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HuangZhen Lv1,2,3, Fankui Zeng4*† and Chengxu Lv1*†

1Chinese Academy of Agricultural Mechanization Sciences Croup Co., Ltd., Beijing, China, 2Key
Laboratory of Agricultural Products Processing Equipment in the Ministry of Agriculture and Rural
Affairs, Beijing, China, 3China National Packaging and Food Machinery Co., Ltd., Beijing, China,
4Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou, China
Currently, potato defect sorting primarily relies on manual labor, which is not

only inefficient but also prone to bias. Although automated sorting systems offer

a potential solution by integrating potato detection models, real-time

performance remains challenging due to the need to balance high accuracy

and speed under limited resources. This study presents an enhanced version of

the YOLO v5s model, named YOLO v5s-ours, specifically designed for real-time

detection of potato defects. By integrating Coordinate Attention (CA), Adaptive

Spatial Feature Fusion (ASFF), and Atrous Spatial Pyramid Pooling (ASPP) modules,

the model significantly improves detection accuracy while maintaining

computational efficiency. The model achieved 82.0% precision, 86.6% recall,

84.3% F1-Score and 85.1% mean average precision across six categories —

healthy, greening, sprouting, scab, mechanical damage, and rot — marking

improvements of 24.6%, 10.5%, 19.4%, and 13.7%, respectively, over the

baseline model. Although memory usage increased from 13.7 MB to 23.3 MB

and frame rate slightly decreased to 30.7 fps, the accuracy gains ensure the

model’s suitability for practical applications. The research provides significant

support for the development of automated potato sorting systems, advancing

agricultural efficiency, particularly in real-time applications, by overcoming the

limitations of traditional methods.
KEYWORDS
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1 Introduction

Potatoes rank as the fourth most cultivated food crop globally, following rice, wheat,

and corn (Cui et al., 2020). With China leading in production area and annual output (Luo

et al., 2022). Beyond their nutritional and medicinal value, potatoes are a key raw material

for various industries, including plastics, paper, and chemicals, largely due to their starch
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content. However, defects such as greening, sprouting, scabbing,

mechanical damage, and rot can arise during harvesting,

transportation, and storage, which significantly reduce their

quality and market value.

Currently, potato defect detection primarily relies on manual

inspection, which is time-consuming, labor-intensive, and subject

to human error. This reliance on manual methods has limited

advancements in automated potato processing. Researchers have

increasingly turned to machine vision technologies to enhance

defect detection efficiency. For instance, Li et al. (2018) used

color-saturation and three-dimensional geometric features to

identify potato sprout eyes, achieving a recognition rate of

91.48%. Similarly, Lv et al. (2021) employed Gabor features for

potato image filtering, reaching a 93.4% recognition rate for

sprouting. Despite these successes, traditional image- processing

methods have limited ability to simultaneously detect multiple

defect types, which reduces their practical applicability.

Deep learning techniques have advanced the field by enabling

automatic learning of low- and high-level features in images, and

object detection models are now widely applied in agricultural

inspections (He et al., 2022; Li et al., 2023; Senthil et al., 2023;

Wang et al., 2023). Existing approaches can generally be divided

into two categories: two-stage detectors, represented by Faster R-

CNN (Ren et al., 2017), and single-stage detectors, such as YOLO

(Redmon and Farhadi, 2018; Bochkovskiy et al., 2020; Ge et al.,

2021; Zhu et al., 2021) and SSD (Zhao et al., 2019). While two-stage

detectors excel in accuracy, single-stage detectors like YOLO offer a

better balance between detection speed and accuracy, which is

critical for real-time applications. Recent YOLO-based studies in

potato inspection have yielded positive results. For example, Zhang

et al. (2023) improved the YOLO v5 model by incorporating an

attention mechanism for detecting potato seed eyes. Shi et al. (2022)

enhanced YOLO v3 by expanding the dataset to include occluded

seed eyes, mechanical damage, and impurities. Zhang et al. (2021)

combined Mobilenet V3 and YOLO v4 networks to accurately and

efficiently detect potato damage during the harvesting process. Fu

et al. (2021) applied YOLO v4 to detect various surface defects,

while Yang et al. (2022) combined YOLO v3 tiny with the Res2Net

module to detect issues like sprouting and damage.

