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Recent advances in
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vegetable production
Ruimin Zhang1†, Youzhou Zhu2†, Hong Li2* and Na Sun2*

1School of Environment and Ecology, Jiangsu Open University, Nanjing, China, 2Institute of Plant
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Heavy metals in agricultural soils pose a major threat to food safety and human

health. Among all heavy metals, cadmium (Cd) is the most problematic with

contamination rates of 7% in arable land and 5.3% in facility vegetable growing

soils in China. In order to employ a “remediation while producing” mode in the

contaminated soils, many remediation approaches have been investigated with

unsatisfactory results. Recently, grafting has been reported to have the potential

of being environmentally friendly, efficient, widely applicable and low-cost for

soil remediation in vegetable production. A review of recent advances in the

mechanisms of Cd accumulation in plants as influenced by grafting was

conducted, including the processes of root uptake and translocation to the

aboveground tissues, and xylem/phloem loading. The impact of grafting on

numerous aspects associated with Cd accumulation in plants was found to

extend from the rhizosphere soil microbial community, rootstock genetic

variation, rootstock-scion interaction to plant responses. By understanding the

mechanisms of grafting in Cd detoxification, it provided a theoretical basis for the

selection of rootstocks with low Cd accumulation potential and its application as

an effective phytoremediation method in Cd contaminated soils.
KEYWORDS
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1 Introduction

Heavy metals in agricultural soils mainly originate from mineral weathering, mining,

wastewater irrigation, organic fertilizer application and atmospheric deposition, and pose a

major threat to food safety and human health (Chen et al., 2013; Gu et al., 2014; Irfan et al.,

2021). Among all heavy metals, cadmium is the most severe, with contamination rates of

7.00% in arable land and 5.30% in facility vegetable growing soils in China (MEP (Ministry

of Environment Protection of China), 2014; Jia et al., 2020). Moderately and mildly
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contaminated farmland accounted for about 90.00% of the

contaminated soils in China. Therefore, a “remediation while

producing” mode has been proposed to reduce the amount and

availability of soil Cd, while producing agricultural products that do

not exceed the national Cd limit (Zeng et al., 2013; MEP (Ministry

of Environment Protection of China), 2014; Chen W. et al., 2018;

Xu J. et al., 2018).

Many remediation approaches have been investigated on

farmland with Cd contamination (Deng et al., 2020). Chemical

remediation (e.g., addition of lime, biochar, soil conditioners and

passivators) can increase soil pH and soil Cd chelation to achieve

Cd passivation, thereby decrease Cd bioavailability in soil (Arao

et al., 2009; Chen et al., 2017). However, these approaches often had

unsatisfactory and unstable effects in decreasing soil Cd availability,

with possible secondary contamination and damage to soils by

introducing exogenous substances (Chen et al., 2017). Microbial

passivators (e.g. sulfate-reducing bacteria and gram-negative

bacteria) can chelate Cd in soil, reducing its bioavailability, but

are often expensive and difficult to establish stable colonization (Xu

J. et al., 2018). Phytoremediation is an approach that uses plants to

mitigate heavy metal contamination in soils, involving the processes

of phytostabilization, phytoextraction, and phytovolatilization in

the terrestrial ecosystem (Nong et al., 2023; Liu et al., 2024). By

using hyperaccumulators (such as Sedum alfredii H. and Viola

baoshanensis S.) with high Cd uptake, soil Cd can be extracted and

transferred to above-ground tissues that are relatively easy to

handle. However, phytoremediation has its limitations of low

metal bioavailability in soil, low plant biomass and low economic

value while changing the planting system (Liu et al., 2024). The

annual plant removal amount of soil Cd was minimal and would

take extremely long time to reduce it under the contamination risk

screening value (Arthur et al., 2000; Rosenfeld et al., 2018).

Therefore, the search for environmentally friendly, efficient,

widely applicable and low-cost Cd pollution control technologies

has become an urgent issue.

