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DPD-YOLO: dense pineapple
fruit target detection algorithm
in complex environments based
on YOLOv8 combined with
attention mechanism
Cong Lin1, Wencheng Jiang1, Weiye Zhao1, Lilan Zou1*

and Zhong Xue2*

1School of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang, China,
2South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences,
Zhanjiang, China
With the development of deep learning technology and the widespread application

of drones in the agricultural sector, the use of computer vision technology for target

detection of pineapples has gradually been recognized as one of the key methods

for estimating pineapple yield. When images of pineapple fields are captured by

drones, the fruits are often obscured by the pineapple leaf crowns due to their

appearance and planting characteristics. Additionally, the background in pineapple

fields is relatively complex, and current mainstream target detection algorithms are

known to perform poorly in detecting small targets under occlusion conditions in

such complex backgrounds. To address these issues, an improved YOLOv8 target

detection algorithm, named DPD-YOLO (Dense-Pineapple-Detection YOU Only

Look Once), has been proposed for the detection of pineapples in complex

environments. The DPD-YOLO model is based on YOLOv8 and introduces the

attention mechanism (Coordinate Attention) to enhance the network’s ability to

extract features of pineapples in complex backgrounds. Furthermore, the small

target detection layer has been fused with BiFPN (Bi-directional Feature Pyramid

Network) to strengthen the integration of multi-scale features and enrich the

extraction of semantic features. At the same time, the original YOLOv8 detection

head has been replaced by the RT-DETR detection head, which incorporates Cross-

Attention and Self-Attention mechanisms that improve the model’s detection

accuracy. Additionally, Focaler-IoU has been employed to improve CIoU, allowing

the network to focus more on small targets. Finally, high-resolution images of the

pineapple fields were captured using drones to create a dataset, and extensive

experiments were conducted. The results indicate that, compared to existing

mainstream target detection models, the proposed DPD-YOLO demonstrated

superior detection performance for pineapples in situations where the

background is complex and the targets are occluded. The mAP@0.5 reached

62.0%, representing an improvement of 6.6% over the original YOLOv8 algorithm,

Precision increased by 2.7%, Recall improved by 13%, and F1-score rose by 10.3%.
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1 Introduction

China is recognized as one of the leading pineapple producers in

the world, with Guangdong Province having the highest output. At

present, the harvesting and yield statistics for pineapples are mainly

based on manual picking and recording. However, traditional

manual labor is not only time-consuming and laborintensive but

also prone to errors. In addition, pineapples are densely distributed

in the fields, often obscured by leaves, and significant variations in

color, size, and shape exist between different varieties, which makes

manual detection challenging. With the development of deep

learning technologies and the widespread use of drones in

agriculture, new methods for crop monitoring have been

introduced (Li et al., 2024a; Jumaah et al., 2024). By integrating

drones with object detection technology, the automated

identification of pineapples and field monitoring has been

enabled, which significantly enhances production efficiency,

reduces labor costs, and plays a vital role in the mechanization of

pineapple cultivation and harvesting.

Traditional methods for crop detection in agricultural fields

mainly rely on local features from agricultural images, such as

texture, color, and shape, to describe the targets, and classifiers,

such as Support Vector Machines (SVM) (Hearst et al., 1998) and

K-Nearest Neighbors (KNN) (Taunk et al., 2019), are employed for

target classification. For example, Chaivivatrakul et al.

(Chaivivatrakul and Dailey, 2014) proposed a texturebased

technique for detecting green fruit on plants. This method involves

extracting features, calculating descriptors of interest points,

classifying interest points using SVM, mapping candidate fruit

points, performing morphological closing, and extracting fruit

regions. The detection accuracy for pineapples in a single image

was achieved at 85%. Christy et al. (Sari et al., 2020) introduced a

method for papaya classification based on a Naïve Bayes Classifier

and Local Binary Patterns (LBP) features. The input image was first

processed by grayscale conversion and image adjustment, then the

papaya leaves were divided into nine regions and LBP features were

extracted. The Naïve Bayes Classifier was then used for classification,

achieving an accuracy of 90% on the test set. However, these

traditional methods rely on manually designed features and are

tailored to specific working environments, leading to a reduced

success rate in more complex natural environments.

Compared to traditional methods, deep learning techniques are

widely applied to the target recognition and detection of crop fruits,

achieving significant results. Deep learning-based object detection

models are generally categorized into two types: one category

includes region proposal-based detection algorithms, such as Faster

RCNN (Ren et al., 2017) and Mask R-CNN (He et al., 2017), while

the other directly transforms the problem of bounding box

localization into a regression problem, eliminating the need for

candidate boxes, such as SSD (Liu et al., 2016) and YOLO

(Redmon et al., 2016). Several studies have been conducted on fruit

target recognition in natural environments, with algorithms being

developed for the recognition of fruits like apples, corn, and

strawberries. For instance, to enable broccoli heads to be detected
Frontiers in Plant Science 02
by a harvesting robot, a Mask R-CNN based on ResNet-50 was used

by Blok et al. (Blok et al., 2021) as the instance segmentation network.

