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metabolomics in tangor ‘Murcot’
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Wenqin Bai1,2,3* and Lin Hong1,3*

1Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China,
2Chongqing Key Laboratory of Adversity Agriculture Research, Chongqing Academy of Agricultural
Sciences, Chongqing, China, 3Key Laboratory of Evaluation and Utilization for Special Crops
Germplasm Resource in the Southwest Mountains, Ministry of Agriculture and Rural Affairs,
Chongqing, China
Introduction: Fruit color is a crucial quality factor strongly influencing consumer

preference for citrus. The coloration of citrus fruit is primarily determined by

carotenoids, which produce a range of hues. Gibberellic acid (GA) and ethylene

are critical in fruit coloration during the ripening process. Nevertheless, the

underlying mechanisms remain poorly understood.

Methods: The present study utilized transcriptomic andmetabolomic analyses to

investigate the molecular regulatory mechanisms affecting peel pigment

metabolism in tangors (Citrus reticulata Blanco×Citrus sinensis L. Osbeck)

following GA and ethephon (ETH) treatments.

Results and discussion: Collectively, our findings indicated that GA inhibits

chlorophyll degradation and the accumulation of numerous carotenoids,

including five violaxanthin esters (violaxanthin palmitate, violaxanthin

myristate–caprate, violaxanthin myristate–laurate, violaxanthin dilaurate,

violaxanthin myristate) and two b-cryptoxanthin derivatives (b–cryptoxanthin
laurate, b–cryptoxanthin myristate), while ETH promotes these processes.

Furthermore, GA inhibited the downregulation of lutein, the predominant

carotenoid in immature fruits. Notably, integrated transcriptomic and

metabolomic analyses identified 33 transcription factors associated with

pigment metabolism. Of these, two novel transcription factors, the ethylene-

responsive transcription factor ABR1 and the HD-Zip transcription factor ATHB7,

were uncovered through both transcriptomic analysis and weighted gene co-

expression network analysis. These two transcription factors positively regulated
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the colouration process, as validated by transient overexpression assays in

tobacco. Taken together, our findings elucidated the global carotenoid

changes and transcriptional alterations in regulating citrus peel color under

hormone induction, with significant implications for improving citrus production.
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Introduction

Fruit color is a critical quality parameter, as consumers prefer

attractive, bright peel colors (Ruiz-Sola and Rodrıǵuez-Concepción,

2012; Yuan et al., 2015). In immature citrus peel, chlorophyll is the

predominant pigment, while the yellow and orange hues observed

during ripening are primarily due to the accumulation of

carotenoids (Lu et al., 2024; Yuan et al., 2015). In certain citrus

varieties, such as blood orange (Citrus sinensis), the red pulp

coloration is attributed to the accumulation of anthocyanins

(Huang et al., 2019). As citrus fruits mature, chloroplasts in the

peel transition to chromoplasts, resulting in a rapid decline in

chlorophyll content and a concomitant increase in carotenoid

levels, facilitating the color change from green to orange (Kato

et al., 2004; Rıós et al., 2010). Carotenoids are integral to citrus

fruits, enhancing flesh coloration and serving as essential dietary

antioxidants and precursors to vitamin A, which are crucial for

human health (Cabezas-Terán et al., 2023; Concepcion et al., 2018).

The diverse range of color mutants and carotenoid metabolites in

citrus fruits makes them ideal subject for studying fruit degreening and

colouration processes (Yuan et al., 2015). Fruit colouration is

influenced by a wide range of factors, with transcriptional regulation

playing a crucial role in determining external appearance (Lu et al.,

2024; Stanley and Yuan, 2019). To date, only a limited number of

transcription factors (TFs) have been identified to regulate chlorophyll

and carotenoidmetabolism (Lu et al., 2024). It was found thatCcGCC1,

a MYB-related transcription factor, whose expression abnormally

correlated with the delayed chlorophyll degradation in two Citrus

clementina mutants (39B3 and 39E7) (Rıós et al., 2010). Meanwhile,

there was a negative correlation between chlorophyll content and

CitAP2/ERF family genes such as CitERF5, CitERF6, CitERF7, and

CitERF13 (Xie et al., 2014). Among them, two transcription factors,

CitERF13 and CitERF6, were strongly associated with fruit degreening

(Li et al., 2019; Xie et al., 2017; Yin et al., 2016). Additionally, in navel

sweet orange, CsMADS3 has been shown to activate the promoter of

SGR, a key gene involved in chlorophyll degradation, leading to

decreased chlorophyll levels, and enhance carotenoid biosynthesis by

activating the promoters of PSY1 and LCYB2 (Zhu et al., 2023).

