. T., Eisenhauer,
N., et al. (2020). The proportion of soil-borne pathogens increases with warming at the global
scale. Nat. Clim. Change 10, 550–554. doi: 10.1038/s41558-020-0759-3
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