The network was trained and tested on a broccoli dataset consisting

of three varieties, with data augmentation techniques being applied.

Similarly, Yue et al. (Yue et al., 2019) proposed an apple detection

method in complex environments by adding a boundary-weighted

loss function to the original Mask R-CNN network. High-resolution

images captured by drones (Lin et al., 2024), along with their ability to

perform multiple visits, have enabled large and detailed datasets to be

created, attracting the attention of agricultural experts. Gao et al.

(Gao et al., 2024) proposed a real-time maize tassel detection method

based on Unmanned Aerial Vehicles (UAVs), where maize field

images were first collected using drones. The collected data was then

combined with an attention mechanism, spatial pyramid pooling,

and Atrous convolution to build a UAV remote sensing platform-

based YOLOv5-Tassel (YOLOv5-T) model. In addition, the DSE-

YOLO network was introduced by Wang et al. (Wang et al., 2022) to

enhance the ability to assess the maturity of small strawberries,

where pointwise convolution and dilated convolution were

utilized to extract various details and semantic features. Lyu et al.

(Lyu et al., 2024) proposed an innovative method for the dynamic

monitoring and counting of lotus flowers and seed pods using an

improved version of YOLOv7-tiny for unmanned aerial vehicles

(UAVs). In their work, they enhanced YOLOv7-tiny by

investigating the fusion mechanism between SPD layers and

convolutions, leading to the development of a novel SPD-Conv

block that surpasses the traditional SPDConv. Additionally, a set of

convolutional attention modules was embedded at the neck region to

optimize the utilization of channel and spatial information. The

modified YOLOv7-tiny model demonstrated a notable

improvement, with increases of 3.5%, 0.65%, and 4.05% in map@

50, precision (P), and recall (R), respectively, thereby enabling the

efficient measurement of lotus flowers and seed pods in super-

resolution aerial images.

In recent years, object detection models have also been applied

by researchers to the detection and recognition of pineapples in

agricultural fields (Lai et al., 2023; Yu et al., 2023; Cuong et al.,

2022). For example, an improved YOLOv3 model has been

proposed by Liu et al. (Liu et al., 2023) to locate pineapples by

combining stereo vision with the enhanced YOLOv3 model.

Challenges such as insufficient lighting, strong exposure, and

severe occlusion encountered in field based pineapple detection

have been addressed by Meng et al. (Meng et al., 2023) through the

use of a shift window transformer, which integrates a region based

convolutional neural network. This approach captured long

distance pineapple images to increase the number of instances,

achieving an accuracy of up to 92.54%. A lightweight pineapple

detection model based on YOLOv7 was introduced by Zhang et al

(Zhang et al., 2023), which accelerated the detection speed. The

model parameters were significantly reduced by Li et al. (Li et al.,

2024b) through pruning and lightweighting of the backbone,

enabling the deployment of the pineapple detection algorithm on

agricultural robots with limited computational power. However,

existing model designs do not adequately focus on small targets. In
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https://doi.org/10.3389/fpls.2025.1523552
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2025.1523552
high altitude overhead scenes, pineapples are often obstructed

by branches or heavily occluded by one another, making the

task of detecting densely packed small targets challenging. The

detection performance of these models often fails to meet the

requirements, and real time detection is prevented due to slow

detection speed.

To address the aforementioned issues, a high-resolution

pineapple field image dataset has been collected and created using

drones in this paper. A novel object detection algorithm, named

DPD-YOLO (DensePineapple-Detection You Only Look Once),

has been proposed specifically for pineapple detection tasks in

complex environments. Extensive experiments conducted on the

pineapple dataset have demonstrated that, compared to existing

mainstream object detection models, DPD-YOLO exhibits highly

competitive detection performance, particularly in complex

backgrounds and when the targets are occluded.

Overall, the contributions of this paper are summarized

as follows:
Fron
1. To address the challenges of dense targets and difficult

feature extraction, a small target P2 detection layer has been

introduced into the network to capture target information

at different scales, thereby improving the accuracy of small

target detection. To mitigate feature information loss

caused by consecutive convolutions, a Weighted Bi-

directional Feature Pyramid Network (BiFPN) has been

employed to fuse deep semantic information with shallow

spatial information, enhancing the model’s generalization

capability and enabling the network to effectively capture

multi-scale features, thus improving its ability to perceive

high-density targets.