As a common horticultural practice, grafting is widely used in

the production of fruit vegetables. Rootstocks usually have well-

developed root systems and high resistance to cold, salinity, pests

and diseases, which positively affect plant growth, fruit yield and

quality of agricultural products (Zhang Z. et al., 2019; He L. et al.,

2020). In recent years, researchers have reported that appropriate

grafting combinations (rootstock + scion) could reduce Cd levels in

crops, without introducing exogenous substances into the soil, no

change in cropping system, low cost, and not subjected to certain

soil properties (such as pH) while producing agricultural products

(He L. et al., 2020; Huang et al., 2020; Xie et al., 2020; Yuan et al.,

2021; De Almeida et al., 2022). Xie et al. (2020) grafted two tomato

scions onto different rootstocks (Solanum torvum S. and ‘Totosga’),

and observed a significant reduction in fruit Cd content of 45.53-

84.78% on soil contaminated with 10 mg kg-1 Cd. Yuan et al. (2021)

reported reduced Cd levels of up to 85% in tomato, eggplant and

pepper shoots after being grafted with the rootstock cultivar S.

torvum. He L. et al. (2020) also reported large reductions in Cd

levels in tomato fruit (by 75.30-81.70%) after grafting with

‘Torubamu’ rootstocks on Cd contaminated soils. However, large

variations in Cd accumulation in scion tissues after grafting with
Frontiers in Plant Science 02
different rootstocks were observed. Huang et al. (2020) reported an

increase of 52.38%, and a decrease of 47.62% of fruit Cd in

watermelon after grafting with a wild watermelon rootstock and a

Chinese pumpkin rootstock, respectively. The mechanism of

reduced Cd accumulation in aboveground tissues by grafting with

certain rootstock-scion combinations remains unclear (Xie et al.,

2020; De Almeida et al., 2022). The objective of this study was to

review the current progress on the mechanisms of Cd uptake and

translocation to the aboveground tissues as affected by grafting,

provide a theoretical basis for rootstock selection with low Cd

accumulation potential, and offer a low-cost, long-lasting and green

technology to control farmland Cd pollution while producing.

2 Root Cd uptake as affected by
genetic variation in rootstocks
and scions

Apart from atmospheric deposition, the main pathway for Cd

entry into plants is root uptake, a process that significantly

influences Cd accumulation in aboveground tissues (Gaion and

Carvalho, 2018). Genetic variation has been demonstrated to have a

major impact on the capacity of roots to absorb Cd. A wide range of

root Cd levels were observed in different rootstock species or

cultivars, when grafted with the same scion and cultivated in soil

with the same level of Cd content. Huang et al. (2020) reported a

large variation in root Cd content (81.55-168.50 mg kg-1 DW) when

grafting the watermelon scion on different rootstocks (one gourd,

one watermelon and two pumpkins). In a separate study, Xie et al.

(Xie et al., 2020) reported a range of root Cd content (62.39-110.26

mg kg-1 DW) when grafting a common tomato cultivar scion onto

five Solanaceous rootstock cultivars on soil with a contaminant level

of 10.00 mg kg-1 DW Cd. Significant differences in root Cd content

in different tomato and eggplant cultivars were also reported by

Hussain et al. (2015) and Qin et al. (2013).

Roots can sense stressful environmental conditions and reflect

adaptability on root morphology (Lu et al., 2019; Yu et al., 2021).

