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Introduction: Earlier sowing is a promising strategy of ensuring sufficiently high

maize yields in the face of negative environmental factors caused by climate

change. However, it leads to the low temperature exposure of maize plants

during emergence, warranting a better understanding of their response and

acclimation to suboptimal temperatures.

Materials and Methods: To achieve this goal, whole transcriptome sequencing

was performed on two maize inbred lines – tolerant/susceptible to low

temperatures, at the 5-day-old seedling stage. Sampling was performed after

6h and 24h of treatment (10/8°C). The data was filtered, mapped, and the

identified mRNAs, lncRNAs, and circRNAs were quantified. Expression patterns

of the RNAs, as well as the interactions between them, were analyzed to reveal

the ones important for low-temperature response.

Results and Discussion:Genes involved in different steps of photosynthesis were

downregulated in both genotypes: psa, psb, lhc, and cab genes important for

photosystem I and II functioning, as well as rca, prk, rbcx1 genes necessary for the

Calvin cycle. The difference in low-temperature tolerance between genotypes

appeared to arise from their ability to mitigate damage caused by

photoinhibition: ctpa2, grx, elip, UF3GT genes showed higher expression in the

tolerant genotype. Certain identified lncRNAs also targeted these genes, creating

an interaction network induced by the treatment (XLOC_016169-rca;

XLOC_002167-XLOC_006091-elip2). These findings shed light on the

potential mechanisms of low-temperature acclimation during emergence and

lay the groundwork for subsequent analyses across diverse maize genotypes and

developmental stages. As such, it offers valuable guidance for future research

directions in the molecular breeding of low-temperature tolerant maize.
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1 Introduction

Negative environmental factors caused by climate change, such

as extreme temperatures, and prolonged drought periods, continue

to jeopardize global food security by impacting crop productivity

(Pörtner et al., 2022; Benitez-Alfonso et al., 2023). Average

temperatures on Earth are rapidly rising: an increase of 2.5-4.5°C

is expected by the year 2100 (Wang et al., 2018), and this negatively

impacts the plants’ carbon uptake, resulting in decreased crop yield

(Wang et al., 2018). Maize is particularly affected since it is a C4

plant. Additionally, maize grown in temperate regions reaches the

developmental stages most susceptible to heat and drought –

flowering and grain filling (Deryng et al., 2014), during a time of

year when these extreme weather events are most likely to occur. On

average, a yield loss of 7.4% for every 1°C rise in the temperature is

predicted for maize (Zhao et al., 2017). Some studies predicted even

higher values: up to 23% in the United States (Xu et al., 2016) or

30% in Mexico (Murray-Tortarolo et al., 2018). Since maize is one

of the most important crop species worldwide, increasing the crops’

adaptation to climate change, while ensuring sufficient maize yields

to guarantee future food security, becomes extremely urgent

(Farooq et al., 2023).

Crop adaptation approaches encompass increasing crops’

resilience to climate change factors (Benitez-Alfonso et al., 2023),

but also strategies of avoidance, that include earlier sowing,

adoption of later-maturing spring varieties, or adoption of winter

cultivars in cooler environments (Liu et al., 2017; Collins and

Chenu, 2021; Zhu et al., 2022). Some studies have shown that

earlier sowing could positively impact maize yield, if implemented

with necessary changes in some traits and management practices

(Bassu et al., 2021; Zhu et al., 2022). In temperate areas, early

sowing could ensure that flowering and grain-filling stages are

completed before the periods of extreme heat and drought.

However, as maize development is affected by temperatures lower

than 15°C (Silva-Neta et al., 2015), earlier sowing results in the

exposure of maize seedlings to suboptimal temperatures in the early

development, during the emergence stage (VE). The VE stage is

considered to be extremely thermo-sensitive, and low temperature

(LT) stress at that stage does affect maize yield (Jiang et al., 2021;

Beegum et al., 2023).

The effects of low temperatures on maize have been extensively

studied over the years. It is known that temperatures below 10°C

cause cellular and tissue injuries, protein denaturation, photosynthesis

restriction, and oxidative damage (Frascaroli and Revilla, 2018; Zhou

et al., 2022a). LT reduces the germination rate and seedling vigor, and

leads to the inhibition of growth and development (Yang et al., 2011;

Zhang et al., 2020). However, most studies focus onmaize seedlings at

later developmental stages, starting from the first leaf development

(V1) (Waititu et al., 2021; Zhou et al., 2023; Gao et al., 2024). Data on

the LT response in the VE stage is less frequent, but recently, more

studies on this stage have been published (Li et al., 2021; Xuhui et al.,

2022). Implementing early sowing in maize production requires

further research of the response to low temperatures during the VE
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stage, as well as the uncovering of the possible methods of acclimating

to this stress factor.

Evaluating gene expression patterns based on transcriptome

sequencing (RNA-seq) data has been an effective way of analyzing

the molecular mechanisms behind the LT response in plants and

elucidating how they combine to establish tolerance (Dasgupta

et al., 2020). RNA-seq methods have shown that genes involved

in abiotic stress responses, including transcription factors, signal

transduction molecules, and antioxidative enzymes, are induced

under LT conditions (Mao et al., 2017; Sowiński et al., 2020).

Additionally, non-coding RNAs (ncRNAs), such as long non-

coding (lncRNAs) and circular RNAs (circRNAs), are involved in

gene regulation in plants (Yu et al., 2019). lncRNAs comprise linear,

ncRNAs, longer than 200 nucleotides (nt) (Waseem et al., 2021).

These ncRNAs fulfill their roles in regulating gene expression

through epigenetic modification, splicing regulation, or

interaction with other RNA classes (Wang et al., 2023; Gonzales

et al., 2024). The primary way lncRNAs regulate gene expression is

through their interaction with microRNAs (miRNAs), as described

by the ceRNA hypothesis (Salmena et al., 2011; He et al., 2020).

miRNAs are known gene expression inhibitors, that act through

RNA silencing of target mRNAs (Zhang et al., 2022). The ceRNA

hypothesis states that lncRNAs can influence RNA silencing, as they

have the same miRNA binding sites as the target mRNAs. By

competing for the miRNAs with the target mRNAs, the lncRNAs

can reduce the level of target mRNA inhibition and exert their

influence on transcription. Circular RNAs are endogenous, single-

stranded, covalently-closed RNA molecules, generated by back-

splicing events of precursor mRNAs during post-transcriptional

processes (Han et al., 2020). Similar to lncRNAs, circRNAs can act

as miRNA sponges (Hansen et al., 2013), interact with proteins and

transcription factors (Li et al., 2015b), alter genome structure (Dong

et al., 2016), and guide protein translation (Yang et al., 2017). Both

lncRNAs and circRNAs have been found to take part in the LT

response and acclimation of plants (Biswas et al., 2021; Wang et al.,

2024). For example, a novel cold-induced lncRNA, CIL1 was found

to regulate the expression of multiple stress-related genes, and affect

the plant cold tolerance in Arabidopsis (Liu et al., 2022a). Also,

overexpression of the Vitis vinifera circATS1, improved cold

tolerance in Arabidopsis (Gao et al., 2019). Screening for LT

regulated genes and ncRNAs in the VE stage may help identify

hub genes, ncRNAs, and the interaction networks that can be

potential targets for breeding tolerant varieties, capable of survival

and growth under LT conditions.