2. In response to the challenges posed by the close color

similarity between pineapple leaves and crowns, as well as

the obstruction of fruits by leaves in the background, an

attention mechanism known as Coordinate Attention has

been introduced into the YOLOv8 network. This

enhancement increases the network’s focus on the critical

feature information of small pineapple targets, suppresses

interference from irrelevant background information, and

improves the feature extraction capability for small targets

within the detection network.

3. Small targets in complex backgrounds are considered

difficult samples, posing significant challenges to model

detection. To enhance detection accuracy, the original

YOLOv8 network integrates the Decoder from RT-DETR

as its detection head. The Decoder processes the output

features from the encoder using Self-Attention and Cross-

Attention mechanisms, allowing more spatial location

information of targets to be obtained and improving the

model’s ability to handle overlapping or interrelated targets.

4. Currently, mainstream loss functions pay limited attention

to difficult samples. In the context of UAVcaptured

pineapple fields, where the size of pineapples is generally

small, the CIoU loss function has been modified by

introducing Focaler-IoU to enhance the network’s focus

on difficult samples in the image.
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The remainder of the paper is organized as follows. In Section 2,

the image acquisition process and the creation of the dataset are

introduced, and a detailed description of the methodological

contributions is provided. In Section 3, the experimental results

are presented, along with a comprehensive performance analysis

and comparisons with mainstream methods. Section 4 concludes

the paper.
2 Materials and methods

2.1 Dataset

The images in this dataset were collected on September 25,

2022, in Xuwen County, Zhanjiang City, Guangdong Province,

China. This county is primarily dedicated to pineapple cultivation

and benefits from a tropical monsoon humid climate, characterized

by relatively high temperatures and abundant rainfall throughout

the year. The dry season is marked by ample sunshine, which

contributes to the high yield and quality of pineapples in the region.

The images were captured using a DJI Mavic 3 Pro drone equipped

with a 4/3 CMOS sensor, resulting in each image having a

resolution of 5472×3078. The drone operated at an altitude

ranging from 125 to 135 meters, and the dataset contains a total

of 153 images with 32,371 labeled targets. The dataset was randomly

divided into training, validation, and test sets in an 8:1:1 ratio. Some

of the images in the dataset are shown in Figure 1. The annotation

software used for this dataset is LabelImg, and the annotation work

was guided by experts from both the agricultural field and the

computer vision field. The dataset was manually annotated, with the

pineapples in the images labeled to ensure that the bounding boxes

completely enclosed the pineapples and distinguished them from

the background. After each image was annotated, an XML file was

generated, storing the coordinates of the rectangular bounding

boxes for each labeled pineapple in the image. However, the XML

files could not be directly used for YOLOv8 training, so the data had

to be converted to YOLO format. For each image, the category and

bounding box coordinates for each pineapple were stored in a

separate text file. Each record in the file corresponded to one

bounding box in the image, including the center pixel coordinates

of the annotated object, and the size of the bounding box was

represented by the coordinates of the top-left and bottom-

right corners.
2.2 Methods

2.2.1 YOLOv8
The YOLOv8 object detection algorithm is one of the YOLO

series algorithms developed by the Ultralytics team. Compared with

previous YOLO algorithms, the innovations presented in this paper

were primarily reflected in the following aspects.
• A new network module, named C2f, was proposed for use

in the backbone network of YOLOv8. It consists of both

Conv and C2f modules. Within the C2f module, additional
frontiersin.org
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skip layer connections were added, convolution operations

in the branches were eliminated, and an additional split

operation was introduced. The above design not only

retains rich feature information but also effectively

reduces the computational load. A schematic diagram of

the C2f structure is shown in Figure 2.

• In this paper, the Anchor-Based method was changed to an

Anchor-free method. The main difference between the two

lies in whether predefined anchor boxes are used to match
tiers in Plant Science 04
the ground truth boxes. An anchor box is a set of preset

bounding boxes designed to assist in training the predicted

boxes (Prediction box) to offset their positions relative to

the ground truth boxes (Ground truth box). The essence of

this mechanism is to address the issue of label assignment.

Anchor boxes are used not only to locate the positions of

the bounding boxes but also to define their sizes and shapes,

in conjunction with the key points extracted from the

feature map by the network.
FIGURE 2

The C2f structure diagram.
FIGURE 1

(A–D) represent some of the images in this article’s data set.
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The loss used during training is the Binary Cross-Entropy Loss

(BCE Loss), and its calculation formula is provided as follows:

LossBCE = − 1
NoN

i=1½yi log(pi) + (1 − yi) log(1 − pi)� (1)

where N is denoted as the total number of samples. yi is the true

label for the i-th sample, and pi is the predicted probability of the i-

th sample belonging to the positive class.