The molecular regulatory mechanisms of carotenoids in citrus

remain poorly understood, with few transcription factors being

associated with carotenoid metabolism. Of note, overexpression of

CubHLH1, identified in Satsuma mandarin (Citrus unshiu Marc.), in
02
tomatoes reduced lycopene levels and altered the expression of

carotenoid biosynthesis genes (Endo et al., 2016). On the other

hand, in Green Ougan (MT), a spontaneous stay-green mutant of

the commercial variety Ougan (WT) (Citrus reticulata cv Suavissima),

CrMYB68 negatively regulates BCH2 andNCED5, thereby suppressing

a- and b-carotene transformation. While also interacting with

CrNAC036 to synergistically suppress NCED5 expression and

abscisic acid (ABA) biosynthesis (Zhu et al., 2017, 2020). In

addition, CsPHL3 directly suppresses PSY transcription, leading to

decreased carotenoid content in ‘Anliu’ sweet orange (Lu et al., 2021a).

Meanwhile, CsMADS6 forms a transcriptional complex with

CsMADS5, which activates the transcription of PSY, PDS, and

LCYB1 by binding to their promoters, thus promoting

carotenoid biosynthesis in ‘Hong Anliu’ sweet orange (Citrus

sinensis) (Lu et al., 2021b, 2018). CsERF061 positively regulates

LCYB2, and nine other genes involved in the carotenoid

biosynthesis pathway, thereby enhancing carotenoid accumulation

and increasing chromoplast numbers in navel orange (Citrus

sinensis) (Zhu et al., 2021). FcrNAC22, which is induced by red

light, directly binds to and activates the promoters of LCYB1, BCH2,

and NCED5, facilitating carotenoid accumulation in kumquat fruit

(Gong et al., 2021). Methyl jasmonate activates the CsMPK6–CsMYC2

signaling cascade, with CsMYC2 binding to the CCD4b promoter to

enhance b-citraurin production, thereby intensifying the redness of

‘Newhall’ orange (Citrus sinensis) (Yue et al., 2023). A study

showed that CsTT8 promotes fruit coloration through by

controlling methylerythritol 4-phosphate (MEP) pathway and

carotenoid synthesis in ‘Valencia’ orange (Citrus natsudaidai)

(Sun et al., 2023a). CsHB5 and CsbZIP44 precisely modulate ABA

signal-mediated carotenoid metabolism in ‘Valencia’ orange (Citrus

sinensis) (Sun et al., 2023b). A recent study demonstrated that the

transcriptional regulatory module CsERF110–CsERF53 orchestrates

the coloration of citrus fruits in response to ABA signaling in ‘Valencia’

orange (Sun et al., 2024a). Furthermore, in Satsuma mandarin (Citrus

unshiu Marc.), CitZAT4 directly binds to the promoters of LCYB,

HYD, and NCED2, regulating their expression and promoting the

accumulation of b-branch orange carotenoids (Sun et al., 2024b).

Although the biosynthetic pathways of chlorophyll and

carotenoids have been extensively studied in various plants,

including citrus fruits, the underlying transcriptional regulatory

mechanisms remain less well understood. Previous researches have

demonstrated that gibberellic acid and ethylene play significant
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roles in regulating fruit peel coloration (Alós et al., 2006; Gambetta

et al., 2014; Pech et al., 2012; Wang et al., 2022; Yu and Wang,

2020). In recent years, multi-omics approaches have increasingly

been employed to identify key regulatory genes associated with

metabolites (Huang et al., 2024; Liu et al., 2023; Wu et al., 2022).

Consequently, this study performed integrated transcriptomic and

metabolomic analyses on citrus peels treated with GA and ETH to

study the molecular mechanism of pigment metabolism.