These YOLO models have made strides in potato defect

detection, but the simultaneous detection of multiple defects is

still relatively rare. The high similarity among certain potato defect

types and the potential loss of feature information during

downsampling can reduce model accuracy. Standard YOLO

models are not optimized to address these issues fully. Therefore,

this study proposes an improved YOLO v5s-based model for

detecting external defects in potatoes. By incorporating

Coordinate Attention (CA) to capture essential features and

combining Adaptively Spatial Feature Fusion (ASFF) with Atrous

Spatial Pyramid Pooling (ASPP) to enhance multi-scale features

fusion, our model aims to achieve higher accuracy without

compromising speed. This enhanced detection method inherits

the detection of multiple single defects and holds significant

potential in advancing automated potato sorting systems and

improving agricultural processing efficiency.
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2 Materials and methods

2.1 Model construction

2.1.1 Network structure of the improved
YOLO v5s

YOLO is an end-to-end object detection model that processes

images directly to identify classes and bounding boxes, achieving

high speed and accuracy. Unlike region-based models that require

many candidate boxes for classification and localization, YOLO

offers greater efficiency, especially for real-time applications. YOLO

v5 builds on YOLO v4, with improvements in model structure,

network architecture, and loss functions. This study employs YOLO

v5s, a lighter model ideal for real-time defect detection in

agricultural applications. The network comprises four parts:

Input, Backbone, Neck, and Prediction.

The Input section applies Mosaic data augmentation, adaptive

anchor box computation, and image scaling to enrich the

background, optimize anchor boxes, and standardize image sizes.

The Backbone uses CBS (Conv2d + Batch Normalization + SiLU),

Bottleneck Cross Stage Partial Connections (CSP), and a serial Spatial

Pyramid Pooling - Fast (SPPF) (instead of parallel Spatial Pyramid

Pooling (SPP)), which reduces computational load and enhances

detection speed without sacrificing accuracy. The Neck network, with

its Feature Pyramid Networks(FPN) + Path Aggregation Network

(PANet) structure, enhances classification and positional

information, with the FPN layer reinforcing semantic information

from top to bottom and the PAN layer adding positional data from

bottom to top. Finally, the Prediction section outputs feature maps at

three scales (80×80, 40×40, and 20×20), to detect small, medium, and

large targets, which boosts the model’s accuracy and real-time

performance in detecting external potato defects.

This study addresses the challenge of detecting similar potato

defects against complex background by integrating the CA

mechanism at the front of the detection head, allowing for precise

localization. Additionally, the ASFF algorithm and ASPP algorithm

are incorporated into the PAN structure to facilitate multi-scale

feature fusion and expand the receptive field, which improves

feature utilization. Finally, the Alpha-IoU loss function is

employed to further enhance detection accuracy. Figure 1

illustrates the architecture of this improved YOLO v5s model,

designed specifically for detecting external defects in potatoes.

2.1.2 Coordinate attention
To capture key defect features from complex visual information

and accurately distinguish between defects with similar

characteristics, this study integrates the CA mechanism. The CA

module, illustrated in Figure 2, is designed to enable precise

localization of defect targets. It consists of two main components:

Coordinate Information Embedding (CIE) and Coordinate

Attention Generation (CAG). Together, these components

incorporate both channel relationships and spatial positional

information. By capturing precise positional cues and encoding

channel relationships along with long-range dependencies, the CA

module substantially improves detection accuracy.
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The Coordinate Information Embedding (CIE) component,

illustrated in Figure 2, includes the X Avg Pool and Y Avg Pool

sections. This component enable the attention module to capture long-

range spatial dependencies with precise positional information by

decomposing global pooling into two one-dimensional feature

encoding operations. For each input X, pooling kernels with

dimensions (H, 1) and (1, W) are applied to encode each channel

along the horizontal and vertical directions, respectively. Consequently,

the output for the c-th channel at height h is expressed by Equation 1.
Frontiers in Plant Science 03
zhc (h) =
1
W o

0≤i≤W
xc(h, i) (1)

The output representation for the cth channel at width w is

provided in Equation 2.

zwc (h) =
1
H o

0≤j≤W
xc(j,w) (2)

The pooling operations (in Equations 1, 2) break down the

global information into two spatially aware components—one

focused on the vertical (H) and the other on the horizontal (W)

direction. This division helps the model maintain positional

accuracy in one direction while capturing long-range

dependencies in the other. This is especially useful for detecting

defects with varying shapes and orientations, like those on potatoes,

where spatial relationships are critical.