DFL (Distribution Focal Loss) is designed to allow the network

to quickly focus on values near the labels, thereby maximizing the

probability density at the label locations. The cross-entropy

function is employed in DFL to optimize the probabilities at

positions adjacent to the labels, ensuring that the network’s

predictions are concentrated around the label values. The formula

is provided as follows:

DFL (Si, Si+1) = −((yi+1 − y) log(Si) + (y − yi) log (Si+1)): (2)

where Si and Si+1 are denoted as the model-predicted

probabilities for the i-th and (i + 1)-th discrete intervals,

respectively. Here, y is taken as the true continuous-valued target,

while yi and yi+1 are defined as the boundary values that define the i-

th and (i + 1)-th intervals. The terms (yi+1 − y) and (y − yi)

represent the relative proximity of y to the upper boundary yi+1
and the lower boundary yi, respectively. As y approwaches yi, the

value of (yi+1 − y) increases, and the influence of the i-th interval is

emphasized. Conversely, as y approaches yi+1, (y − yi) becomes

larger, and the emphasis shifts toward the (i + 1)-th interval.

The regression loss function used in YOLOv8 is CIoU, and the

calculation formula is given as follows:

LossCIoU = 1 − CIoU , (3)

CIoU  = IoU −
r2(B,Bgt)

c2
− av, (4)

a =
v

1 − IoU + v
, (5)

v =
4
p2 tan−1

wgt

hgt
− rtan−1

w
h

� �2

, (6)

where IoU is defined as the ratio of the intersection area to the

union area between the predicted box and the ground truth box. It is

used to measure the degree of overlap between the predicted and

ground truth boxes. B is denoted as the center point of the predicted

box, and Bgt is denoted as the center point of the ground truth box.

r(B, Bgt) is defined as the distance between the center points of the

predicted and ground truth boxes. c represents the diagonal length

of the smallest enclosing region that can contain both the predicted

and ground truth boxes. a is a balancing parameter that does not

participate in the gradient calculation. v is used to represent the

aspect ratio between the predicted and ground truth boxes, and wgt

and hgt are defined as the width and height of the ground truth box,

respectively. w and h are defined as the width and height of the
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predicted box, respectively. When the predicted and ground truth

boxes have equal aspect ratios, the value of v is 0.
• The positive sample matching strategy is based on the

TaskAlignedAssigner assignment strategy, which uses the

weighted scores from both classification and regression to

select positive samples. The formula is given as follows:
t = sa ∗ ub , (7)

where a and b are weight hyper-parameters, s represents

the score of the predicted category, and u is the Intersection over

Union (IoU) between the predicted box and the ground truth box.

The product of these two values is used to effectively measure

the matching degree. When both the classification score and the

IoU are high, the value of t approaches 1, indicating a stronger

match between the predicted box and the ground truth box, thereby

aligning more closely with the positive sample criteria. For each

ground truth box, the matching degrees are sorted, and the

top K predicted boxes are selected as positive samples. When a

single predicted box is matched with multiple ground truth

boxes, the ground truth box with the highest IoU is retained. A

schematic diagram of the YOLOv8 network structure is shown

in Figure 3.
2.2.2 P2+BiFPN
The original YOLOv8 network is composed of three detection

heads, designed for small, medium, and large-scale object detection.

However, for small object detection, these targets are often

characterized by limited features. As the convolutional neural

network deepens, important information tends to be lost in the

feature maps after convolution operations. In the dataset used in

this paper, the pineapples captured by drones are considered

relatively small, which leads to suboptimal training results when

the original YOLOv8 is used. Therefore, a small object detection

layer, P2, is proposed to be added to the YOLOv8 network to

enhance its ability to detect pineapples.

YOLOv8 is employed with a Path Aggregation Network-

Feature Pyramid Network (PAN-FPN). The design of PAN is

aimed at enhancing feature representation by integrating feature

information from different receptive fields. However, its

effectiveness in handling multi-scale features is limited. The

Feature Pyramid Network (FPN) is specifically designed to

improve object detection tasks by performing feature fusion

across multiple resolution levels, thereby enhancing the ability to

detect objects of various scales. However, traditional FPNs use a

top-down feature fusion method, which may result in the loss of

object location information. To address these two issues, PAN-FPN

combines PAN and FPN, constructing a network structure that

flows both from the bottom up and from the top down. This

structure achieves feature fusion of shallow location information

and deep semantic information, ensuring feature diversity

and completeness.
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The BiFPN (Bi-directional Feature Pyramid Network)

(Tan et al., 2020), proposed by Tan et al., is widely employed in

most object detection models to perform multi-level feature

extraction from input images using convolutional neural

networks. Deep networks are characterized by large receptive

fields and strong semantic representation capabilities, but their

feature maps tend to have lower resolutions and lack spatial

details. In contrast, shallow networks are known for having

higher feature map resolutions and rich details, but they are

characterized by weaker semantic expression capabilities.