Comprehensive phenotypic, metabolomic, and transcriptomic

analyses revealed extensive gene–metabolite regulatory networks

that govern citrus peel coloration. These insights provide a valuable

resource for advancing high-throughput research in citrus.
Materials and methods

Plant materials and sample collection

‘Murcot’ tangor (Citrus reticulata × Citrus sinensis) grafted on

‘Trifoliate orange’ (P. trifoliata L. Raf.) was used in this study. The

trees were seven years old at the time of sampling, with a planting

density of 3 m × 4 m. The experimental orchard was located in the

Jiangjin District, Chongqing, China (116° 34′ E, 36° 50′ N), an area

that experiences a warm, humid monsoon climate. Nine trees with

uniform growth and similar fruit-bearing capacity were selected for

this study. At 210 days post-anthesis (DPA), corresponding to the

developmental stage where citrus fruits have attained approximately

90% of their final size (BBCH-scale: 79), the fruits were evenly

sprayed with ultrapure water (CK), GA (100 ppm), and ETH (200

ppm). Citrus peels were collected at 15, 45, and 75 days post-

treatment (DPT), resulting in sample names CK15, CK45, CK75,

GA15, GA45, GA75, ETH15, ETH45, and ETH75. Five fruits were

collected from each tree across five distinct (east, south, central,

north, and west), and a total of 15 fruits, obtained from three trees,

constituted a single biological replicate. Peels, which included just

the exocarp, were immediately frozen in liquid nitrogen,

transported on dry ice, and stored at –80°C for subsequent

analysis. Additionally, 54 citrus fruits were collected for

phenotype validation and chlorophyll determination.
Metabolite identification and quantification

Samples were ground into a powder, and 50 mg was weighed and

extracted using 0.5 mL of a mixed solution of n-hexane, acetone, and

ethanol (1:1:1, v/v/v). The extract was vortexed for 20 minutes at

room temperature, and the supernatant was collected after

centrifugation at 12,000 rpm for 5 minutes at 4°C. The residue was

then re-extracted using the same method. The combined extracts

were evaporated to dryness and reconstituted in a MeOH/MTBE

(methanol/methyl tert-butyl ether, 1:1, v/v) solution. The resulting

solution was filtered through a 0.22 mm membrane for further LC-

MS/MS analysis (Amorim-Carrilho et al., 2014).

SampleextractswereanalyzedusingaUPLC–APCI–MS/MSsystem

(UPLC, ExionLC™ AD; MS, Applied Biosystems 6500 Triple

Quadrupole). The analytical conditions were as follows: Column,
Frontiers in Plant Science 03
YMC C30 (3 mm, 100 mm × 2.0 mm i.d.); Solvent system, methanol

(1:3, v/v) with 0.01% butylated hydroxytoluene (BHT) and 0.1% formic

acid (A)andMTBEwith0.01%BHT(B).Thegradientprogrambeganat

0%B(0–3min), increased to70%B(3–5min), then raised to95%B(5–9

min), and returned to0%B(10–11min).Theflowratewas set to 0.8mL/

min,with a column temperatureof 28°Candan injectionvolumeof 2mL
(Geyer et al., 2004).Mass spectrometric datawere acquired using a triple

quadrupole–linear ion trap mass spectrometer (QTRAP® 6500+ LC–

MS/MS System) equipped with an APCI Heated Nebulizer, operated in

positive ion mode, and controlled via Analyst 1.6.3 software. The APCI

source settings were as follows: ion source APCI+; source temperature,

350°C; curtain gas, 25.0 psi. Carotenoids were analyzed using scheduled

multiple reaction monitoring (MRM). Data acquisition and metabolite

quantificationwereperformedusingAnalyst 1.6.3 andMultiQuant3.0.3

software (Sciex). Mass spectrometer parameters, such as declustering

potentials (DP) and collision energies (CE), were optimized for each

MRM transition (Geyer et al., 2004; Krinsky et al., 2004).
RNA sequencing analysis

Total RNA was extracted from citrus peels (in triplicate) using

TRIzol® Reagent following the manufacturer’s instructions

(Invitrogen), with genomic DNA removed using DNase I

(TaKara). RNA quality was assessed using an Agilent 2100

Bioanalyzer and quantified with a NanoDrop ND–2000

(NanoDrop Technologies). Only high-quality RNA samples

(OD260/280 = 1.8–2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5, 28S:18S ≥

1.0, >1 mg) were used for library preparation.