The Coordinate Attention Generation stage corresponds to the

remaining part of the diagram. In this stage, the two generated

feature maps (The data representation after processing by the

convolutional neural network) are first transformed and

concatenated. Dimensionality reduction is then applied using a 1

× 1 convolutional kernel and an activation function, resulting in the

final feature map, as represented in Equation 3.

f = d (F1(½zh, zw�)) (3)

Here, d denotes the concatenation operation, F1 represents the

1×1 convolution operation, zh is the output feature map for the
FIGURE 2

Coordinate attention module structure.
FIGURE 1

Improved network architecture for YOLO v5s.
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channel at height h, and zw is the output feature map of the channel

at width w.

Along the spatial dimension, a split operation divides the

feature map into two parts: f h ∈ RC=r�H�1 and f w ∈ RC=r�1�W .

Next, an ascending dimension operation is applied using a 1×1

convolution, followed by a sigmoid activation function to generate

the attention vectors gh ∈ RC�H�1 and gw ∈ RC�1�W , as shown in

Equations 4 and 5.

gh = s (Fh(f
h)) (4)

gw = s (Fw(f
w)) (5)

In this context, s represents the sigmoid activation function,

while Fh and Fw denote the 1×1 convolution operation along the X

and Y directions, respectively. The terms fh and fw refer to the

output feature maps from the split operation along the X and Y

directions. Using gh and gw as attention weights, the final output of

the CA module is provided in Equation 6.

yc(i, j) = xc(i, j)� ghc (i)� gwc (j) (6)

Where xc(i,j) denotes the original feature map, ghc (i) and gwc (j)

denote the attention weights in the X and Y directions, and yc(i,j)

denotes the output feature map.
2.1.3 Adaptive spatial feature fusion and Atrous
Spatial Pyramid Pooling

To improve the fusion capability of defect feature maps

obtained via downsampling, this study incorporates ASFF within

the PANet structure of the YOLO v5s algorithm. The ASFF

mechanism facilitates weighted fusion at each layer of the FPN

structure, with fusion weights dynamically generated from the

outputs of the convolutional feature layers. These weights are

learnable through gradient backpropagation, allowing for adaptive

adjustments throughout the fusion process.

After integrating the ASFF mechanism, an ASPP module is

added, which applies dilated convolutions at multiple sampling

rates to effectively expand the receptive field and enhance the

network’s feature extraction capabilities. The proposed PANet

structure, incorporating the ASFF and ASPP modules, is shown

in Figure 3.
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Feature maps X1, X2 and X3 are extracted from the YOLO v5s

backbone network and processed through the PANet structure to

produce Level1, Level2 and Level3. To ensure dimensional

consistency with Level1, Level2 and Level3 are downsampled at

spatial location (i, j), resulting in a feature vector of xn→l
ij , which has

the same dimensions as Level1 and is multiplied by the respective

weight coefficient matrices a, b, and g, followed by summation to

yield ASFF-L, which is computed as shown in Equation 7.

ylij = a l
ij · x

1→l
ij + b l

ij · x
2→l
ij + g l

ij · x
3→l
ij (7)

Equation 7 satisfies constraints a l
ij + b l

ij + g l
ij = 1 and a l

ij, b l
ij, g l

ij ∈
½0, 1�. a l

ij are calculated by softmax function as shown in Equation 8.

a l
ij =

el
l
aij

e
ll
aij + e

ll
bij + e

ll
gij

(8)

Where the coefficients l are obtained from x1→l , x2→l , and x3→l

after a 1×1 convolution operation.

Following the adjustment of weight coefficients by the ASFF

algorithm to optimize multi-scale feature fusion, the ASPP module

is applied to further expand the receptive field and improve the

utilization of feature information. Through its multi-branch and

atrous convolution architecture, the ASPP module enhances the

model’s ability to detect and recognize diverse potatoes defects. The

ASPP module comprises a 1×1 convolution, a Pooling Pyramid

with dilation rates of 6, 12, and 18 (utilizing 3×3 atrous

convolution), and ASPP Pooling. Dilation rate is the distance

between elements in the convolution kernel. The ASPP structure

is shown in Figure 4A. The adaptive dilation rates in each layer of

the pooling pyramid enable variable receptive fields, allowing the

model to capture multi-scale feature information effectively through

different rates of expansion and fillings. The effect diagram of the

ASPP module is shown in Figure 4B.