The aim of the research study was to examine the immediate

(6h) and delayed (24h) responses to low temperatures in the 5-day-

old maize seedlings (VE stage) of both the tolerant and sensitive

maize genotype. This was carried out by applying RNA-seq

technologies and analyzing the expression of genes and ncRNAs

(lncRNAs, circRNAs, and miRNAs) involved in this response. The

RNA expression profiles under optimal and LT conditions were

compared and the interactions between the different RNA classes

were analyzed, with the goal of revealing expression patterns and
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interaction networks important for establishing low-temperature

tolerance in the selected developmental stage.
2 Materials and methods

2.1 Plant material and experimental design

Two maize inbred lines of contrasting tolerance to LT stress,

marked as LT, the tolerant, and LS, the susceptible inbred line, were

exposed to low temperatures at the five-day-old (5d-old) seedling

stage. The two maize lines were parental components of commercial

ZP hybrids, developed in the Maize Research Institute Zemun Polje

(MRIZP), and the seeds were obtained from the MRIZP institute. LS
belonged to the Lancaster heterotic group, while LT was a semi-

dent. The tolerance of the two lines was assessed in a previous

experiment (Božić et al., 2024), and the selection was made based on

seed vigor, survival rate, radicle and coleoptile length, as well as

seedling fresh weight.

Seeds of both inbred lines were sterilized in 10% sodium

hypochlorite (commercial bleach) and germinated in the dark, for

five days, under optimal conditions (25/20°C – 12/12h period, 75%

relative humidity) in a climate chamber (MLR-352H-PE, PHC

Europe B.V.). Subsequently, the 5-day-old seedlings were

subjected to the LT treatment (T) at 10/8°C for 6 and 24 hours,

12/12h light/dark photoperiod, and 700 µmolm-2s-1 light intensity.

Samples of 30 maize seedlings per inbred line were taken after 6h

and 24h for total RNA isolation. The sampled tissue was ground in

liquid nitrogen and stored at -80°C until further use. Control plants

(C) were grown under optimal conditions (25/20°C – 12/12h

photoperiod, 700 µmolm-2s-1 light intensity, 75% relative

humidity) in the same period and sampled at identical time

points. There were eight samples in total: two samples per

treatment condition (C, T), per time point (6h, 24h), and per

inbred line (LS, LT).
2.2 RNA extraction, library preparation,
and sequencing

Total RNAwas extracted from ≈100mg of frozen tissue per sample

using the GeneJet™ RNA Purification kit (Thermo Scientific, USA)

and purified by applying Ambion® DNA-free™ DNase I (Invitrogen,

USA), according to the manufacturer’s instructions. Total RNA

concentrations were first determined using the NanoPhotometer®

spectrophotometer (IMPLEN, USA), while the RNA quality and

contamination were screened through agarose gel electrophoresis.

After the preliminary check, the 2100 Bioanalyzer and RNA Nano

6000 Assay Kit (Agilent®, CA, USA) were used to further determine

the RNA integrity and quantity. All samples with RIN above six were

chosen for the downstream analysis.

Library preparation and sequencing of the eight samples were

carried out on the NovaSeq 6000 (Illumina®, USA) at the Novogene
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Bioinformatics Technology Co. Ltd., in Beijing, China. Firstly,

ribosomal RNA, rRNA, was removed from the total RNA (1000

ng) using magnetic beads from the Ribo-Zero Plus rRNA Depletion

Kit (Illumina®, USA), according to the manufacturer’s instructions.

One library per sample was then generated by NEBNext® Ultra™

Directional RNA Library Prep Kit for Illumina® (NEB®, USA),

following the manufacturer’s recommendations. The library quality

was assessed on the Agilent Bioanalyzer 2100. After, the paired-end

(PE) 2x150bp sequencing was performed on all eight libraries (LT-C-

6, LT-C-24, LT-T-6, LT-T-24, LS-C-6, LS-C-24, LS-T-6, and LS-T-24).
2.3 Data analysis

The raw reads were first checked using FastQC (v0.12.1,

Andrews, 2010), and then processed with Trimmomatic (v0.39-2,

Bolger et al., 2014). Reads containing adapter and poly-N sequences

and low quality reads (Phred score > 30, N% < 10%) were removed.

Clean reads were mapped onto the Zea mays B73 NAM reference

genome version 5.0 (https://plants.ensembl.org/Zea_mays/Info/

Index; Accessed March 4, 2024) utilizing STAR (v2.7.11, Dobin

et al., 2013) and the corresponding annotation file. The pipelines

used for the analysis of all three classes of RNA molecules (mRNAs,

lncRNAs, and circRNAs) are shown in Figure 1.

2.3.1 mRNA data analysis
Fragments mapped to each gene were quantified with htseq (v2.0.5,

Putri et al., 2022). Principal component analysis (PCA) was performed

to calculate the distance between samples using factoextra (v1.0.7,

Kassambara and Mundt, 2020) in R (v4.3.3, R Core Team, 2024).

Hierarchical cluster analysis was performed in the cluster R package

(v2.1.6, Maechler et al., 2023), using normalized read count values and

the Euclidian distance method. Differential expression (DE) analysis

was performed with edgeR (v4.0, Robinson et al., 2010) to identify

significant DE genes between the control and treatment conditions in

both LT and LS. The transcripts were filtered based on the expression

level (minimal counts per sample > 15), library sizes were normalized

and the differential expression was calculated. The statistical

significance was determined using the negative binomial distribution

test (Anders and Huber, 2010; Roberts et al., 2011). The p-value was

adjusted according to the Bayesian interpretation (Storey, 2003), and

the adjusted value, or the q-value was further used. Genes with the q-

value < 0.01 and log2 fold change (FC) > 1 or < -1 between the control

and treatment samples were considered differentially expressed.

The Gene Ontology (GO) enrichment analysis of the DEGs was

conducted using clusterProfiler (v4.10.1, Wu et al., 2021) and

biomartr database (Drost and Paszkowski, 2017). Significantly

enriched GO terms were determined by the p-value < 0.05 with

the Fisher’s exact test and the Bonferroni multi-test adjustment. The

same package was used to test the statistical enrichment of the target

gene candidates in KEGG metabolic pathways (Kanehisa et al.,

2008) by applying the same criteria. Co-expression patterns and

gene modules were identified based on the weighted gene co-
frontiersin.org
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expression network analysis (WGCNA), by utilizing the WGCNA

package in R (v1.72, Langfelder and Horvath, 2008).

2.3.2 lncRNA data analysis
The mapped reads of each sample were assembled after

alignment utilizing Cufflinks (v2.2.1, Trapnell et al., 2010) in a

reference-based approach. The assembled transcripts were filtered

based on their length (> 200 nt), expression level (FPKM > 0.1), and

exon number (>1). After that was completed, transcripts that

overlap with known protein-coding genes were also filtered out

using a Cufflinks function, cuffcompare, and only the ones with class

codes “u”, “i”, “o” and “x” were kept for further analysis. Then, by

applying three different approaches: CPC2 (Kang et al., 2017),

CPAT (Wang et al., 2013), and Plek (Li et al., 2014), only the

lncRNAs determined to lack any coding potential by all three

methods were selected. lncRNA-fragment quantification was

performed with htseq and the DE analysis between the control

and treatment conditions was carried out utilizing edgeR, adopting

the same analysis parameters as those implemented in the

mRNA study.

Potential lncRNA cis-targets were explored using bedtools (100

kb up- or downstream from the lncRNA coordinates) (v2.31.1,

Quinlan and Hall, 2010), while the trans-targets were predicted with

the LncTar software (ndG < -0.15, Li et al., 2015a). The co-

expression patterns of lncRNAs were predicted by applying the

WGCNA R package. Additionally, miRNAs expressed under

chilling conditions of 5-d old seedlings (Božić et al., 2024) were
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selected for the miRNA-lncRNA target prediction, performed using

psRobot (v1.2, Wu et al., 2012).