Grafting substituted rootstocks often with well-developed root

systems (higher biomass, surface area, root tip number and root

sheath development), which contributed to root uptake of free state

Cd in the rhizosphere, and resulted in increased Cd contents in

certain grafted rootstocks (Lu et al., 2019; Huang et al., 2020; Xie

et al., 2020; Yu et al., 2021). Meanwhile, genetic variation in

rootstocks may also affect root physiological function, such as

root respiration rate, which was significantly correlated with root

Cd content by influencing root metabolism, nutrient and water

uptake (Clemens, 2001). The transcription of genes that regulate Cd

uptake and the expression levels of transporter proteins also

contributed to root Cd accumulation levels in grafted plants, such

as root HA7, FRO2-like, and NRAMP1, NRAMP 2, NRAMP 3, and

leaf HA7 (He J. et al., 2020; Marques et al., 2023). The expressing

level of Cd uptake genes and transporters was strongly associated

with root Cd contents in the rootstock. Recently, researchers have

found that the ability of the rootstock to take up Cd from the

growing medium was also responsive to the selected scion cultivar,

which can be enormous for certain grafting combinations (Gao,
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2018; Chen et al., 2020). For instance, Xie et al. (2020) reported

significant differences (83.45 and 123.77 mg kg-1 DW) in Cd levels

in the same rootstocks (‘Banzhen 18’) after grafting with different

sc ions ( ‘Zhongyanhong 6 ’ and ‘Hongyu F1 ’ ) . RNAs,

phytohormones and proteins that transferred over long distances

between rootstock and scion communication might be involved in

response to external adverse environmental stimuli, such as Cd

stress (Chen C. et al., 2018; Wang et al., 2018).

To summarize, grafting affected Cd uptake ability of the root

system by the changes of root morphology, metabolism and the

expression levels of transporter proteins. Previous studies on

rootstock-scion compatibility have mainly focused on graft

survival rate, plant growth and development, and fruit yield and

quality (Mudge et al., 2009; Melnyk and Meyerowitz, 2015). We

suggest that the compatibility of rootstock/scion on Cd

accumulation characteristics should be given more consideration,

when using grafted plants as a remediation approach on heavy

metal contaminated soils.

3 Root Cd uptake as affected by
microenvironment in the
rhizosphere soil

In the terrestrial ecosystem, plants, microbes and soil in the

rhizosphere interact with each other, linking biotic and abiotic

factors into a complex through material cycling and energy flow
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(Wardle et al., 2004; Bardgett and van der Putten, 2014). Root

exudates play an important role in information transfer and

substance exchange between the soil-microbe-plant interactions by

responding to external environmental stresses, regulating plant growth

and development, and the rhizosphere environment (Vives-peris et al.,

2020). Grafting altered root exudates (such as organic acids, amino

acids, enzymes, and secondary metabolites like alkaloids) that varied by

crop species and cultivars, which directly influenced the rhizosphere

soil environment (such as pH, soil redox potential, and microbial

community), and subsequently affected Cd availability and plant

uptake (Figure 1) (Bali et al., 2020; Chai and Schahtman, 2022). For

example, Meng et al. (2024) compared the soil microbial community of

low and high Cd accumulating tomato cultivars, and reported

significant differences in the abundance of dominant genera

(Actinoplanes, Nitrospira, Hydrogenophaga and Lysobacter), which

may be related to the differences in soil Cd availability and plant Cd

accumulation. Huang et al. (2023) reported that the organic acid

content in root exudate of tobacco cultivar ‘RG11’ was only 51.1-

61.0% of that of another cultivar ‘Yuyan5’, and the significant

correlation between organic acid and root Cd content. At present,

grafting affected rhizosphere microbiome via root exudates mainly

focused on diseases, such as Fusarium wilt, Verticillium wilt and

Ralstonia solanacearum. More research on effects of root exudates on

soil Cd availability and plant uptake should be investigated (Liu et al.,

2008; Zhao et al., 2019; Ge et al., 2022).