2.1.4 Alpha-IoU loss function
The prediction component of the YOLO v5s model includes a

loss function and a non-maximal suppression mechanism. The loss

function quantifies the degree of overlap between the true and

predicted bounding boxes. Non-maximal suppression is employed

in the post-processing stage of target detection, where it screens

multi candidate boxes by suppressing non-maximal values,
FIGURE 3

Incorporating ASFF's PANet structure.
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identifying local maxima, removing redundant boxes, and yielding

the final prediction results.

In the standard YOLO v5s model, the GIoU loss function is

used, but it has limitations with relatively fixed predictions, as it

cannot adaptively adjust loss and gradient weights for targets with

high or low IoU values. To address this, we introduce the weight

coefficient a and replace GIoU with Alpha-IoU as the bounding box

loss function. This modification enhances the model’s robustness,

as defined in Equations 9 and 10.
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I0 = Ia −
r2a (b, bgt)

d2a
− (bg )a (9)

I = 1 − I0 (10)

In this context, I′ represents the Alpha-IoU value, while I

denotes the IoU value, the term r2a(b, bgt) refers to the Euclidean

distance between the centroid b of the prediction frame and the

centroid bgt of the real frame. Additionally, d represents the
B

A

FIGURE 4

ASPP: (A) Structural diagram. (B) Module effect diagram.
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diagonal length of the smallest closed region containing the

prediction frame and the real frame. The parameter b serves as

the parameter of trade-off, and g denotes the aspect ratio of the

measurement frame.
2.2 Dataset construction and
model training

2.2.1 Data acquisition
In order to verify the effectiveness of the proposed method,

industrial cameras were installed on the potato grading line to

collect data, as illustrated in Figure 5.

As shown in Figure 6, a CCD camera (model GS3-U3-15S5C-C

from Point Grey) equipped with a LM5JCM lens from KOWA was

used for image acquisition on the grading line, with the roller tray as

the background. A 50W LED area light source was selected, and the

camera, lens, and light source were arranged on the grading line.

The light source height was adjusted to ensure that the images

captured for various potato defects were neither overexposed nor

reflective, with the final height set at 29 cm above the grading line.

The camera parameters were set as follows: frame rate of 45 fps,

image resolution of 1384×1032, and a pixel depth of 3×8 bit. A total

of 1804 images were collected.
2.2.2 Data processing
A total of 1804 collected images were annotated using the LabelImg

tool, with categories including “health” “green” “sprouting” “scab” “rot”

and “damage”. The annotation format was then converted as required.

The original dataset was randomly divided into training (1082 images),

validation (361 images), and test (361 images) sets in a 3:1:1 ratio, as

shown in Figure 7. The distribution of each category within each

dataset is detailed in Table 1.
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2.2.3 Data enhancement
Data augmentation can enhance the model’s robustness.

Insufficient or low-quality training samples can hinder the

model’s generalization ability and robustness. To address this,

several augmentation techniques were applied to the training set,

including brightness enhancement, contrast enhancement, image

flipping, and Gaussian blurring. Each augmentation method

doubled the data, resulting in a total of 5410 images in the

augmented training set. The effects of the image enhancement

methods are shown in Figure 8.

2.2.4 Experimental environment
The experiment was conducted on a Linux system, with Python

as the programming language and Pycharm as the integrated

development environment (IDE). Device specifications are listed

in Table 2. The experiments utilized the SGD optimizer with a

momentum of 0.937 and a weight decay of 0.0005. Training was

performed over 100 epochs with a batch size of 16, an initial

learning rate of 0.01, and a cosine decay learning rate strategy.