2.3.3 circRNA data analysis
circRNA detection and identification of alternative back-splicing

sites were accomplished through a custom computational pipeline in

CIRCexplorer2 (v2.0.5, Zhang et al., 2016). It included circRNA

fusion junction read alignment and parsing; de novo assembly for

circular RNA transcripts using the Cufflinks reference annotation-

based transcript (RABT), and characterization of alternative back-

splicing sites, including both the 5’ and 3’ alternative back-splicing

events. To quantitate circRNA expression, htseq was utilized using

fragments that are mapped to the back-spliced exon-exon junction

sites. DE analysis between the treated and control samples was

performed in edgeR. microRNA target sites in exons of circRNA

loci were identified using psRobot and compared to the miRNAs

(Božić et al., 2024).
2.4 Construction of the lncRNA/circRNA-
miRNA-mRNA network

The results of the DE analysis and target prediction of mRNA,

lncRNA, and circRNA, as well as of the previously identified

miRNAs (Božić et al., 2024) were utilized in constructing

complex miRNA-lncRNA, miRNA-circRNA, and miRNA-mRNA

regulatory relationships. Furthermore, the regulatory relationships
FIGURE 1

The RNA data analysis pipeline. Raw reads, acquired through 150 bp PE sequencing, were passed through quality control and processed to remove
reads containing adapter and poly-N sequences and low quality reads (Phred score > 30, N% < 10%). The trimmed reads were then aligned onto the
Zea mays B73 NAM 5.0 reference genome. mRNAs could be quantified after mapping, but lncRNAs and circRNAs required additional steps. To
identify lncRNAs, the reads were assembled, and filtered (by length, expression level, exon number, and genome position), in addition to assessing
the absence of coding potential (CPC2, CPAT, Plek). Additionally, the potential cis- and trans-targets of the identified lncRNAs were predicted.
circRNA detection was accomplished through a custom pipeline in Circexplorer2. After all the coding and non-coding RNAs were identified, the
quantification, differential expression (DE) analysis, and network construction were performed. Furthermore, functional enrichment (GO, KEGG)
analysis was performed for the identified DE mRNAs. Bioinformatics tools used in each step are also shown next to the box containing the
step name.
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were then combined into a unique lncRNA/circRNA-miRNA-

mRNA regulatory network, established using Cytoscape software

(v3.10.2, Shannon et al., 2003).
2.5 qRT-PCR validation of the
sequencing results

Quantitative real-time PCR (qRT-PCR) was applied to validate

the sequencing results. Genes and lncRNAs were chosen for

validation based on the FC size and significance, ensuring they

are present in most of the sequenced samples. Total RNA was

extracted and treated with DNase I, as previously described, from all

samples. Revert Aid First Strand cDNA synthesis kit with RNase

inhibitor (Thermo Scientific™) was used to synthesize cDNA and

the qRT-PCR analysis was carried out using cyclophilin (cyp) as the

internal reference gene (Lin et al., 2014) and in three biological

replicates for each sample for both mRNAs and lncRNAs. PCR

reactions were performed on a StepOnePlus™ Real-Time PCR

System (Applied Biosystems™, USA) with the HOT FIREPol®

EvaGreen® qPCR Mix Plus (ROX) (Solis BioDyne™). The

primers used were designed using Primer 3 (v0.4.0) online

software (http://bioinfo.ut.ee/primer3-0.4.0) and checked in NCBI

Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/primer-

blast). The list of the primers is given in the Supplementary Table

S1. Relative gene expression was calculated according to Livak and

Schmittgen (2001) using efficiency correction according to Pfaffl

(2003). Student t-test was carried out for mean comparison with a

significance level at p < 0.05 for qRT-PCR validation results.
3 Results

3.1 High-throughput sequencing of mRNA-
lncRNA-circRNA libraries

In total, 817.8 million raw reads were generated from the

sequenced libraries, averaging ≈51.11 million reads per library.

After processing the raw reads, 803.2 million high-quality reads

remained (on average ≈50.2 million reads). The high-quality reads

were then mapped, with the average alignment rate being 93.57%

and the unique mapping rate amounting to 78.5%. The detailed

information for each sample is listed in Supplementary Table S2.
3.2 Identification and characterization of
LT-responsive mRNAs in maize

To analyze the response of 5-d-old maize seedlings, the

expression levels were compared between the control and treatment

conditions at both time points (6h, 24h). The mRNA transcripts were

quantified, filtered, and FPKM values were calculated. PCA analysis

showed that more than 70% of the variability in gene expression

abundance between the samples can be explained by the first three

principal components (Figure 2A). Based on the expression levels,

there was a clear separation into four different groups dependent both
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on the genetic background and experimental conditions (Figure 2B).

Agglomerative hierarchical clustering analysis additionally confirmed

that the samples were clustered firstly based on treatment conditions,

and then based on the differences between LS and LT (Figure 2D). DE

analysis was performed on 26,023 genes, and comparisons were made

between the control and treatment conditions. In total, 508 genes

were found to be DE (q-value < 0.01, -1 ≤ log2FC ≥ 1): 175 in LS after

6h, and 235 after 24h; while in LT 102 were DE after 6h and 163 after

24h (Figure 2C, Supplementary Table S3). Five DE genes were

common for both genotypes and both t ime po ints

(Zm00001eb106430, Zm00001eb113780, Zm00001eb161610,

Zm00001eb101660, Zm00001eb325410). Common and unique DE

genes for each comparison (LS 6h, LS 24h, LT 6h, and LT 24h) are

shown in Figure 3A.

Most of the DE genes encoded proteins involved in several

aspects of photosynthesis. Genes necessary for photosystem I (PSI)

assembly – psa genes (psaD, psaE, psaG, psaH, psaL, psaN), as well

as those needed for the assembly of photosystem II (PSII) – psb

genes (psbP, psbQ-1), were down-regulated in both genotypes at

either of the time points. Genes important for the stability of the

light-harvesting complex (LHC) were also down-regulated – lhcA-

p4, lhcB5, cab1, cab7, cab48. Additionally, genes involved in the

Calvin cycle and ribulose bisphosphate carboxylase/oxygenase,

Rubisco, activity regulation were also found to be DE: rca, rbcx2,

and prk. Several genes important for photoinhibition protection

were up-regulated: ctpa2, elip1, elip2, grxs5, grxs17, psy2, thi1,

UF3GT, and pds. On the other hand, many genes encoding heat

shock proteins (HSP) and heat stress transcription factors (HSF)

were down-regulated. The hsp/HSF genes, down-regulated after

24h in LS, included hsp16, hsp17.4, hsp17.5, hsp17.6, hsp18, hsp21,

hsp23, hsp26, hsp70-8, hsp70-17, hsp82, HSFB2a, and HSFB2b. The

only exception was hsp17, up-regulated in LS after 24h. On the other

hand, only hsp16, HSFA6b, HSFB2a, and HSFB2b were down-

regulated in LT after 24h. Details of the expression profiles of the

selected DE genes are shown in Figure 3B.

GO enrichment analysis revealed the DE genes were mainly

enriched in two processes: “response to abiotic stimulus” (16

mRNAs) and “photosynthesis” (9 mRNAs). mRNAs enriched in

“response to abiotic stimulus” could be further categorized into

those enriched in “response to temperature stimulus” (heat, cold),

“response to oxidative stress”, but also “response to light stimulus”

(Figure 4, Supplementary Table S4). The KEGG pathway results of

the enrichment analyses revealed that the DE mRNAs were mostly

enriched in the pathways of “Energy metabolism” (Circadian

rhythm) and “Environmental adaptation” (Photosynthesis)

(Supplementary Table S4).