RNA-seq transcriptomic libraries were prepared using the

TruSeq™ RNA Sample Preparation Kit (Illumina), with 1 mg of

total RNA as input. Messenger RNA was isolated using poly-A

selection, fragmented, and then used to synthesize double-stranded

cDNA with a SuperScript Double-Stranded cDNA Synthesis Kit

(Invitrogen). Following end-repair and phosphorylation, the

libraries were size-selected for cDNA fragments of 300 bp and

PCR-amplified for 15 cycles. The libraries were quantified using

TBS380 and sequenced on an Illumina NovaSeq 6000 system.

Raw paired-end reads were trimmed and quality-controlled

using SeqPrep and Sickle with default parameters. Clean reads

were aligned to the reference genome (Citrus_clementina_v1.0,

GCF_000493195.1) using HISAT2 (Kim et al., 2015). Mapped

reads were assembled using StringTie in a reference-based

approach (Pertea et al., 2015). Differential expression analysis was

conducted using DESeq2 (Love et al., 2014), with differentially

expressed genes (DEGs) defined as |log2Foldchange| > 1 and Q-

value ≤ 0.05 (Love et al., 2014).
Hub gene identification using weighted
gene co-expression network analysis

WGCNAwas performed to identify hub genes (Fuller et al., 2007).

Cluster analysis was based on gene expression (FPKM, fragments per

kilobase million). A soft thresholding power of 18 was selected, as it

was the minimum power that properly fit the scale-free topological
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index. The correlation between module eigengenes and traits was

assessed, and hub genes were defined as having module membership

(MM.abs) > 0.7 and gene significance (GS.abs) > 0.6. Gene interaction

networks were visualized using Cytoscape, and transcription factor

annotations were retrieved from PlantTFDB (Jinpu et al., 2017).
Transient expression in tobacco
epidermal cells

Agrobacterium cultures were resuspended in infiltration buffer

(10 mM MgCl2 and 100 µM acetosyringone) to an OD600 of ~0.8

and then infiltrated into 8-week-old Nicotiana benthamiana leaves

(Sparkes et al., 2006). After 5 days at 25°C, the infiltrated leaves were

harvested for analysis.
Chlorophyll determination

Chlorophyll content was measured according to a previous

study (Porra et al., 1989). Chlorophyll was extracted thrice with

80% acetone and centrifuged at 12,000 g for 5 minutes at 4°C. The

combined supernatant was adjusted to 10 mL with 80% acetone,

and absorbance at 663 nm and 645 nm was measured.
Statistics analysis

Principal component analysis (PCA) was conducted using RStudio

(v2023.06.1–524) with the FactoMineR and factoextra packages

(Lê et al., 2008; Team, 2008). The column stacking diagram was

created in RStudio using the ggplot2 package. Heatmaps and clustering

analysis were performed using TBtools (Chen et al., 2020). The column

diagram was generated with GraphPad Prism 5. Heatmap & clustering

map, and Venn diagram were analyzed using SRplot (https://

www.bioinformatics.com.cn), an online platform for data analysis

and visualization (Tang et al., 2023). The analysis results for

polar column charts and bidirectional grouping bar chart plots

were generated using the CNSknowall platform (https://

cnsknowall.com a comprehensive web service for data analysis

and visualization).
Results

GA reduces chlorophyll degradation, while
ETH promotes this processes.

The impact of GA and ETH on citrus peel coloration and

chlorophyll content was assessed. There were no differences in peel

color between GA, ETH, and control groups at 15 DPT. At 45 DPT,

citrus peels treated with GA were still not showing coloration, but

ETH-treated peels and control peels had already shown an orange

color, with the ETH-treated peels being a more pronounced orange. At

75 DPT, the peels treated with CK and ETH were fully colored,

whereas those treated with GA had not yet reached full coloration
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(Figure 1A). The chlorophyll content changes were associated with the

phenotypic alterations. At 45 and 75 DPT, the chlorophyll content

exhibited a hierarchical trend: GA > CK > ETH, despite no significant

differences at 15 DPT (Figure 1B). These findings corroborate the

known effect that GA delays peel coloration and reduces chlorophyll

degradation, while ETH promotes these processes.
Metabolomics analysis reveals differential
carotenoid accumulation under GA and
ETH treatment