2.2.5 Evaluation metrics
To evaluate the performance of the improved YOLO v5s model,

Precision (P), Recall (R), F1-Score(F1) and Mean Average Precision

(mAP) were selected as evaluation metrics. The relevant formulas

are provided as follows:

Precision (P) measures the proportion of correctly identified

positive samples among all samples with positive predictions, as

shown in Equation 11:

P =
TP

TP + FP
(11)

Recall (R) measures the proportion of true positive samples that

are correctly identified by the model, as shown in Equation 12.
FIGURE 5

FGX-DZS type fruit & vegetable grading line.
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R =
TP

TP + FN
(12)

F1-Score measures the harmonic mean of precision and recall,

used to provide a comprehensive evaluation of a model’s

performance in classification tasks, as shown in Equation 13.

F1 − Score =
2P � R
P + R

(13)

Mean average precision (mAP) is used to calculate the average

precision (AP) across multiple categories, as shown in Equation 14.

It involves averaging the precision values for each category, as

defined in Equation 15:

mAP =
1
no

n

k=1

APk (14)
Frontiers in Plant Science 07
APk =
Z 1

0
prdr (15)

Where n denotes the number of categories and APk represents

the accuracy (Average Precision) of the k-th category. The

definitions of different prediction outcomes are as follows.:

True Positive (TP): The prediction is positive, the labeled value

is positive, and the prediction is correct.

False Negative (FN): The prediction is negative, the labeled

value is positive, and the prediction is incorrect.

False Positive (FP): The prediction is positive, the labeled value

is negative, and the prediction is incorrect.

True Negative (TN): The prediction is negative, the labeled

value is negative, and the prediction is correct.
3 Results and discussions

3.1 Performance comparison of different
loss functions applied to YOLO v5s

To evaluate the impact of the loss function on model

performance, the original YOLO v5s model was compared with a

version that uses the Alpha-IoU loss function. The bounding box

loss values during training were plotted as comparison curve to

assess model performance, as shown in Figure 9. Both the improved

model and the original YOLO v5s demonstrated a rapid decrease in

loss during the first 10 iterations, indicating that the YOLO v5s

model converged quickly. From the 11th to the 60th iteration, the

loss values gradually decreased, stabilizing at 0.03 for the original

model and 0.025 for the improved model, indicating good stability

in the model’s performance. After 100 iterations, both models

showed similar convergence trends, with loss values stabilizing.

These results suggest that the Alpha-IoU loss function in the YOLO
FIGURE 7

Classification of potato defects: (A) Sprouting. (B) Scab. (C) Green. (D) Damage. (E) Rot. (F) Health.
FIGURE 6

Acquisition scene diagram.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1527508
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1527508
v5s model effectively reduces bounding box loss, thereby enhancing

the detection model’s prediction capability.
3.2 Ablation experiments

To evaluate the effectiveness of the Coordinate attention (CA)

module and the ASFF+ASPP structure in the proposed potato

external defect detection model, an ablation study was conducted

using the potato external defects dataset. The trained detection

model was evaluated on the test set. The original YOLO v5s model

served as the baseline, and three optimized models were created by

incorporating the CA module and ASFF+ASPP structure: YOLO
Frontiers in Plant Science 08
v5s-CA, YOLO v5s-AA, and YOLO v5s-ours (YOLO v5s+CA

+ASFF+ASPP).

Table 3 shows the P, R, F1-Score and mAP for each model across

six categories: healthy, sprouting, greening, scabbing, rotting and

mechanical damage. The results indicate that all the ablation models

outperformed the original YOLO v5s in terms of detection accuracy.

Specifically, the CA module led to improvements in P, R, F1-Score and

mAP for the categories of healthy, sprouting, scabbing, rotting, and

mechanical damage. For mechanical damage, P, R and F1-Score

increased by 30.7%, 33.7% and 32.4%, respectively, while the other

four categories saw improvements of approximately 0.5%-2%.

Although the P, R, and F1-Score of greening decreased by 6.5%,

6.0%, and 6.2%, respectively, the mAP improved by 4.7%. These

results suggest that CA improves model performance by capturing

better global receptive fields and encoding precise location information.

The ASFF+ASPP structure enhanced the P and R for healthy,

sprouting, scabbing, and mechanical damage by 13.2%, 12.3%,

4.3%, 25.6%, respectively, and 15.5%, 13%, 4.2%, 30.2%, in recall.