There were six significant gene clusters (p < 0.05) associated with

the LT treatment identified in the WGCNA analysis: three positively

and three negatively correlated. Additionally, five gene clusters were

significantly associated with the tolerant genotype, LT. Among the gene

clusters associated with the LT treatment or the tolerant genotype, the

genes were filtered based on the module membership and the

significance of the expression of the gene in question to the

associated trait. The resulting genes and modules are shown in

Supplementary Table S5. GO enrichment analyses were performed

on these genes, showing that genes of threemodules associated with the
frontiersin.org
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LT treatment were significantly enriched in peptide biosynthetic

process and nucleosome organization. On the other hand, genes

belonging to modules associated with the tolerant genotype were

functionally enriched in response to water deprivation, response to

increased salt levels, and nucleosome organization.
3.3 Identification and characterization of
LT-responsive lncRNAs in maize

After the transcripts were assembled, they were filtered and only

the ones longer than 200 nt, with the expression level higher than

0.1, containing more than one exon and not overlapping with

known protein-coding genes were kept, leaving only the 24,677

transcripts with class codes “u”, “i”, “o” and “x”. Three different

approaches were then applied to identify lncRNAs among those

transcripts: CPC2, CPAT, and Plek. Only the 786 transcripts

determined to lack any coding potential by all three methods

were considered as reliably expressed lncRNAs (Figure 5A,

Supplementary Table S6). Comparisons were made between the
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lncRNA and coding gene positions in the genome showing that

66.8% were intergenic lncRNAs (lincRNAs) (Figure 5B). Also,

comparing lncRNA to coding genes revealed that lncRNA genes

had fewer exons than the coding ones. Single-exon lncRNA genes

comprised 40.1% of all lncRNA genes, while those with two exons

took up 55.2%. On the other hand, coding genes with one and/or

two exons made up only 37.2%, while genes with three or more

exons took up 62.8%. Additionally, 62.9% of lncRNAs were <500 nt,

and mRNAs were of similar length – 54.4% were <500 nt. However,

the percentage of those longer than 1000 nt was higher in the

mRNA group (17.5%), compared to lncRNAs (4.2%).

Quantification of lncRNAs was performed in htseq and both

raw counts and FPKM values were calculated (Figure 5C). DE

lncRNAs under LT stress were calculated through the edgeR

package and 63 lncRNAs, between the control and treatment

samples, were identified across the two genotypes and time points

(Figure 6A, Supplementary Table S7). Unlike the mRNAs, no

lncRNA was common for both genotype and treatment duration

(Figure 6B). More than half were found to be DE in only one of the

time points in a single genotype. XLOC_000175 was the only
FIGURE 2

mRNA expression summary. (A) Percentage of explained variances of selected principal components (PCs). (B) PCA graph of individual libraries,
explained by the first two PCs (PC1 and PC2). (C) mRNAs differentially expressed between the control and treatment, in the two genotypes (LS, LT), at
the two time points (6h and 24h). Up-regulated mRNAs are shown in blue, while down-regulated are in orange. (D) Hierarchical cluster analysis,
based on the expression patterns expressed in FPKM of 26,023 mRNAs across the eight libraries.
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lncRNA DE in both genotypes after 6h: LT-6h logFC = 2.13; LS-6h

logFC = 2.28. On the other hand four DE lncRNAs were common

for both genotypes after 24h: XLOC_001043 (LT logFC = 2.38, LS
logFC = 3.83), XLOC_006714 (LT logFC = 11.65, LS logFC = 4.67),

XLOC_015129 (LT logFC = 2.88, LS logFC = 3.08), and

XLOC_016664 (LT logFC = 6.20, LS logFC = 3.69). WGCNA

analysis showed a single cluster of 153 lncRNAs associated with

the LT treatment, in which 41 lncRNAs showed high intramodular

connectivity (p < 0.05, Supplementary Table S8). Among the DE

lncRNAs, eight were found to be potential hub genes in the module

associated with the LT treatment (XLOC_000816, XLOC_001043,

XLOC_008440, XLOC_009662, XLOC_010836, XLOC_011976,

XLOC_012259, XLOC_016214).
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Gene targets of lncRNA were identified using two methods:

potential cis-targets were searched for 100 kb up- or downstream

using bedtools, and the trans-targets were predicted with the

LncTar software. A total of 362 potential cis-targets of 63 DE

lncRNA were discovered (Supplementary Table S9), with targets

of only five lncRNAs being DE: XLOC_009238-Zm00001eb069040,

XLOC_01 61 6 9 -Zm0000 1 e b 1 6 4 3 9 0 , XLOC_0 10 8 3 6 -

Zm00001eb113210, XLOC_006594-Zm00001eb420380,

XLOC_015072-Zm00001eb180830. Additionally, only three had

Uniprot characterizations: rca (Zm00001eb164390), tic32

(Zm00001eb420380) , and sweet (Zm00001eb180830) .

XLOC_016169 appeared to have a negative effect on the

expression of rca in LT, after 24h of LT exposure; while
FIGURE 4

Functional enrichment of differentially expressed mRNAs. (A) Bar chart showing the results of over-representation analysis (ORA) for the Biological
Process GO class. (B) Emap plot showing the results of over-representation analysis (ORA) for the Biological Process GO class.
FIGURE 3

Differentially expressed (DE) genes. (A) Venn diagram showing the common and unique differentially expressed (DE) genes for each comparison: LS
6h is shown in orange, LS 24h in yellow, LT 6h in blue, and LT 24h in green. (B) Expression profiles of selected DE genes for each comparison (LS 6h,
LS 24h, LT 6h, and LT 24h). Fold change is shown as its log 2 value (log2FC), in the range from -10 (blue), over 0 (white), to 10 (red).
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XLOC_006594 and XLOC_015072 showed a positive correlation

with their target genes, tic32 and sweet, respectively – both pairs

were down-regulated after 24h. On the other hand, 191 potential

trans-targets of 22 DE lncRNAs were discovered (Supplementary

Table S10). Only 66 of the potential target mRNAs were DE. Most

significantly, the target analysis showed that XLOC_012388

positively influenced the expression of hsp17. Also, elip2 was

shown to be targeted by three different lncRNAs (XLOC_016783,

XLOC_002167, and XLOC_006091) in the two genotypes. These

lncRNAs were upregulated after 6h, and seem to positively

influence elip2 expression as well. psRobot was used to identify

potential lncRNA targets of previously identified miRNAs

expressed in LT conditions of 5-d old seedlings (Božić et al.,

2024), and it has been identified that nine miRNAs may

potentially have an effect on seven lncRNAs (Supplementary

Table S11). Only XLOC_009553, targeted by zma-miR166k-5p,
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was DE. However, zma-miR166k-5p was not shown to be DE in

Božić et al. (2024).
3.4 Identification and characterization of
LT-responsive circRNAs in maize

The circRNAs involved in the LT response in 5d-old seedlings

were identified, along with the alternative back-splicing sites using

CIRCexplorer2. Additionally, the circRNAs were quantified

through htseq and only the ones with FPKM > 0.1 in at least one

library were considered for further analysis. These included 135

identified circRNAs (Figure 7A, Supplementary Table S12). Most of

the identified circRNAs were 200-800 nt in length (Figure 7B).