Metabolomic analysis of 27 citrus samples identified 58 carotenoid-

related metabolites (Supplementary Table S1). During the same period,

the total carotenoid content in ETH was the highest. At 75 days, the

ranking of total carotenoid content was ETH > CK > GA, suggesting

that GA inhibits carotenoid synthesis, whereas ETH promotes this

process (Supplementary Table S1). PCA analysis demonstrated that the

first two principal components (PCs) accounted for 88.7% of the

variance, effectively capturing the distribution of carotenoids

(Figure 2A). Thirteen compounds, primarily colored carotenoids,

exhibited strong associations with PC1 (variable correlation > 0.95)

(Figure 2B; Supplementary Table S2). Seven carotenoids negatively

correlated with PC1 exhibited and decline over time, whereas 51

carotenoids positively correlated with PC1 showed an increase over

time (Figure 2A; Supplementary Figures S1, S2). A comparative analysis

of the carotenoid compositions across three groups indicated that lutein

was the predominant carotenoid at both 15 and 45 DPT. By 75 DPT,

violaxanthin myristate–caprate emerged as the predominant carotenoid

in the CK and ETH groups, while lutein continued to dominate in the

GA group (Figure 2C; Supplementary Table S1). These findings confirm

the known effect that lutein is the most abundant carotenoid in the

immature pericarp and that GA inhibits the downregulation of lutein.

At 15 days, the top five carotenoids constituted 83-87% of the

total carotenoid content, with their levels gradually declining during

fruit development. GA was observed to inhibit this reduction

(Figure 2D; Supplementary Table S1). By 75 days, the top ten

carotenoids represented approximately 72% of the total content,

with their levels progressively increasing as the fruit developed.

Notably, the accumulation of five violaxanthin esters (violaxanthin

palmitate, violaxanthin myristate–caprate, violaxanthin myristate–

laurate, violaxanthin dilaurate, violaxanthin myristate) and two b-
cryptoxanthin derivatives (b–cryptoxanthin laurate, b–
cryptoxanthin myristate) was inhibited by GA but promoted by

ETH (Figure 2E; Supplementary Table S1). These results indicated

that hormonal regulation plays a significant role in the modulation

of carotenoid levels during the development of citrus peel.
An overview of transcriptomic and
identification of transcription factors
regulating pigment metabolism by
DEGs analysis

A total of 1.78 billion clean paired-end reads were obtained

from the RNA-seq dataset for 27 samples, with a mapping rate
frontiersin.org
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ranging from 76.9% to 88.6% to the Citrus clementina genome

(Supplementary Tables S3, S4). PCA analysis demonstrated that the

first two principal components accounted for 59.2% of the

variation, with three replicates of each sample clustering closely

together, indicating high consistency and quality of the data.

Hierarchical clustering analysis (HCA) and PCA results revealed

that transcriptomic profiles were primarily separated by time points

(Figure 3A; Supplementary Figure S3). A total of 11,972 DEGs,

constituting 47.86% of the genome, were identified (Supplementary

Table S5). The CK and ETH groups exhibited more DEGs than the

GA group during development, aligning with the phenotypic

observations of peel coloration (Figure 3B). Clustering analysis

revealed five distinct gene expression patterns (Supplementary

Table S7; Supplementary Figure S4). Genes in cluster 5 showed

progressive upregulation during fruit development, while clusters 1

and 3 exhibited gradual downregulation (Figure 3C). Together,

these three clusters contain 14,891 genes, accounting for 65.8% of

the total gene set (Supplementary Table S6).

A venn analysis of upregulated genes across the comparison

groups CK75 vs. CK45, CK45 vs. CK15, GA75 vs. GA45, and GA45

vs. GA15 identified 40 common genes (Figure 3D). Similarly, a venn

analysis of downregulated genes within the same comparison

groups revealed 92 common genes (Figure 3E). Furthermore, a

venn analysis of upregulated genes in the comparison groups CK75

vs. CK45, CK45 vs. CK15, ETH75 vs. ETH45, and ETH45 vs.
Frontiers in Plant Science 05
ETH15 identified 37 common genes (Figure 3F), while the analysis

of downregulated genes in these groups revealed 102 common genes

(Figure 3G). In total, 199 genes were identified through venn

analysis, including six transcription factor genes (Supplementary

Table S7). Among the six transcription factor genes, the expression

levels of four genes (ERF21, ERF22, bHLH67, and NAC25) were

observed to be downregulated, whereas two genes (ABR1 and

ATHB7) exhibited upregulation during development stages

(Figure 3H). Furthermore, our findings indicate that the

expression levels of four genes associated with carotenoid

metabolism and five genes related to chlorophyll metabolism were

inhibited by GA, yet promoted by ETH (Supplementary Figure S5).
Gene screening using WGCNA

Based on transcriptomic and metabolomic data, a weighted

correlation network was constructed using 25,017 transcripts for

identifying co-expression modules and hub genes. A soft thresholding

power of 18was selected, and 14moduleswere revealed after themerged

dynamic analysis (Figure 4A; Supplementary Figure S6). Most genes

(5,223) were categorized into Module 13, while five other modules

(Modules 2, 5, 7, 8, and 14) contained between 1,027 and 3,884 genes.