Although P and R for greening decreased by about 1%, and mAP

improved by 9.3%. The F1-score of the six categories increased by

14.3%, 12.8%, 0.2%, 4.2%, 0.6%, and 28.1%, respectively. This

demonstrates that the ASFF+ASPP structure improves model

performance through weighted fusion of features, enhanced

receptive fields, and multi-scale features extraction.

The integration of both CA and ASFF+ASPP (YOLO v5s-ours)

resulted in a substantial improvement in P and R across all
FIGURE 8

Potato data enhancement effect.
TABLE 1 Partition of the dataset.

Categories
Number of
train sets

Number of
valid sets

Number of
test sets

Health 238 77 75

Sprouting 192 64 63

Green 151 51 53

Scab 167 55 57

Rot 177 59 61

Damage 157 55 52
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categories, with increases of 15.3%, 16.5%, 4.5%, 6.4%, 39.7% and

16.0%, 16.2%, 4.9%, 6.2%, 44.3%, respectively, for healthy,

sprouting, greening, scabbing, and mechanical damage. The F1

scores increased by 15.5%, 16.4%, 4.7%, 6.5%, and 42.4%,

respectively. There was no change in the metrics for the rotting

category, and the mAP increased by 13.7%. The combination of CA

and ASFF+ASPP significantly boosted the model’s accuracy in

detecting surface defects on potatoes, enabling more precise

localization and feature extraction, which reduces inspection bias.

Figure 10 illustrates the loss curves on the training set and the

mAP on the test set for each model in the ablation test, plotted

against the number of iterations.

Figure 11 shows the classification results of each model on the

test set from the ablation study. It is evident that the introduction of

the CA module and the ASFF+ASPP architecture has played a

significant role in improving the model’s performance. The CA

module significantly improves the detection performance for the

healthy, sprouting, and rot categories, particularly enhancing the

recognition of healthy and rot defects. On the other hand, the ASFF

+ASPP architecture excels in multi-scale feature extraction,

especially improving the detection of sprouting, scab, and damage

categories, enabling better capture of defects at varying scales. The

YOLO v5s-ours model, by integrating both the CA module and the

ASFF+ASPP structure, achieves the best overall performance, with

near-perfect results in the detection of rot defects.
3.3 Model performance comparison

To further validate the effectiveness of the proposed YOLO v5s

model for detecting external defects in potatoes, comparisons were

made with other representative target detection models, including

Faster R-CNN, YOLO v6, YOLOX, and YOLO v7. To ensure a fair

comparison, all models were trained using the same strategy and

computational environment. Performance was evaluated using P, R,

F1-Score and mAP.

Table 4 presents the performance metrics of each model on the

test set. The results indicate that the original YOLO v5s model

outperforms other YOLO series models in terms of overall

performance, supporting its selection as the base model for

further optimization in this study. Among the models tested, the

proposed YOLO v5s-ours model demonstrates the best accuracy in

detecting potato surface defects. This improvement is attributed to

the CA attention mechanism, which focuses the network on defect

regions, and the use of atrous convolutions with varying dilation
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rates, which capture defect information at different scales.

Additionally, the adaptive feature fusion strategy enhances the

network’s feature extraction capabilities, thereby improving

detection accuracy for potato surface defects.

The YOLO v5s model shows the second-highest recognition

accuracy after YOLO v5s-ours, achieving a P, R, F1-Score and mAP

of 57.4%, 75.1%, 64.9% and 71.4%, respectively. In contrast, YOLO

v6 exhibits the lowest recognition accuracy, with a P, R, F1-Score

and mAP of 52.6%, 74.8%, 61.7% and 65.9%, respectively. The mAP

of YOLO v5s-ours reaches 85.1%, which is 19.2% higher than

YOLO v6 and 13.7% higher than the original YOLO v5s model.

The addition of the CA, ASFF, and ASPP modules increases the

model’s memory usage from 13.7 MB to 23.3 MB, while the

detection frame rate decreases slightly from 31.9f/s to 30.7f/s.

Despite these changes, the minor reduction in frame rate and the

increase in memory usage do not hinder practical application.