Exonic circRNAs made up the most of expressed circular RNAs

(46.94%), while the intronic and intergenic comprised 32.43% and
FIGURE 5

Summary of the lncRNA identification and quantification. (A) Potential lncRNAs identified through the three different approaches: CPC2 (yellow),
CPAT (orange), and Plek (blue); and the identified lncRNAs common for different pairs and all three approaches. (B) Classification of identified
lncRNAs into four classes: intergenic (orange), intronic (purple), sense (blue), and antisense lncRNAs (yellow). (C) lncRNA FPKM distribution across the
libraries (Ls_C_6, Ls_C_24, Ls_T_6, Ls_T_24, Lt_C_6, Lt_C_24, Lt_T_6, Lt_T_24).
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FIGURE 7

Identified circRNAs. (A) circRNA FPKM distribution across the samples (Ls_C_6, Ls_C_24, Ls_T_6, Ls_T_24, Lt_C_6, Lt_C_24, Lt_T_6, Lt_T_24) of
the selected 135 circRNAs. (B) Length distribution across the eight libraries of the selected 135 circRNAs. (C) Exon number of the selected 135
circRNAs. 83% of circRNAs had one exon and are shown in blue, those with two accounted for 14% and are shown in orange, while the rest of
circRNAs were represented with 1% in each category: circRNAs with three exons shown in yellow, those with four in purple and six in light blue.
(D) The number of parent genes (y-axis) that generated different numbers of circRNAs (x-axis).
FIGURE 6

Differentially expressed lncRNA. (A) lncRNAs differentially expressed between the control and treatment, in the two genotypes (LS, LT), at the two
time points (6h and 24h). Up-regulated lncRNAs are shown in blue, while down-regulated are in orange. (B) Unique and common differentially
expressed lncRNAs between the two genotypes (LS, LT) and time points (6h and 24h). Ls_6h is shown in orange, Ls_24h in yellow, while Lt_6h is
presented in blue, and Lt_24h in green.
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20.63%, respectively. Nearly 83% were single-exon circRNAs, while

the rest contained up to six internal exons (Figure 7C). Also, 86.67%

of circRNAs were produced by a single parent gene. Two circRNAs

from one gene accounted for 10.37%, and three different circRNAs

made up 1.48%. Only two genes were responsible for forming more

than three circRNA isoforms: Zm00001eb224050 generated four

circRNAs, while Zm00001eb420520 held six different circRNAs

(Figure 7D). edgeR was used to detect DE circRNAs between the

treated and control samples, but none were found. Additionally, 11

microRNAs were found to potentially target 11 circRNAs

(Supplementary Table S13).
3.5 Construction of the lncRNA/circRNA-
miRNA-mRNA network

Non-coding RNAs have the ability to target coding RNA

molecules and regulate their expression through different

mechanisms. The lncRNA/circRNA-miRNA-mRNA networks can

be constructed based on these interactions, so first each of the

individual interactions between RNA classes and their correlations

had to be predicted. Potential lncRNA-miRNA, lncRNA-mRNA,

and circRNA-miRNA interactions were already described in

previous sections. Potential mRNA-miRNA interactions were also

analyzed in Božić et al., 2024.

Due to the lack of differentially expressed target RNAs

(circRNAs and lncRNA-targets of miRNAs), the only parts of the

network that could be predicted were lncRNA-mRNA and miRNA-

mRNA. The network showed that the expression of 19 lncRNAs

was correlated to the expression patterns of 41 target mRNA

(Figure 8). XLOC_012388 acted as a hub-regulator, affecting the

largest number of target genes. Most of the XLOC_012388 target

genes had no functional Uniprot annotation, but the ones that did

were involved in growth and development (protodermal factor 1;

zinc finger protein 2; small auxin up-regulated protein 37,
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SAUR37), photosynthesis (oxygen-evolving enhancer protein 3-1,

sedoheptulose-1,7-bisphosphatase), and abiotic stress response

(hsp17, hsp26). The elip2 gene (Zm00001eb301270) was possibly

positively regulated by three different lncRNAs: XLOC_016783,

XLOC_002167 and XLOC_006091. Giberellin-regulated protein 1

gene’s (Zm00001eb051810) expression was also modified by three

lncRNAs: XLOC_012259, XLOC_007807, XLOC_012388. Still,

most of the genes targeted by more than one lncRNA, such as

Zm00001eb069040, Zm00001eb215270, Zm00001eb293270,

Zm00001eb156200, did not have functional annotations.

A total of 1822 genes were identified as targets for both known

and novel miRNAs. Seven miRNAs and the target mRNAs were

found to have opposite expression patterns, pointing to the possible

role of the miRNAs in gene expression regulation (Supplementary

Table S14). Two potentially novel miRNAs seemed to target genes

important for the Calvin cycle: down-regulation of novel_452 had a

positive effect on the rbcx2 expression, while novel_696 was up-

regulated leading to decreased expression levels of prk. On the other

hand, some known miRNAs seem to be directly involved in the LT

response. zma-miR164a-3p was upregulated after 24h in LS, and the

predicted target gene, HSFBa, was significantly down-regulated.
3.6 qRT-PCR validation of the
sequencing results

Sequencing results were validated through qRT-PCR analysis of

the selected DE mRNAs and lncRNAs. Six mRNAs (ADO3, THI1,

AED1, nat4, pds, rca) and five lncRNAs (XLOC_012565,

XLOC_000175, XLOC_001043, XLOC_006714, XLOC_016783)

were selected for the analysis. In general, the expression patterns

obtained through qRT-PCR matched those obtained through NGS

sequencing, with small inconsistencies (for example, in LT-6h,

changes in expression of aed1 and thi1 were detected in qRT-

PCR, but not in sequencing results). Results of the qRT-PCR
FIGURE 8

The lncRNA-mRNA coexpression network. Orange nodes represent the lncRNAs, while the blue rectangles represent the target mRNAs. Positive
correlation between the lncRNA and mRNA expression is shown with a green arrow, while the negative is shown with a red one. The network
showed that the expression of 19 lncRNAs was correlated to the expression patterns of 41 target mRNA.
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validation of mRNAs are shown in Supplementary Figure S1, while

lncRNA validation results are shown in Supplementary Figure S2.
4 Discussion

4.1 Low temperatures affect various
photosynthesis parameters in 5-day-old
maize seedlings

Photosynthesis is one of the most important metabolic processes

in plants, and is crucial for successful growth and development, as

well as the plant yield (Muhammad et al., 2021). However, it is

significantly affected by various abiotic stressors, including low

temperatures (Gururani et al., 2015). This is particularly true for C-

4 plants, such as maize, that have a more sensitive photosynthetic

apparatus (Bilska-Kos et al., 2018). Low temperatures affect

photochemical efficiency of the PSI and PSII, chlorophyll

biosynthesis, Calvin cycle enzyme activity, particularly Rubisco

(Muhammad et al., 2021). Suboptimal temperatures also lead to the

generation of reactive oxygen species (ROS) (Nishiyama and Murata,

2014), which cause further oxidative damage to the photosystems and

inhibition of PSII repair (Nishiyama et al., 2011; Gururani et al.,

2015). This research found, that by affecting the expression of certain

genes, the LT treatment in 5-day-old seedlings had an effect on the

PSI and PSII assembly, light-harvesting complex (LHC) stability, and

Rubisco activity. Additionally, the treatment temperatures activated

certain defensive responses when it comes to oxidative damage

caused by the destabilization of the photosynthetic apparatus.

4.1.1 LT impact on both photosystems
LT affected the integrity of both photosystems in the 5d-old

maize seedlings. Genes encoding structural proteins of both PSI and

PSII reaction centers, and the components of the antenna

complexes were down-regulated in both genotypes. The down-

regulated genes included: psa genes necessary for PSI reaction

center assembly (Ozakca, 2013); psb genes required for PSII

assembly and stability (Pagliano et al., 2013); and several genes

responsible for the expression of chloroplastic chlorophyll a-b

binding (CAB) proteins of the LHC. CAB proteins comprise the

antenna LHC of both PSI and PSII (Zhao et al., 2020). LHC are

necessary for the initiation of photochemical reactions, maintaining

thylakoid membrane structure, and regulating excitation energy

distribution between PSII and PSI (Gan et al., 2019). Down-

regulation of the psa, psb, lhc, and cab genes in LT conditions has

been reported before in various plant species, including maize

(Velitchkova et al., 2020; Yu et al., 2021; Banović Đeri et al., 2022;

Balassa et al., 2022), implying that the light-dependent reactions are

particularly sensitive to LT.