Therefore, the detection capability of the network is improved by

fusing features across different levels. To address the issue of

inadequate feature fusion in PANet, cross-level multi-scale fusion

is introduced by BiFPN, with the calculation formulas for layers P3

and P4 provided as follows:

Ptd
3 =

Conv((w1 · P
in
3 + w2 · Resize(P

in
4 )))

(w1 + w2 + e)
, (8)

Pout
3 =

Conv((w
0
1 · P

in
3 + w

0
2 · P

td
3 + w

0
3 · Resize(P

out
4 )))

(w 0
1 + w 0

2 + w 0
3 + e)

, (9)

where Ptd
3 is the intermediate feature at the third level of the top-

down path, Pin
3 represents the feature extracted from the third layer

of the backbone network, and Pout
3 denotes the output feature at the

fourth level of the bottom-up path. The weights w and w0 are

assigned to each feature map, while e is treated as a constant. All

other features are constructed in a similar manner. The BiFPN

structure is illustrated in Figure 4.
2.2.3 Coordinate attention
In computer vision, the attention mechanism is designed to mimic

the ability of the human visual system to focus on salient parts of
Frontiers in Plant Science 06
complex scenes. When an image is input to the model, the attention

mechanism dynamically allocates weights based on the importance of

different regions in the image (Guo et al., 2022). CA (Coordinate

Attention) (Hou et al., 2021), proposed by Hou et al., is a novel mobile

network attention mechanism that integrates positional information

into channel attention. Two one-dimensional global pooling operations

are employed in Coordinate Attention to merge input features into two

independent directional feature maps—one for the vertical direction

and the other for the horizontal direction. These feature maps, which

contain direction-specific information, are encoded into twomappings,

each of which captures the longrange dependencies of the input feature

map in a specific spatial direction. Positional information is preserved

in the generated mappings, and the two attention maps are multiplied

and applied to the input feature map.

The structure diagram of Coordinate Attention is shown

in Figure 5.

2.2.4 RT-DETR head
RT-DETR (Real-Time Detection Transformer) (Zhao et al.,

2023b) combines the advantages of the Transformer architecture,

providing an efficient end-to-end solution for object detection. The

head structure of RT-DETR is primarily composed of an encoder

and a decoder. In the encoder, the Efficient Hybrid Encoder is used

to transform multi-scale features into a sequence of image features

through intra-level feature interaction (AIFI) and cross-scale

feature fusion modules (CCFM). Additionally, IoU-aware query

selection is employed, where a fixed number of image features are

selected as the initial object queries for the decoder, allowing the

model to focus on the most relevant targets in the scene, thereby

enhancing detection accuracy.

The decoder is considered one of the cores of RT-DETR,

with the output features from the encoder being processed using

self-attention and cross-attention mechanisms. Within the decoder,
FIGURE 3

YOLOv8 structure diagram.
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the self-attention mechanism allows the information from other

queries to be considered by each query, aiding in the handling of

overlapping or interrelated targets. The cross-attention mechanism

enables interaction between object queries and the feature maps

from the encoder, helping the spatial location information of the

targets to be learned.

A schematic diagram of the RT-DETR head structure is shown

in Figure 6.

2.2.5 Focaler-CIoU
In object detection tasks, the issue of sample imbalance is

commonly encountered. Based on the size of the detected objects,

samples are generally categorized into easy samples and hard

samples. Easy samples typically possess more common sizes,
Frontiers in Plant Science 07
while smaller targets are usually classified as hard samples due to

challenges in feature extraction and localization. It has been argued

by Zhang et al. (Zhang and Zhang, 2024) that focusing on the

bounding box regression process of easy samples is beneficial for

improving detection performance in tasks dominated by easy

samples. In contrast, special attention must be given to the

bounding box regression hard samples in tasks dominated by

them. Therefore, Focaler-IoU has been proposed, which enhances

the performance of detectors in various detection tasks by focusing

on different types of regression samples. To effectively address

targets of different sizes, a linear interval mapping method has

been employed by Zhang et al. to reconstruct the IoU loss, thereby

enhancing bounding box regression capabilities. The formula is as

follows:
FIGURE 4

(A) represents the network structure of PAN-FPN and (B) represents the network structure of BiFPN.
FIGURE 5

Coordinate attention structure diagram.
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IoIfocaler =

0, IoU < d

IoU−d
u−d , d ≪ IoU ≪ u

1, IoU > u,

8>><
>>:

(10)

where IoUfocaler is defined as the reconstructed IoU, while IoU

represents the normally calculated IoU value, with [d,u] ∈ [0,1]. By

adjusting the values of d and u, different types of regression samples

can be focused on by the Focaler-IoU model. The calculation

formula for Focaler-IoU is shown as follows:

LossFocaler−IoU = 1 − IoUfocaler : (11)

Focaler-IoU can be applied to various types of IoU. In this

paper, CIoU is improved using Focaler-IoU, and the calculation

formula for the enhanced Focaler-CIoU is provided as follows:

LossFocaler−CIoU = LossCIoU + IoU − IoUFocaler: (12)
2.2.6 DPD-YOLO
The network structure of DPD-YOLO is shown in Figure 7.

Structural improvements have been introduced in DPD-YOLO

while maintaining the overall architecture of YOLOv8. Key

innovations in DPD-YOLO include the addition of a small target

detection layer (P2), which increases the number of detection scales

from three to four, allowing smaller targets to be focused on and

improving detection performance for small objects.

Additionally, the PAN-FPN (Path Aggregation Network with

Feature Pyramid Network) used in YOLOv8 has been replaced with

BiFPN, which integrates the large receptive field and strong

semantic information representation of deeper layers with the

high-resolution, feature-rich characteristics of shallow layers. This

fusion of features across different layers has been shown to enhance

detection capabilities. Furthermore, a Coordinate Attention

mechanism has been incorporated into DPD-YOLO, allowing the
Frontiers in Plant Science 08
model to focus more on targets and reducing the influence of

complex backgrounds on detection performance. Moreover, a

regression function based on an improved CIoU version of

Focaler-CIoU has been employed, enhancing detection

performance by focusing on different regression samples and

improving the ability to detect densely packed pineapple targets.

Finally, the detection head in DPD-YOLO has been replaced with

the RT-DETR Head. This module uses an encoder to transform

multi-scale features, and a decoder with self-attention mechanisms

is utilized to handle overlapping or related targets. The cross-

attention mechanism in the decoder interacts with the feature

map to extract spatial location information of the targets. In

summary, a series of improvements have been proposed by DPD-

YOLO to enhance the detection of dense pineapple fruits in

complex backgrounds, addressing the challenges encountered by

YOLOv8 in detecting small and densely packed targets.
2.3 Model training and testing

2.3.1 Training processing platform
During training, the learning rate and other hyperparameters

are set based on a comprehensive evaluation of model performance

and experimental experience. To ensure that sufficient time is

allowed for the model to learn and optimize, the training epochs

are set to 300. The initial learning rate is set to 0.01 to provide a

moderate step size for parameter updates, enabling the model to

learn features quickly during the initial stages training while

avoiding oscillations or convergence failure that may be caused by

excessively large step sizes (Sirisha et al., 2023). To enhance the

generalization ability and stability of the model, a weight decay term

with a value of 0.0005 has been added. This helps to reduce the risk

of overfitting by limiting the growth of model parameters.

Furthermore, Stochastic Gradient Descent (SGD) is employed for
FIGURE 6

The RT-DETR head structure diagram.
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model optimization, which is efficient for handling large-scale

datasets. A momentum term of 0.937 is introduced to retain

information about the previous gradient direction during

parameter updates, thus accelerating convergence and reducing

oscillations in the updating process. The design of these

hyperparameters fully considers the efficiency and stability of

model training, ensuring that the model can effectively address

target detection tasks in complex backgrounds. In this study, the

input image size for the YOLOv8 network is set to 640∗640. The
effect of different input image sizes on model accuracy is

demonstrated in the official code repository. When the input

image size is 1280∗1280, the model accuracy is higher compared

to when the input size is 640∗640. However, as the input image size

increases, the computational resources required for model training

and inference also increase, leading to longer processing times. The

images in the dataset used in this study are of high resolution, with a

size of 5472∗3078, and the pineapples are densely packed in the

images. Given these factors, the input image size is set to 640∗640.
Regarding kernel size, different convolutional kernel sizes
Frontiers in Plant Science 09
correspond to different receptive field sizes on the input feature

maps. By stacking multiple small kernels, a receptive field

equivalent to that of large kernels can be achieved, while using

smaller kernels reduces the number of parameters and

computational load. In YOLOv8, the kernel size is set to 3∗3. A
comparison experiment with different kernel sizes was conducted,

and the results are presented in Table 1. From Table 1, it can be

observed that a kernel size of 3∗3 produces the best performance.