Therefore, the proposed model maintains high mAP and frame

rate, balancing detection accuracy and recall rate, achieving optimal

overall performance.
3.4 Potato grading line external defect
detection test

To assess the effectiveness of the improved YOLO v5s model for

detecting external defects on an operational potato grading line,

tests were conducted using an FGX-DZS type fruit and vegetable

grading line. Various categories of potatoes were positioned under a

CCD camera, which captured images of the potatoes. These images

were then processed by the model on a computer to detect external

defects. The sample sizes for each category—healthy, sprouting,

greening, scab, rot, and mechanical damage—were 50, 20, 20, 20, 20

and 20, respectively. The results of the tests are summarized

in Table 5.

The findings indicate a marked improvement in the model’s

recognition rates, particularly for healthy potatoes and those with
TABLE 2 Device configuration information.

Equipment Units/Software Configuration

Central Processing Unit Z7M-KP7GG Inter Core i7-8750H

Graphics Processing Unit NVIDA GTX1050Ti 4GGDDR5

Operating Systems Ubuntu18.04

Deep learning frameworks Pytorch

Programming Languages Python3.7
FIGURE 9

Comparison of regression losses for different loss functions'
prediction frames.
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mechanical damage, in real-world detection applications. This

suggests that the improved YOLO v5s model developed in this

study effectively reduces the false detection rate in practical grading

line operations.

Figures 12 and 13 illustrate correctly and incorrectly recognized

samples by the original model, respectively. It can be observed that

the model accurately identifies defects when they are prominent,

but also exhibits varying degrees of misclassification.

In Figure 13A, a healthy potato has a small depression on its

surface. This minor feature may have been extracted during the

convolution process and misinterpreted as characteristics of

sprouting or scab. In Figure 13B, the damaged area of a

mechanically damaged potato is located on the side, making it

difficult for the camera to capture accurately from a top-down

perspective. Surface depressions and residual soil also interfere with

identification, resulting in misclassification as sprouting or scab.

Figure 13C shows a greening potato with a green area along the

edge, appearing darker in color. Depressions on the surface contribute

to its misidentification as a sprouted potato. In Figure 13D, dark spots

on a scabbed potato are misinterpreted as mechanical damage, while
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surface depressions are identified as sprouting. In Figure 13E, a

sprouted potato with small sprouts located on the side is

misclassified due to surface soil and the potato’s irregular shape,

resulting in identification as scab and mechanical damage.

Figure 14 presents a comparison between the detection results of

the improved YOLO v5s (ours) and the original YOLO v5s model. The

improved model successfully identifies defects correctly, whereas the

original model misclassifies them. In Figures 14A and B, the improved

model effectively reduces misclassification of healthy yams with surface

depressions. This improvement suggests that the Coordinate Attention

(CA) module, positioned at the front of the detection head, enhances

weight assignment to the depression feature, allowing it to differentiate

depression from defects like scab and sprouting.

In Figures 14C and E, the mechanical damage and sprouting are

located on the edge of the potato body, causing misclassification in

the original model. The ASFF+ASPP (Adaptive Spatial Feature

Fusion and Atrous Spatial Pyramid Pooling) structure in the

improved model expands the receptive field, incorporating more

original features during downsampling to enrich defect

information. Furthermore, ASFF’s feature fusion mechanism
TABLE 3 Ablation comparison trial results.

Model Categories P/% R/% F1-Score/% mAP/%

YOLO v5s

Health 61.7 59.6 60.6

71.4

Sprouting 69.5 68.3 68.8

Green 82.6 81.3 81.8

Scab 83.2 82.1 82.4

Rot 96.3 97.0 96.4

Damage 35.1 29.7 32.1

YOLO v5s-CA

Health 62.9 60.8 61.7

76.1

Sprouting 70.3 68.8 69.4

Green 76.1 75.3 75.6

Scab 84.5 83.9 84.4

Rot 97.0 97.3 97.0

Damage 65.8 63.4 64.5

YOLO v5s-AA

Health 74.9 75.1 74.9

80.7

Sprouting 82.0 81.3 81.6

Green 81.8 82.0 82.0

Scab 87.5 86.3 86.6

Rot 97.0 97.3 97.0

Damage 60.7 59.9 60.2

YOLO v5s-ours

Health 77.0 75.6 76.1

85.1

Sprouting 86.0 84.5 85.2

Green 87.1 86.2 86.5

Scab 89.6 88.3 88.9

Rot 96.3 97.0 96.4

Damage 74.8 74.2 74.5
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assigns greater weight to defective features, preserving feature

information and improving the model’s detection of small, edge-

located features.