4.1.2 Calvin cycle enzymes affected by LT
Several genes involved in the regulation of the Calvin cycle and

Rubisco activity were found to be DE. Rubisco activity is a key factor

in determining the rate and proper functioning of photosynthesis
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under both optimal and LT conditions, particularly in C4 plants. C4

plants have lower levels and capacities of Rubisco compared to C3

plants (Salesse-Smith et al., 2020). Therefore, maintaining adequate

Rubisco activity is essential for sustaining the photosynthesis rates

needed for survival under environmental stress. Rubisco activase

(RCA), encoded by the rca gene, is the enzyme responsible for

regulating Rubisco (Bracher et al., 2017). Up-regulation of rca leads

to higher photosynthesis rates and productivity (Zhang et al., 2019c;

Feng et al., 2023). Data on the effect of low temperatures on rca

expression is lacking, but under other abiotic stressors, rca

expression was increased in maize (Salesse-Smith et al., 2018;

Sparrow-Muñoz et al., 2023). Here, in LT conditions, rca was

down-regulated after 24h in both genotypes. Interestingly, rbcx2

gene, encoding one of the proteins necessary for the Rubisco

assembly, chloroplastic chaperonin-like RbcX protein 2 was

upregulated after 6h of treatment in both genotypes. The RbcX

proteins are known to have chaperone activity during the assembly

of Rubisco in cyanobacteria (Li et al., 2022), but their homologues

were found in higher plants as well, where they fulfill a similar role

(Kolesiński et al., 2011). To the authors’ knowledge this is the first

note of any rbcx gene being DE under abiotic stress conditions.

Additionally, phosphoribulokinase gene, prk, was down-regulated

after 24h. PRKs are a part of the regeneration phase of the Calvin

cycle (Gurrieri et al., 2021). Again, the data on prk expression levels

under abiotic stress in maize is lacking, but the gene’s down-

regulation was reported in cold-treated Iranian wheat (Rinalducci

et al., 2011). prk was also down-regulated in salt and drought-

treated wheat (reviewed in Kosová et al., 2015).

The results show that LT negatively affected the light-

independent phase of photosynthesis in 5-day-old maize seedlings,

by limiting carbon fixation and ribulose regeneration in the Calvin

cycle, regardless of genotype. However, in the first 6h of treatment, a

course of action was taken to alleviate the described negative effects by

intensifying the assembly of Rubisco, through rbcx2 up-regulation.

The expression levels of rbcx2 were significantly higher in LT, offering

a possible explanation for a better recovery of the Calvin cycle after

24h in the tolerant genotype.
4.1.3 LT-induced photoinhibition and
defensive mechanisms

The damages to both photosystems and the reduction of the

Calvin cycle enzyme activity, can lead to notable decreases in

photosynthetic efficiency. Lowered photosynthetic efficiency

results in inhibited electron transport and an increase in ROS

levels and photoinhibition (Gan et al., 2019). This further leads to

the over-excitation and loss of structural integrity of PSII (Tikkanen

and Aro, 2014), as well as to the hindrance of PSII damage repair

(Nishiyama and Murata, 2014). Protein responsible for the PSII

repair, protein D1, is encoded by the psbA gene (Gururani et al.,

2015). Interestingly, while the psbA gene was not found to be DE, a

gene encoding the carboxyl-terminal-processing peptidase 2

(CTPA2), necessary for the C-terminal processing and activation

of the D1 protein (Che et al., 2013) was upregulated in both

genotypes after 6h. This finding suggests that, while the synthesis
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of protein D1 did not differ between the control and treatment

conditions, it was activated only under low-temperature conditions

as a way of ensuring damage repair of PSII.

Besides the PSII repair, additional protective measures were

likely employed to alleviate the harmful effects associated with ROS

and photoinhibition. For example, early light-inducible proteins

(ELIPs) protect chloroplasts from photodamage, by facilitating

energy dissipation that protects PSII from photoinhibition (Liu

et al., 2020). Low temperatures were reported to lead to ELIP up-

regulation in Arabidopsis (Hayami et al., 2015), and Medicago

sativa (Zhuo et al., 2013), but no data exists for maize. Herein,

elip2 was up-regulated in LS and both elip1 and elip2 in LT after 6h

of treatment. Rizza et al. (2011) showed that in Arabidopsis, elip1

and elip2 were independently regulated under abiotic stress

conditions. This coincides with the results in 5d-old seedlings,

since elip1 was upregulated only in LT and suggests a factor

possibly involved in establishing low temperature tolerance in

maize seedlings. Additionally, two glutaredoxin genes (GRX) were

upregulated after 6h: GRXS17 in LS, and GRXS5 and GRXS17 in LT.

Glutaredoxins (GRXs) are oxidoreductases that are involved in

controlling the redox potential and ROS regulation (Meyer et al.,

2009). GRXS17 genes were found to be upregulated in Arabidopsis

during heat stress (Martins et al., 2020; Rao et al., 2023), and

AtGRXS17 overexpression in tomato lead to enhanced chilling

tolerance (Hu et al., 2015). GRXS5 was also involved in abiotic

stress response in the fern species Pteris vittata (Sundaram et al.,

2008), and overexpression of PvGRXS5 in Arabidopsis increased the

plants’ tolerance to heat stress and reduced oxidative damage to

proteins (Sundaram and Rathinasabapathi, 2010). It appears that

GRXs fulfill a similar role in 5d-old maize seedlings, suggesting a

possible role in modulating responses to extreme temperatures in

different crops. The difference in their expression levels between LS
and LT again alludes to the possible role of antioxidative responses

being important for establishing chilling tolerance. To the author’s

knowledge, this is the first report on their differential expression in

maize under low-temperature conditions.

Another activated photoprotective measure was the

antioxidative pigment accumulation, including carotenoids and

anthocyanins. Carotenoid levels are increased during abiotic

stress periods as a way to limit the damages of ROS (Uarrota

et al., 2018). Various plant species displayed increased carotenoid

levels under low temperatures (Guo et al., 2022; He et al., 2023),

including maize (Obeidat et al., 2018; Waititu et al., 2021). Several

enzymes involved in the carotenoid biosynthetic pathway were up-

regulated in both genotypes of 5-d old seedlings. The psy2 gene is

one of the three phytoene synthases found in maize, and it was

upregulated in both genotypes after 6h. The PSY2 enzyme is

responsible for carotenoid accumulation in green tissues where

the photosynthetic processes occur (Zhou et al., 2022b). The pds

gene encoding the 15-cis-phytoene desaturase, that yields 9,15,9’-

tri-cis-z-carotene (Koschmieder et al., 2017), was up-regulated in

both genotypes after 24h. An interesting difference between the

genotypes was the apparent increase in anthocyanin content only in

LT, through the up-regulation of an enzyme involved in the

biosynthetic pathway: anthocyanidin 3-O-glucosyltransferase

(UF3GT). UF3GT expression was increased in the treatment
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conditions at both time points in LT. Anthocyanin accumulation

was connected to enhanced protection from photoinhibition in

maize leaves at low temperatures (Rodrıǵuez et al., 2014; Yu

et al., 2022).

In conclusion, the findings of changes in expression regarding

photosynthesis-related genes, show that LT significantly affected the

photosynthetic process regardless of genotype and their

susceptibility to this stress factor: by affecting the PS assembly

and their photorecepting units (LHC), as well as the activity of

crucial enzymes, like Rubisco. However, the difference in low-

temperature susceptibility between the genotypes in the VE stage

could be attributed to the courses of action taken to limit the

damage caused by LT-induced ROS accumulation and

photoinhibition. LT seemed to be more efficient in handling the

oxidative damages: with higher expression levels of proteins and

enzymes with antioxidative roles, such as CTPA2, ELIPs, GRXs,

UF3GT (Supplementary Figure S3).
4.2 Genes involved in the temperature
stimuli response differed among the two
genotypes after the LT treatment

GO analysis showed that the DE genes enriched in the response

to abiotic stimuli, encompassed reactions to both heat and cold.