Furthermore, altered root exudates by grafting can also shift the

soil microbial community when growing muskmelon, tomato,
FIGURE 1

Mechanisms of plant Cd accumulation as affected by grafting.
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eggplant and watermelon (Bai et al., 2020; Ogundeji et al., 2021;

Song et al., 2016; Huang et al., 2020; Zhang et al., 2019; Zhang et al.,

2024). Recently, microbes in relation to soil Cd availability as

affected by grafting have been investigated. Xue et al. (Xue et al.,

2022) grafted native Xanthium sibiricum onto an invasive plant

Xanthium strumarium, and observed increased plant biomass, Cd

accumulation (by 1.51 and 3.39 fold in stem and leaf, respectively)

and microbial abundance of certain genera without enhancing its

invasiveness on a tailing soil. Enriched beneficial microbes such as

Gammaproteobacteria, Rhizobiales, Actinobacteria, Chloroflexi in

the grafted treatments promoted the material cycling and

contributed to plants growth on the tailings (Bai et al., 2022; Jia

et al., 2022; Xue et al., 2022). Zhang et al. (Zhang et al., 2022)

inoculated phosphate-solubilizing bacteria (PSB) with grafted

watermelon and reported that it could increase plant growth and

reduce Cd accumulation in plants (by 22.12% in root, and 19.42% in

shoot) on a soil contaminated with 50 mmol Cd. They found that

grafting with PSB inoculation reduced Cd toxic effect and restored

the soil bacterial community, by promoting the production of

siderophores to enrich other bacterial OTUs related to nitrogen

respiration and chloroplast functions. Zhang J. et al. (2019) reported

reduced plant Cd uptake in grafted muskmelon seedlings when the

pH of the growing substrate was increased (5.50-8.00), which was

strongly associated with bacterial community composition and Cd

bioavailability. Zhang et al. (2024). reported that grafting activated a

greater number of beneficial microbes by secreting and modifying

easily available organic carbon into the rhizosphere. Previous

studies reported that rhizosphere microbes have evolved many

strategies to counter heavy metal stress, including directly fixing

Cd through cell surface functional group adsorption, secretion of

polysaccharides and other organic complexes, and formation of

insoluble precipitates, or indirectly weakening Cd migration by

increasing soil pH, decomposing large soil particle aggregates, and

producing siderophores and organic acids (Shen et al., 2010; Yu

et al., 2019; Cheng et al., 2021; Yin et al., 2021; Wang et al., 2023).

Grafting with selected rootstocks affected soil Cd availability and

root Cd uptake by altering soil microbes (diversity and abundance)

using one or more of these strategies.

Arbuscular mycorrhizal fungi (AMF) can form a beneficial

symbiotic system with the majority of plants, by improving soil

structure and moisture retention, and promoting mineral uptake and

root growth (Johri et al., 2015; Tania and Manuel, 2022; Yin et al.,

2024). Therefore, AMF inoculation has been proposed as a promising

tool to enhance plant resistance to stressful environments, including

Cd-contaminated soils (Kumar et al., 2015b). Improved Cd resistance

by AMF inoculation has been observed in maize and B. napus plants

under Cd stress, due to improved root growth, nutrient uptake and

antioxidant enzyme activity, and up-regulated expression of genes

related to peroxisomes, phytohormone signaling, and carotenoid

biosynthesis (Yin et al., 2024; Kuang et al., 2025). However, AMF

inoculation had variable results on Cd accumulation in plants. Kumar

et al. (Kumar et al., 2015b). inoculated AMF on grafted tomato plants,

and observed a decrease in plant growth and yield, but an increase in

shoot Cd contents. Kuang et al. (2025) observed significantly increased

root Cd contents and reduced shoot contents in maize after AMF
Frontiers in Plant Science 04
inoculation. It is speculated that fungal species, crop type and Cd levels

may be the reasons for the opposite results (Rouphael et al., 2015).