These results demonstrate that the improved YOLO v5s model

developed in this study is suitable for detecting external defects

in potatoes.
4 Conclusions
Fron
1. To enable accurate detection of external defects in potatoes,

this study proposes an efficient, precise, and highly

adaptable improved YOLO v5s-based detection method,
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providing important technical support for the development

of automated potato sorting systems. The introduction of

the CA module enhances the model’s ability to handle

subtle defects in potatoes. The ASFF+ASPP structure

expands the receptive field and improves feature fusion,

while assigning different weights to multi-scale feature

maps, thereby enhancing the model’s inference ability for

cross-scale feature fusion. This addresses the issue of multi-

scale object detection, enabling the model to capture richer

contextual information. Additionally, replacing the

traditional loss function with the Alpha-IoU function

accelerates model convergence and further enhances

detection performance for potato external defects.
B

A

FIGURE 10

Evaluation metrics change curves: (A) Train set loss. (B) Test set mAP.
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FIGURE 11

Recognition Performance of Potatoes in Each Category Across Four Models: (A) Healthy, Sprouting, Scab. (B) Rot, Rot, Damage. (C) Scab, Sprouting,
Greening. (D) Healthy, Sprouting, Scab.
TABLE 4 Comparison of the effect of different models.

Model P/% R/% F1-Score/% mAP/% Memory Usage/MB Frame Rate/(f·s-1)

Faster R-CNN 56.7 76.9 65.1 69.1 325.8 14.3

YOLO v6 52.6 74.8 61.7 65.9 34.3 28.3

YOLOX 56.3 77.0 65.1 70.8 54.2 23.1

YOLO v7 54.5 76.7 63.7 69.4 36.9 12.8

YOLO v5s 57.4 75.1 64.9 71.4 13.7 31.9

YOLO v5s-ours 82.0 86.6 84.3 85.1 23.3 30.7
F
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TABLE 5 Potato grading line external defect detection results.

Model Categories Identify Correct Sample Identify Error Sample Accuracy/%

YOLO v5s

Health 32 18 64

Sprouting 16 4 80

Green 15 5 75

Scab 17 3 85

Rot 20 0 100

Damage 7 13 35

YOLO v5s-ours

Health 40 10 80

Sprouting 16 4 80

Green 18 2 90

Scab 18 2 90

Rot 20 0 100

Damage 12 8 60
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Fron
2. The experimental results demonstrate that the precision,

recall, F1-Score and mAP of the improved YOLO v5s

model are 82.0%, 86.6%, 84.3%, and 85.1%, respectively.

Compared to the original model, the improved model

achieves significant gains: precision, recall, and F1-Score
tiers in Plant Science 13
for healthy potatoes, germination, greening, scab and

mechanical damage were enhanced by 15.3%, 16.5%,

4.5%, 6.4%, 39.7% and 16.0%, 16.2%, 4.9%, 6.2%, 44.3%

and 15.5%, 16.4%, 4.7%, 6.5%, 42.4%, respectively, with

mAP increasing by 13.7%. A comparative analysis of
FIGURE 12

Identify correct sample: (A) Health. (B) Green. (C) Sprouting. (D) Scab. (E) Rot. (F) Damage.
FIGURE 13

Identify error sample: (A) Health misclassification. (B) Damage misclassification. (C) Green misclassification. (D) Scab misclassification. (E)
Sprouting misclassification.
FIGURE 14

Comparison of practical application testing: (A) Health. (B) Health. (C) Damage. (D) Scab. (E) Sprouting.
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Fron
different models shows that the improved YOLO v5s model

outperforms Faster R-CNN, YOLO v6, YOLOX, and YOLO

v7, achieving mean average precision improvements of

16.0%, 19.2%, 14.3%, 15.7%, and 13.7%, respectively.

3. The potato grading line external defect detection test further

validates the strong performance of the model. This

provides a novel approach for non-destructive testing of

external defects in potatoes. However, some areas still

require improvement: ① The roller tray of the grading

line is black, which can resemble certain potato defects,

thus affecting detection accuracy. ② To improve accuracy,

adding more cameras, particularly positioned on the sides,

would enable better capture of potato side images.
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