2.3.2 Evaluation index
The performance of the deep learning model is evaluated after

training using specific metrics to determine whether improvements are

needed for optimal performance (Ye et al., 2024). Common evaluation

metrics in object detection tasks, such as Precision, Recall (Everingham

et al., 2010), mean Average Precision (mAP@0.5), and F1-score

(Lin et al., 2014), are primarily selected for model evaluation in this

paper. Precision is defined as the proportion of true positives among

detected targets, reflecting the accuracy of detection. Recall is the

number of correctly detected targets among all image samples,
TABLE 1 Impact of different kernel sizes on model performance.

Method Kernels P R F1 mAP@0.5 Size (MB)

YOLOv8 1∗1 72.3% 28.0% 40.4% 25.1% 17.5

YOLOv8 3∗3 83.5% 49.0% 61.8% 55.4% 21.4

YOLOv8 5∗5 82.4% 51.0% 63.0% 54.5% 29.3

DPD-YOLO 1∗1 83.2% 33.0% 47.3% 32.8% 16.7

DPD-YOLO 3∗3 86.2% 62.0% 72.1% 62.0% 20.1

DPD-YOLO 5∗5 84.8% 61.0% 71.0% 62.0% 29.3
FIGURE 7

DPD-YOLO structure diagram.
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indicating the completeness of the model in target detection. F1-score,

a metric used in binary classification models, combines both Precision

and Recall. A score closer to 1 is considered to indicate better

performance. Average Precision (AP) (Chowdhury, 2010) is the area

under the Precision-Recall curve, reflecting the effectiveness of the

model in recognizing a specific category. Mean Average Precision

(mAP@0.5) is the average of AP values across all categories and is used

as an indicator of the overall performance of the model. True Positive

(TP) refers to instances where the model predicts a positive sample that

matches the actual positive sample. False Positive (FP) refers to

instances where the model predicts a positive sample, but the actual

sample is negative. False Negative (FN) refers to instances where the

model predicts a negative sample, while the actual sample is positive.

True Negative (TN) refers to instances where the model predicts a

negative sample that corresponds to the actual negative sample. The

calculation of Precision is presented in the following formula:

Precision =
TP

TP + FP
� 100% : (13)

The calculation of Recall is presented in the following formula:

Recall =
TP

TP + FN
� 100% : (14)

The calculation of F1-score is presented in the following formula:

F1 =
2� Precision� Recall
Precision + Recall

� 100% : (15)

The calculation of AP is presented in the following formula:

AP =
Z 1

0
P(R)dR� 100% : (16)

The calculation of mAP is presented in the following formula:

mAP =
o
N

i=1
APi

N
: (17)
3 Experimental results and analysis

3.1 Ablation experiment

Under the same experimental platform and test set conditions,

it was found that the baseline model, without improvement
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strategies, achieved a Precision of 83.5%, a Recall of 49.0%, and a

mean Average Precision (mAP@0.5) of 55.4%. After the RT-DETR

Head was switched in, the Precision of the model was increased to

84.0%, the Recall was raised to 58.0%, and the mAP@0.5 was

achieved at 56.1% indicating that the RTDETR Head had a

significant effect on enhancing detection capability. After the

addition of BiFPN and the integration of small target detection

layers, the Precision of the model was further improved to 85.6%,

while the Recall remained at 61.0%, and the mAP@0.5 was elevated

to 58.2%. This indicates that the integration of small target

detection layers within BiFPN significantly enhanced the ability of

the network to extract target features. Finally, after the Coordinate

Attention mechanism was incorporated, it was found that a

Precision 85.6%, a Recall of 62.0%, and a mAP@0.5 of 61.9%

were achieved by the model. This demonstrates that the YOLOv8

model, enhanced by the RT-DETR Head, the integrated small target

detection layers in BiFPN, and the addition of the Coordinate

Attention mechanism, exhibited significant improvements in target

feature extraction and detection capabilities, with a Precision

increase of 2.1%, a Recall increase of 13.0% and a mAP@0.5

increase of 6.5% compared to the baseline model. The size of the

baseline model was recorded as 21.4 MB. Although an increase in

model size was observed following the substitution of detection

heads, a notable reduction of 19.7% in model size was achieved after

the BiFPN and small target detection layers were incorporated. The

model size, after the addition of the Coordinate Attention

mechanism, remained 1.3 MB lower than that of the baseline

model, indicating that the integration of small target detection

layers within BiFPN effectively optimized model size. Additionally,

after CIoU was improved to Focaler-CIoU, enhancements in

Precision, F1-score, and mean Average Precision (mAP@0.5)

were observed without negatively impacting model size. The

experimental results are presented in Table 2.