The remaining eight modules comprised between 77 and 610 genes

(Supplementary Table S8).
FIGURE 1

Effects of GA and ETH on citrus peel coloration and chlorophyll content at various developmental stages. (A) GA treatment delayed citrus peel
coloration, while ETH treatment accelerated this process. (B) GA inhibited chlorophyll degradation in citrus peel, while ETH promoted chlorophyll
degradation. Data are represented as mean ± standard deviation. FW refers to fresh weight. Different letters indicate statistically significant
differences (p < 0.01).
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A wide range of correlation coefficients was found between

module content and pigment (chlorophyll and carotenoids)

content, from -0.98 to 95 (Supplementary Table S9). Of note,

three modules (Modules 7, 8, and 13) exhibited GS-values

exceeding 0.6 across multiple compounds, indicating a marked

correlation between the genes in these modules and pigment

content (Figure 4A; Supplementary Table S9). A total of 7,857
Frontiers in Plant Science 06
hub genes were identified based on the criteria of |MM| > 0.8 and |

GS| > 0.7 (Supplementary Table S11).

We identified DEGs across the following comparisons: GA15

vs. CK15, GA45 vs. CK45, GA75 vs. CK75, ETH15 vs. CK15,

ETH45 vs . CK45, and ETH75 vs . CK75 (Figure 4B;

Supplementary Table S5). These DEGs were grouped into two

collections: GAs vs. CKs (GA15 vs. CK15, GA45 vs. CK45, GA75
FIGURE 2

PCA analysis investigated the relationship between metabolites and citrus peel coloration and the changes in carotenoid proportions. (A) Variable
correlation plots of 58 carotenoids, with colors representing the cos² values for PC1 and PC2. The distance of each variable from the origin reflects
its contribution to the factor map. (B) Heatmap of cos² values for the variables in two dimensions. (C) Distribution of carotenoids across different
treatments and time points. The top five carotenoids showing decreased levels (D), and the top ten carotenoids exhibiting increased levels during
development (E). FW represents fresh weight. Abbreviations are provided in Supplementary Table S1.
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vs. CK75) and ETHs vs. CKs (ETH15 vs. CK15, ETH45 vs. CK45,

ETH75 vs. CK75). These differential gene sets (GAs vs. CKs, ETHs

vs. CKs) were then subjected to venn analysis, along with the hub

genes identified via WGCNA, leading to the identification of 1,221

candidate genes (Figure 4C; Supplementary Table S11).
Frontiers in Plant Science 07
Network analysis and validation candidate
genes associated with pigment metabolism

Based on the hub transcription factor (Hub–TF) genes and their

correlation network, we constructed and visualized a network
FIGURE 3

Variability of transcript levels in citrus peel under GA and ETH treatments. (A) PCA analysis. (B) DEGs count across various comparison groups.
(C) Gene expression patterns are categorized into five clusters, labeled as C1 through C5, representing clusters 1 to 5, respectively. Here, ‘n’ denotes
the number of genes in each cluster. (D–G) Venn diagrams depicting DEG counts across comparison groups, with each red line indicating the
intersections among the four comparison groups. the control group displayed on the right side of each comparison. (H) Expression levels of six
candidate transcription factor genes.
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closely associated with carotenoid and chlorophyll metabolism,

applying a weight threshold greater than 0.2 (Figures 5A–C;

Supplementary Table S12). In total, 4, 9, and 20 transcription

factors were identified in Modules 7, 8, and 13, respectively

(Figures 5A–C; Supplementary Table S12).