Therefore, when using AMF in vegetable production, a comprehensive

consideration of plant growth, yield and Cd content in the edible part

needs to be made.
4 Cd translocation to aboveground
tissues as affected by grafting

Some researchers believe that the ability of roots to take up Cd

from the external environment plays a determining role in Cd

accumulation in aboveground tissues, and therefore suggest the use

of rootstocks with a low Cd uptake potential for soil remediation. Sun

et al. (2023) used low Cd accumulating cultivars as rootstocks and

reported a 50.00%~70.00% reduction in Cd content in grafted soybean,

without affecting soybean yield and quality. However, studies have

reported Cd translocation from roots to aboveground tissues as a major

determinant of aboveground Cd accumulation (Clemens and Ma,

2016; Li et al., 2017). Yuan et al. (2019). reported that grafting onto

S. torvum rootstock had significantly reduced Cd levels in leaves of

eggplant and tomato plants (89.00% and 72.00% reduction,

respectively), while root Cd levels of all treatments were not

significantly different. Kumar et al. (2015a) and Xin et al. (2013) also

observed reduced Cd accumulation in leaves of grafted tomato and

water spinach due to limited Cd translocation. Huang et al. (2020) and

Xing et al. (2022) found that the ability to block Cd in rootstock species

(Chinese pumpkin, Indo-Chinese hybrid pumpkin, wild watermelon

and gourd) determined Cd accumulation in the watermelon fruit.

Based on the results of previous studies, we conclude that Cd

accumulation in fruit is a comprehensive result of both root uptake

and translocation, rather than having a determinant factor in one

specific tissue (Zare et al., 2018; Yuan et al., 2019; Xie et al., 2020). Cd

translocation as influenced by grafting could occur in any tissue, such

as root to stem, or stem to leaf, or leaf to fruit.

In plants, the form of Cd changes with the transport process, and

the chelation of certain substances with Cd can reduce its mobility,

thereby reducing the accumulation of Cd in aboveground tissues or

edible parts (Loix et al., 2017). Cell wall immobilization and vacuolar

compartmentalization play an important role in reducing free Cd in the

cell (Figure 1) (Xiao et al., 2020). Chemical functional groups (such as –

COOH and –SH) of cell wall components (including pectin acid,

polysaccharides and proteins) can bind Cd, thereby restricting its

transmembrane transport and further translocation to other plant

tissues (Wojcik et al., 2005; Wang et al., 2008; Xiao et al., 2020). High

pectin content in cell wall indicated a high proportion of Cd binding to

the cell wall, strong Cd retention capacity and low accumulation of Cd

in aboveground tissues (Wang et al., 2020). Xin et al. (Xin et al., 2013).

found that grafting reduced root-to-shoot Cd translocation, possibly due

to thicker phellem and outer cortex cell walls in the rootstocks, which

retain more Cd, and thus reduce Cd translocation to shoots. Cell wall

immobilization has also been reported as an important mechanism to

reduce Cd transport to aboveground tissues in cucumber, grape and

apple rootstocks (Zhang, 2009; Li, 2011; Zhou, 2017).
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Excess Cd enters the cell cytoplasm, when the retention capacity

of the cell wall is exceeded (Wang et al., 2020). Substances in the

cytoplasm, such as organic acids, proteins, and sulfhydryl compounds

(glutathione, phytochelatins, metallothionein and cysteine) can

chelate with Cd to form a non-toxic PC-Cd complex, which is then

sequestered in the vacuole (Figure 1) (Aborode et al., 2016; Xu Y.

et al., 2018; Yang et al., 2019; Yu et al., 2023; Teng et al., 2024).

Previous studies have reported the influence of grafting on sulfhydryl

compound synthesis to influence Cd transport and accumulation in

plants, which has the potential to mitigate Cd toxicity in plants (Gao,

2018; Lian et al., 2021; Xue et al., 2024). Sun et al. (2023) reported that

low Cd accumulating rootstocks reduced 50-70% of Cd in

aboveground tissues by reducing Cd translocation and down-

regulating of sulfur-containing compounds, which was possibly due

to differentially expressed genes enriched in sulfur-related pathways

induced by grafting. This is supported by the results of Yuan et al.