Most of the genes belonged to the HSP and HSF family.

Interestingly, nearly every identified hsp or HSF gene was down-

regulated. The only exception was hsp17, up-regulated in LS after

24h. Still, a larger number of down-regulated hsp/HSF genes were

identified in LS, rather than LT. LT is most often associated with the

accumulation of HSPs, as a way to decrease protein dysfunction and

denaturing (Hlaváčková et al., 2013; ul Haq et al., 2019), but this is

not the case for every plant species. There are reports of both HSPs

and HSFs up-regulation (Kollipara et al., 2002; Meng et al., 2022), as

well as their down-regulation in maize (Li et al., 2020; Sowiński

et al., 2020). Sowiński et al. (2020) compared several independent

transcriptomic research studies focusing on the response of maize

seedlings to moderate (12–15°C) or severe cold stress (below 8°C).

They found that in both cases hsp genes were mostly down-

regulated, but the number of DE hsp genes was higher in maize

plants subjected to severe cold conditions. Unlike LT, expression

patterns in LS were more similar to those found in studies with

maize subjected to temperatures lower than 8°C, suggesting the

temperatures applied in this research affected the susceptible

genotype more gravely. Since the up-regulation of HSPs is often

considered a crucial aspect of the plant’s response to any abiotic

stressor (Janmohammadi et al., 2015), it would be safe to assume

that the inability to limit protein denaturation and dysfunction, can

be a significant factor in maize susceptibility to low temperatures, as

well as in the differences in susceptibility between the different

maize genotypes.

Two DE genes were enriched for response to cold: thiamine

thiazole synthase, THI1, and the previously mentioned, pds,

involved in carotenoid biosynthesis. THI1 is involved in the

biosynthesis of thiazole, a precursor of thiamine (vitamin B1).

Thiamine is involved in various metabolic processes such as
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glycolysis, pentose phosphate pathway, and the tricarboxylic acid

cycle (Yusof, 2019), but also abiotic stress response (Yee et al.,

2016). THI1 levels were shown to be increased under drought

response in Arabidopsis (Li et al., 2016), and Medicago sativa

(Yin et al., 2022). The down-regulation of THI1 only in LS can

also be a factor in the difference in LT susceptibility between

genotypes. To the author’s knowledge, this is the first description

of THI1 involvement in LT response in maize.
4.3 lncRNAs appeared to affect both
growth and development, in addition to
the low-temperature response

lncRNAs are known to have important roles in the growth and

development of plants, as well as responses to environmental

changes, including low temperatures (Biswas et al., 2021). Many

lncRNAs have been identified under LT stress in numerous plant

species: Arabidopsis (Calixto et al., 2019), rice (Leng et al., 2020),

wheat (Lu et al., 2020). lncRNAs expressed under abiotic stresses

have been researched in maize as well: under conditions of drought

(Pang et al., 2019), heat (Hu et al., 2022), nitrogen deficiency (Ma

et al., 2021b). The involvement of lncRNAs in the low temperature

response has also been studied in V6 maize seedlings (Waititu et al.,

2021) and primary root tips of 8-day-old seedlings (Xuhui et al.,

2022). To the author’s knowledge, this is the first study of lncRNAs

in 5-day-old maize seedlings.

Herein, 786 transcripts were determined to satisfy the necessary

criteria to be considered lncRNAs. A large number of the transcripts

were designated as lincRNAs, each less than 1000 nucleotides in

length, which corresponds with the findings of Xuhui et al. (2022).

Additionally, lncRNA genes with 1-2 exons comprised more than

95% of all expressed lncRNAs, a much higher ratio than in mRNA

genes (37%). Similar results were reported in other works related to

maize lncRNAs under abiotic stress (Yu et al., 2020; Hu et al., 2022;

Liu et al., 2022b). Of the 63 DE lncRNAs, more than half were found

to be DE in only one of the time points in a single genotype and

none were common for both genotypes and time-points. Also, the

lncRNA expression levels were significantly lower than the levels of

expression of mRNAs, as reported in previous studies. Further

characterization of identified and DE lncRNAs was made difficult

due to the lack of specialized databases for plant lncRNAs. For

example, the most widely used database PLncDB (Jin et al., 2021),

contains more than 30,000 entries for maize but only 26

are validated.

lncRNA research is still in the phase of large-scale identification,

rather than functional characterization (Gonzales et al., 2024). Still,

some of their functions, particularly through their interaction with

other RNA classes, such as miRNAs, are known. Since none of the

miRNA-lncRNA pairs were DE, making any conclusions about the

interaction is difficult. lncRNAs can also directly target the

expression of genes positioned in the vicinity of their transcription

sites in a cis-manner, regulating genes found at or near the same

genomic locus, or in a trans-manner, at independent chromosomal

loci (Fatica and Bozzoni, 2014; Waseem et al., 2021). Regarding cis-
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targets, XLOC_016169 negatively impacted rca expression in LT,

suggesting its role in regulating Rubisco activity. XLOC_006594

seemed to positively influence tic32 (chloroplastic protein TIC32)

expression; while XLOC_015072 also showed positive expression

correlation with target gene sweet (bidirectional sugar transporter,

SWEET). TIC32 is a short-chain dehydrogenase, part of the TIC

(translocon of the inner chloroplast envelopes) complex, essential

for chloroplast biogenesis (Hörmann et al., 2004). There is no data

on tic32 expression under low-temperature conditions, but under

heat stress, it was reduced in pea (Dutta et al., 2009). SWEET has

been shown to have an important role in low-temperature tolerance

in several plant species (Miao et al., 2017; Zhang et al., 2019a). Their

down-regulation in LS only may point to their role in establishing

low temperature tolerance in maize lines.

Potential DE trans-mRNA targets were involved in growth and

development (germination, tissue differentiation; Casparian strip

development), abiotic stress response (heat shock proteins,

antioxidative response), and protein degradation. This result

suggests the possibility of maize lncRNAs being directly involved

in the plants’ response to LT, by affecting the expression of genes

involved in the stress response (rca, elip2, hsp17), but confirmation

of this assumption would require further characterization of the

lncRNAs and exploration of their role in this pathway.
4.4 circRNAs were not differentially
expressed under LT conditions in maize at
the analyzed stage

circRNAs have been identified in various plant species, such as

Arabidopsis (Ye et al., 2015), rice (Zhou et al., 2021), wheat (Han

et al., 2021), and maize (Han et al., 2020; Xu et al., 2024). circRNAs

have been shown to be involved in the response of maize plants to

drought (Zhang et al., 2019b; Xu et al., 2024), increased salt levels

(Liu et al., 2022b), soil nitrogen deficiency (Ma et al., 2021a). The

involvement of circRNAs in the maize cold response was described

only in a meta-analysis done by Tang et al. (2018). To the authors’

knowledge this is the first description of their identification and

expression in 5-day-old maize seedlings.

Initial identification revealed 6951 circRNAs. However, nearly

91% had expression levels lower than the set threshold, meaning

they were present with less than 10 reads across all libraries. To

ensure reliable expression analysis, such transcripts were not

considered as expressed circRNAs with high confidence and were

not regarded in downstream analyses, leaving 135 circRNAs for

further analyses. Most of the identified circRNAs were 200-800 nt in

length, which is in line with other research works regarding maize

circular RNAs, as well as those of other plant species (Han et al.,

2020; Ma et al., 2021a). On the other hand, the largest ratio of the

expressed circRNAs was exonic circular RNAs. In maize, the

classification of circRNAs based on the positional relationship

between the circRNAs and their parent gene is not uniform.