Notably, two transcription factor genes, ABR1 and ATHB7,

which were also identified through DEGs analysis (Figure 3H), were

selected for functional verification in the regulation of pigment

metabolism (Figures 3H, 5A). Protein domain analysis revealed that

ABR1 is part of the ERF subfamily and possesses a single AP2/ERF

domain, and ATHB7 belongs to the class I subfamily of HD-Zip,

containing a homeodomain, a leucine zipper domain, and an HTH

motif (Figure 5D). The expression of ABR1 and ATHB7 was

progressively upregulated during fruit development, suggesting a

potential positive role in the regulation of peel coloration. Transient

overexpression of ABR1 and ATHB7 in tobacco leaves resulted in

accelerated leaf degreening (Figure 5E), indicating that both ABR1

and ATHB7 may play crucial roles in regulating pigment

metabolism. The results of the Tobacco color index (CI) analysis

demonstrated that the CI values for leaves overexpressing ABR1 and

ATHB7 were higher compared to the control groups (CK and EV),

indicating a shift in leaf coloration from green to yellow

(Supplementary Figure S7).
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Discussion

Globally, citrus contributes substantial value to various countries

and regions due to its economic impact (Mahato et al., 2018). Fruit

color is a critical aesthetic quality that directly impacts consumer

preference for citrus products (Ruiz-Sola and Rodrıǵuez-Concepción,

2012; Yuan et al., 2015). Although the roles of gibberellic acid and

ethylene in fruit ripening have been extensively investigated, their

underlying regulatory mechanisms remain to be fully elucidated (Lu

et al., 2024). Therefore, the present study evaluated the impact of GA

and ETH treatments on citrus peel coloration and chlorophyll content

at multiple time points (15, 45, and 75 DPT). Our results confirmed

that GA delays the coloration of peels by inhibiting chlorophyll

degradation, whereas ethylene facilitates it by accelerating chlorophyll

degradation (Figure 1), consistent with previous research.

Citrus fruits contain over 100 carotenoid metabolites, with their

specific content and composition significantly influencing the diverse

coloration observed among different varieties (Rouseff et al., 1996).

Accordingly, targeted metabolomics was employed to determine the

impact of GA and ETH treatment on carotenoid content and

composition (Figure 2; Supplementary Table S1). Metabolomics

analysis result indicated a temporal decrease in seven carotenoids,

whereas 51 carotenoids increased over time (Figure 2; Supplementary
FIGURE 4

WGCNA analysis. (A) Heatmap illustrating the correlation between modules and pigments (carotenoids and chlorophyll). The gene significance (GS)
value for each module–pigment pair is represented by color intensity and square size. Asterisks (*, **, ***) denote p-values less than 0.05, 0.01, and
0.001, respectively. Positive correlations are indicated in red, while negative correlations are shown in blue. (B) Bar graph depicting the number of
DEGs that are either upregulated or downregulated across various comparison groups. Upregulated genes are displayed in red font, and
downregulated genes in blue font. The control group for each comparison is represented on the right-hand side. (C) Venn diagrams illustrating the
overlap between differentially expressed genes across comparison groups and hub genes derived from WGCNA modules 7, 8, and 13. “GAs vs. CKs”
refers to the collection of GA15 vs. CK15, GA45 vs. CK45, and GA75 vs. CK75, while “ETHs vs. CKs” refers to ETH15 vs. CK15, ETH45 vs. CK45, and
ETH75 vs. CK75. The intersections marked by red lines indicate the final candidate genes.
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Figures S1, S2). Consistent with previous studies (Gambetta et al., 2014;

Keawmaneeetal.,2022;YuandWang,2020),ourstudydemonstratedthat

applying exogenous gibberellic acid before color break postpones color

development by reducing carotenoid concentration, and altering

carotenoid composition (Figure 2; Supplementary Table S1). Previous

studies have shown that gibberellic acid delays the downregulation from

the b, e–branch to the b, b–branch, thereby maintaining higher lutein

levels in the peel of Clemenules mandarins and navel oranges, while

inhibiting the accumulation of phytoene and downstream xanthophylls

such asb–cryptoxanthin, all–trans–violaxanthin, and9–cis–violaxanthin
(Alós et al., 2006; Keawmanee et al., 2022; Rodrigo and Zacarias, 2007).

Herein, by 75 days, violaxanthin myristate–caprate (vio–myr–cap)

emerged as the predominant carotenoid in both the CK and ETH

groups, while lutein remained dominant in the GA group (Figure 2C;

Supplementary Table S1). These findings suggest that GA inhibits the
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downregulation of lutein. Additionally, the accumulation of vio.pal,

vio.myr.cap, vio.myr.lau, vio.dil, vio.myr b.cry.lau, and b.cry.myr, was

inhibitedbyGA,whileETHpromotedtheiraccumulation(Figures2D,E).