(Zare et al., 2018). who grafted eggplant and tomato on S. torvum and

reported a significant positive correlation between leaf Cd content

and total sulfur content. They stated that sulfur elements in plant

leaves (mainly sulfate) may play an important role in regulating Cd

accumulation in eggplant and tomato plants. He et al. (He L. et al.,

2020). reported that grafting on ‘Torubamu’ rootstock significantly

reduced the accumulation of both Cd (4.10-11.70%) and total sulfur

(25.00-36.70%) in leaves, compared to the non-grafted tomato plants.

Although sulfur has been reported to have a major effect on Cd

mobility and translocation in plants, the specific substances and the

mechanism of how they work as affected by grafting remain uncertain.

Previous studies have reported translocators on the membranes of the

cytoplasm or vacuole, with the ability to transport of Cd2+ or Cd chelate

complexes over long distances, such as AtZIP1, HMA3, HMA4,

BjYSL7, etc (Brunetti et al., 2015; Feng et al., 2017; Cao et al., 2018;

Zhang Z. et al., 2019). For example, HMA3 is a vacuolar membrane

transporter that plays a key role in transporting Cd to the vacuole and

in limiting Cd transport from root to stem in many plants (Liu et al.,

2017; Gong et al., 2020). Loss of HMA3 function leads to a significant

increase in Cd levels in aboveground tissues of rice (Yan et al., 2016),

while overexpression of OsHMA3 could significantly reduce Cd levels

in rice grains (Sasaki et al., 2014). Diverse miRNAs have been

implicated as key epigenetic regulators in different organisms, and

regulating many different response pathways in response to internal

developmental signals and external adverse environmental stimuli

(Chen C. et al., 2018). He L. et al. (2020) reported that grafting with

S. torvum can significantly reduce Cd accumulation in tomato due to

the increased expression levels of miR166a and miR395b in scions,

which enhanced sulfate transport capacity. Therefore, it is speculated

that rootstock-scion communication via miRNA transfer may have

affected the expression levels of the translocator or the transport of

sulfhydryl compounds, thereby influencing the Cd subcellular

distribution and its translocation to other tissues.

In light of the findings of previous studies, it can be concluded

that that plants have evolved and screened directed, effective and

simple survival strategies with minimal energy and material

consumption at the individual level to cope with the changes in

the external environment, such as the synthesis of antioxidants

(such as proline and malondialdehyde) and antioxidases (such as
Frontiers in Plant Science 05
superoxide dismutase) that respond to stress conditions (Jiang and

Yu, 2010; Chen, 2017). Similarly, grafting affected the translocation

of Cd to aboveground tissues by influencing sulfhydryl compound

synthesis, the expression levels of these transporters, and

consequently the Cd subcellular distribution and mobility. The

influence of grafting with different rootstocks on these factors

may have been significant or minimal, resulting in different levels

of Cd accumulation in the aboveground tissues.
5 Xylem/phloem loading of Cd in
plants as affected by grafting

Cd translocation in the plant includes the processes of root

uptake, long-distance transport to the aboveground tissues, and leaf

storage (Gaion and Carvalho, 2018). The xylem and phloem are

responsible for the transfer and distribution of water, ions and other

nutrients, and rootstock cultivar has been reported to affect the

transport of inorganic ions to scions (Kawaguchi et al., 2022).