There are reports of different ratios of exonic, intronic, and

intergenic circRNAs, but in all circRNAs are mostly of exonic

origin, with intronic and intergenic circRNAs varying in proportion
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(Ma et al., 2021a; Xu et al., 2024). Alternative back-splicing is a

process in which multiple circRNAs are derived from the same

back-splice site in a single gene (Tang et al., 2018). Despite detecting

63 unique back-splice junctions in the 5d-old maize seedlings,

nearly 90% of circRNAs were produced from a single gene.

Parent genes of multiple circRNAs were responsible for the

formation of less than 15% of all circRNAs. Again, there are

multiple reports of alternative back-splicing events in maize, with

the percentage of single-gene-origin circRNAs covering different

proportions of total circRNAs. However, findings similar to the

ones from this research were reported by Luo et al. (2019) and Liu

et al. (2022b). When it comes to the involvement of identified

circRNAs in the LT response, no DE circRNAs were detected in the

5d-old maize seedlings. Also, despite identifying eleven miRNAs

potentially targeting identified circRNAs, the target circRNAs, nor

their parent genes, were DE. For this reason, no conclusions could

be drawn about the role of miRNAs in regulating circRNAs under

chilling conditions.

Circular RNAs are known to be expressed at levels lower than

linear RNAs in plants and animals (Wang et al., 2014; Liu et al.,

2023). Still, expression levels detected in this research are even lower

than those reported in existing literature. For example, Han et al.

(2020) showed that in V3 and V5/V6 maize seedlings ≈70% of

circRNAs were expressed with less than ten reads across all libraries,

which is lower than the ratio identified in this experiment (91%). A

possible explanation for this finding could be the examined

vegetative stage: five days post-germination did not seem to be

enough time for circRNAs to accumulate and be effectively included

in the low-temperature response.
4.5 Lack of DE ncRNAs complicated the
lncRNA/circRNA-miRNA-mRNA
network construction

Potential interactions between the lncRNAs and other RNA

classes (miRNA, mRNA) needed for the lncRNA/circRNA-

miRNA-mRNA network construction, were already described in

previous chapters, just like circRNA-miRNA associations.

zma-miR164a-3p negatively impacted the HSFBa expression.

miR164a-3p were previously identified to participate in the salt

treatment response in maize (Fu et al., 2017) and tomato (Wang

et al., 2021). However, miR164a-3p were down-regulated in both

plant species under the salt treatment. To the authors’ knowledge,

this is the first time their role in targeting heat stress factors under

the chilling treatment was described in maize. Despite finding

significant miRNA-mRNA interactions, the target pairs did not

form a network, but were all separate entities: there were no

individual miRNAs found that affect multiple genes, nor target

genes regulated by several miRNAs.

The lncRNA-mRNA coexpression network comprised of 19

lncRNAs and 41 target mRNAs (Figure 8). As previously stated,

lncRNAs can affect target genes through multiple mechanisms,

including directly binding to mRNAs to regulate the mRNA

stability, interfering with transcription, as well as acting as
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miRNA sponges as explained in the ceRNA hypothesis (He et al.,

2020), resulting in different co-expression patterns, seen here as

well. lncRNA XLOC_012388 acted as a hub-regulator, affecting the

largest number of target genes. lncRNAs affected the expression of

genes involved in growth and development, photosynthesis, and

abiotic stress response. Still, most of the genes targeted by the

lncRNAs, did not have functional annotations, which made

drawing any conclusions about the proposed regulatory network

more difficult.

Due to the lack of DE circRNAs and the lncRNA-targets of

miRNAs not being DE, constructing the complete lncRNA/

circRNA-miRNA-mRNA network was difficult, despite many

potential cases. For example, the target prediction showed that

several lncRNAs (XLOC_005314, XLOC_010450) and circRNAs

(bna_circ_824, bna_circ_1505) have binding sites for zma-

miR169i-3p, which they share with two target genes

(Zm00001eb339510, Zm00001eb286120). This suggests a possible

role of those non-coding RNAs in modulating the expression of

target mRNAs, but it could not be confirmed due to the lack of

expression data. A possible explanation could be the analyzed

developmental stage in which lower expression levels, particularly

of the noncoding RNA molecules, were detected.
5 Conclusion

The impact of low temperatures on the levels of coding and long

non-coding RNAs in 5-day-old maize seedlings, during the VE

stage, is substantial, allowing for conclusions to be drawn regarding

the plants’ responses and the distinctions between tolerant and

susceptible genotypes. According to the results, photosynthesis is

the process most affected by low temperatures. The LT treatment

had an effect on the integrity of the reaction centers and antenna

complexes of both photosystems, as well as on the Calvin cycle

enzyme activity and chloroplast assembly, by affecting the

expression of various important genes (various psa, psb, lhc, cab

genes; rca; prk; tic32). Since such a decrease in photosynthetic

efficiency can lead to the generation of ROS and photoinhibition, it

was not surprising that many genes involved in limiting the

photooxidative damage were upregulated (ctpa2, grxS17, grxS5,

elip1, elip2, UF3GT). It was in the expression of these genes

where differences between the genotypes could be seen: according

to the results, LT seemed better equipped at fighting photoinhibition

through a more significant up-regulation of these genes.

Additionally, the expression of many of the genes seemed to be

regulated by non-coding RNA: XLOC_016169-rca; XLOC_006594-

tic32 ; XLOC_016783-XLOC_002167-XLOC_006091-elip2 ;

novel_452-rbcx2; novel_696-prk. However, the low levels of non-

coding RNA expression in this developmental stage prevented the

complete lncRNA/circRNA-miRNA-mRNA network from being

formed. Certain genes’ roles in the low-temperature or abiotic stress

response in maize weren’t previously described: rbcx, grxS17, grxS5,

THI1; and neither were the interactions with lncRNAs.

This research is the first of its kind to be carried out during such

an early developmental stage, such as VE, under LT conditions in
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maize. Additionally, to the authors’ knowledge it is the first study of

lncRNAs and circRNAs during emergence in maize. Consequently,

it sheds light on the responses of young maize plants to LT

environments, specifically through changes in their transcriptomic

expression. Insights from this study lay the groundwork for

subsequent network analyses in later developmental phases and

across diverse maize genotypes, as well as the potential mechanisms

underlying the maize low-temperature tolerance/susceptibility. As

such, it offers valuable guidance for future research directions in the

molecular breeding of chilling-tolerant maize.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ebi.ac.uk/

ena, PRJEB80094.
Author contributions

MB: Conceptualization, Data curation, Formal Analysis,

Investigation, Validation, Writing – original draft, Writing –

review & editing. DIM: Conceptualization, Investigation, Writing

– review & editing. VA: Funding acquisition, Resources, Writing –

review & editing. ND: Funding acquisition, Resources, Writing

– review & editing. AN: Conceptualization, Investigation, Writing

– review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Maize Research Institute Zemun Polje (internal

research fund) andMinistry of Science, Technological Development

and Innovation under Grant No. 451-03-66/2024-03/200040.
Frontiers in Plant Science 15
Acknowledgments

We would like to thank Dr. Jason Wallace, as well as the rest of

The Wallace Lab at the University of Georgia (UGA), for the help

and dedication provided to MB in mastering the bioinformatics

techniques. Also, we wanted to thank the members of The

Laboratory for Molecular Genetics and Physiology at the Maize

Research Institute Zemun Polje for all their assistance during this

research study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1527447/

full#supplementary-material
References
Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count
data. Genome Biol. 11, R106. doi: 10.1186/gb-2010-11-10-r106

Andrews, S.2010 Babraham Bioinformatics - FastQC A Quality Control tool for High
Throughput Sequence Data. Available online at: https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/ (Accessed March 14, 2024).
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