GAalso suppressed thedownregulationofa-carotene,b-carotene, lutein,
neoxanthin,andviolaxanthin,whilefacilitatingtheaccumulationof(E/Z)-

phytoene(E.Z.phy).Incontrast,ETHenhancedtheaccumulationoflutein

dimyristate (lut.dim)(Figures2D,E).Previousstudieshavedemonstrated

that ethylene increases total carotenoid content and elevates specific

carotenoids such as b-cryptoxanthin, b-citraurin, and phytoene (Fujii

etal.,2007;RodrigoandZacarias,2007;Sunetal.,2024b).Inlinewiththese

findings, our results also showthat ethylene increased the total carotenoid

content (Supplementary Figure S1; Supplementary Table S1) and the

concentration of several individual carotenoids (Figure 2; Supplementary

Table S1). Metabolomic analyses highlighted a key stage of hormone-

driven carotenoid changes in citrus peel.
FIGURE 5

Correlation network of three modules and functional characterization of genes via transient expression in tobacco. (A–C) Correlation networks of
module 7 (A), module 8 (B), and module 13 (C). Node size reflects the number of connected genes. (D) Protein structure diagrams of ABR1 and
ATHB7, showing the AP2/ERF domain of ABR1, and HTH (helix-turn-helix) motif and the leucine zipper domain of ATHB7 (E) Transient expression
analysis of ABR1 and ATHB7 in tobacco leaves, with control (CK) indicating the infiltration buffer and EV representing the empty vector.
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While the biosynthetic pathways of chlorophyll and carotenoids,

along with the associated carotenogenic genes in citrus, have been

characterized, knowledge of the regulatory networks involved

remains limited (Concepcion et al., 2018; Lu et al., 2024).

Transcriptomics has become essential for investigating the

regulatory mechanisms underlying pigment metabolism (Huang

et al., 2024; Wu et al., 2022; Zhang et al., 2021). In our research,

transcriptomics analysis identified six transcription factors that were

either upregulated or downregulated during maturation, including

four types of TFs (ERF, NAC, bHLH, HD-zip), which has significant

implications for pigment metabolism. Specifically, two genes, ABR1

and ATHB7, were upregulated, while the remaining four genes were

downregulated throughout development (Figure 3; Supplementary

Table S4). This is consistent with previous studies, the two types of

TFs are involved in regulating pigment metabolism (Sun et al.,

2023b, 2024a).

In recent years, transcriptomic and metabolomic technologies

have proven to be effective tools for elucidating the regulation of

fruit metabolism during citrus development (Huang et al., 2024; Wu

et al., 2022; Zhang et al., 2021). Herein, 33 transcription factors were

identified through an integrative approach that combined

transcriptomic and metabolomic analyses (Figures 4, 5A–C).

Previous research has shown that the regulatory roles of these

transcription factors can be validated through transient

overexpression of target genes in tobacco (Gong et al., 2021;

Li et al., 2019; Yin et al., 2016; Zhu et al., 2021). Our findings

demonstrated that the transient expression of ABR1 and ATHB7,

identified through both DEGs analysis and WGCNA, could

promote the degreening of tobacco leaves (Figures 3H, 5E),

suggesting that ABR1 and ATHB7 may play critical roles in

chlorophyll and carotenoids metabolism during fruit ripening,

with their expression levels being modulated by GA and ETH.
Conclusion

In summary, we obtained large-scale information on gene-

metabolite regulatory networks related to peel coloration from

comprehensive phenotypic, transcriptomic, and metabolomic

analyses. GA inhibited the accumulation of five violaxanthin esters

and two b-cryptoxanthin derivatives, while ETH promoted their

accumulation. Moreover, GA suppressed the downregulation of

lutein, the main carotenoid in immature fruits. Notably, two novel

transcription factors, ABR1 and ATHB7, were found to regulate the

coloration process by integrated transcriptomics and metabolomics

analysis, as confirmed by transient overexpression assays in tobacco.

Our results highlighted global transcriptional changes in citrus peel

color regulation under different hormone conditions, which could be

beneficial for citrus breeding.
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