Previous studies have reported that Cd is mainly transported by

the xylem rather than the phloem in most plants, and grafting may

affect the accumulation of Cd in the above-ground tissues of plants by

influencing this process in the xylem (Zhao et al., 2015; Kawaguchi

et al., 2022). Arao et al. (2008) found that the Cd concentration in the

stem xylem of S. torvum was 22.00% of that of the common eggplant

cultivar, explaining the lower Cd accumulation in the aboveground

tissues of S. torvum. However, there are researchers who believe that

the alteration of the phloem by grafting plays a more important role

in Cd translocation in plant tissues. Wu et al. (Wu, 2011) found that

Cd content in the phloem was 14 times higher than that in the xylem,

indicating that there was an obvious phloem transport characteristic

of Cd during long-distance transport from the root to aboveground

tissues in willow. Qin et al. (2013) found that grafting reduced Cd

accumulation in the above-ground part of the eggplants by altering

the sieve tube structure in the phloem of the rootstock and scion, as it

could not affect the process of Cd loading in xylem with a penetrating

structure. Cd transport via xylem or phloem varied on plant species

or tissues (Wu, 2015; Shen et al., 2019). Shen et al. (2019) reported

that phloem loading and unloading played a major role in the transfer

and accumulation of Cd in maize grains during long-distance Cd

transport. Wu et al. (Wu, 2015) found that the transport capacity of

cadmium in the xylem is the key process determining the

accumulation of Cd in the aboveground tissue of Brassica napus L.

There have also been reports that Cd levels in grain were determined

by both xylem transport and phloem re-transport to the ear in rice

and wheat (Chen, 2009; Xu et al., 2021). Therefore, grafting with

rootstocks of different crop species may have led to different

conclusions in previous studies. In addition, grafting operation

disrupts the original xylem and phloem connections that associated

with the Cd transport corridor, and consequently Cd accumulation in

aboveground tissues (Qin et al., 2013).

During the long-distance transport to aboveground tissues,

transporters of divalent cations (Zn, Fe, Ca and Mn) are often

involved in the processes of Cd uptake, transport and chelation

(Cao et al., 2018). This is due to the fact that Cd is not an essential
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element and does not have a specific transporter. Previous studies

have reported the presence of Cd transporters (ZIP, NRAMP,

HMA, MTP, CAX, ABC and YSL) in a number of crops, mainly

in rice and Arabidopsis (Baxter et al., 2003; Shigaki et al., 2006;

Curie et al., 2009; Tiong et al., 2014; Pottier et al., 2015; Yan et al.,

2016; Cao et al., 2018). At present, there is little evidence on the

effect of grafting on the expression levels of Cd-related transporters

in fruit vegetables. However, some progress has been made. Zhao

et al. (2024) identified eight slHMAs in the tomato genome, and

confirmed their function in response to Cd stress. Liu et al. (Liu

et al., 2022) reported the expression of the Cd resistance gene

NRAMP3 in tomato roots and leaves in response to Cd stress. Wu

et al. (2022) reported that Cd stress induced the expression of ZIP11

and ZIP5 in roots, stems and leaves of eggplant and S.torvum plants.

Analyzing the expression levels and regulatory pathways of these

transporters in rootstocks and scions could clarify the mechanism

of reduced Cd translocation as affected by grafting in future

research. This would also provide valuable genetic resources and

a theoretical basis for breeding new Cd resistant varieties, and

improving safety in vegetable production.
6 Future research prospect

This review presents recent research on the mechanisms of plant

Cd uptake and translocation as influenced by grafting, mainly in fruit

vegetables, with the aim of using grafting as a remediation approach on

Cd-contaminated soil. The current research suggests that grafting could

reduce Cd accumulation in aboveground tissues by amplifying the Cd-

resistant effects of one or more of the strategies that plants have evolved

and screened in response to the external environment, with minimal

energy and material consumption. However, previous studies on the

mechanisms of grafting-mediated reduction of Cd accumulation are

relatively basic. Further research is needed to gain a deeper

understanding of the regulatory pathways at the metabolic,

molecular and genetic levels as influenced by rootstock-scion

interactions needs to be further explored. In addition, other signaling

processes and detoxification strategies that may be affected by grafting,

such as the synthesis of antioxidants and hormones, need to be further

investigated. The decisive characteristics of rootstocks with low Cd

accumulation potential should be identified in the future research, in

order to select the ideal rootstocks for different crop species and use

them as an effective phytoremediation approach.
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