Currently, various types of attention mechanisms are present in

the field of computer vision, but not every mechanism is capable of

positively impacting model performance. Therefore, multiple

mechanisms were compared during the selection process, and

EMA (Efficient Multi-Scale Attention), CPCA (Channel Prior

Convolutional Attention), SimAM (Simple Attention Module),

MLCA (Mixed Local Channel Attention), and Coordinate

Attention were chosen for experimentation. EMA is an efficient

multi-scale attention mechanism that converts some channels into

batch dimensions to preserve the information of each channel while

reducing the consumption of computational resources. The channel
TABLE 2 Ablation experiments.

DETR-Head P2+BiFPN CA Focaler-CIoU P R F1 mAP@0.5 Size (MB)

× × × × 83.5% 49.0% 61.8% 55.4% 21.4

✓ × × × 84.0% 58.0% 68.6% 56.1% 24.9

✓ ✓ × × 85.6% 61.0% 71.2% 58.2% 20.0

✓ ✓ ✓ × 85.6% 62.0% 72.0% 61.9% 20.1

✓ ✓ ✓ ✓ 86.2% 62.0% 72.1% 62.0% 20.1
✓ indicates that this improvement is used; × indicates that this improvement is not used.
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weights of each parallel branch are calibrated by encoding global

information, and cross-dimensional aggregation of the output

features from the two parallel branches is performed. CPCA

combines channel attention and spatial attention, aiming to

enhance feature representation and dynamically allocate attention

weights. Spatial information is effectively extracted through multi-

scale depthwise separable convolutions, while channel priors are

retained. SimAM, based on neuroscientific theories, proposes a

method to optimize the energy function to evaluate the importance

of each neuron, thereby inferring three-dimensional attention

weights for feature maps without increasing the original network

parameters. MLCA is a lightweight mixed local channel attention

mechanism that improves detection accuracy by combining

channel information and spatial information simultaneously. The

experimental results are presented in Table 3.

To more intuitively demonstrate the effects of attention

mechanisms, Grad-CAM (Selvaraju et al., 2017) was adopted to

output feature maps for visualizing the heat maps. The heat maps

generated by different attention mechanisms at the output layer of the

YOLOv8 network are shown in Figure 8. Figure 8A represents the

original image, while Figures 8B–F represent the heat maps after the

application of EMA, CPCA, SimAM, MLCA, and Coordinate

Attention, respectively. In the heat maps, areas with redder colors

indicate higher attention from the model toward those areas. From

Figure 8, it can be observed that the YOLOv8 model, with the

introduction of EMA and SimAM in Figures 8B, D, shows lower

attention toward the pineapple in the image, with fewer markings on

the heat map. Although Figures 8C, E have more marked regions, their

effectiveness in focusing on the pineapple is not ideal. In contrast,

Figure 8F, while having fewer marked areas, demonstrates significantly

higher attention toward the pineapple, with most marked regions

effectively focusing on it.
3.2 Comparison of loss values

Figure 9 shows the DFL loss and box loss generated by DPD-

YOLO and YOLOv8 during training and validation.

The x-axis represents the epoch, and the y-axis represents the

loss value. During training, both the training and validation loss

values of the model are observed to decrease as the number of

epochs increases, eventually stabilizing (Zhao et al., 2023a). From

the figure, it can be seen that the DFL loss and Box loss of DPD-
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YOLO on the validation set are both found to be lower than those of

YOLOv8 on the same set, which indirectly indicates that a stronger

learning ability is exhibited by DPD-YOLO in scenarios with dense

pineapples compared to YOLOv8.
3.3 Comparison of different
detection algorithm

To validate the superiority of the proposed DPD-YOLO in

detecting pineapples from a drone perspective, DPD-YOLO was

compared with other classic object detection algorithms, including

Centernet, Faster R-CNN, SSD, RetinaNet, and the YOLO series

versions v3, v5, X, v7, v8, v9, and v10. The comparison results are

presented in Table 4.

From Table 4, it can be seen that the highest Recall rate, mAP@

0.5 value, and F1-score are achieved by the proposed DPD-YOLO,

with a model size of 20.1MB, compared to other classic object

detection algorithms. Centernet is based on an anchor-free strategy,

where each target is represented by the center point of the object;

however, relatively low Recall rate and mAP@0.5 values are

observed in the pineapple detection task. Feature extraction,

candidate box generation, localization, and classification are

integrated in Faster R-CNN, but lower detection accuracy is

demonstrated on the dataset used in this study. As one-stage

algorithms, both SSD and RetinaNet are found to show

suboptimal detection accuracy in the complex pineapple field

environment. Among the algorithms in the YOLO series,

YOLOv3, YOLOv5, YOLO-X, YOLOv7, YOLOv9, and YOLOv10

are found to exceed 50% detection accuracy on the dataset used in

this study, with the exceptions of YOLOv7 and YOLOv10.

However, the larger model size of YOLOv3 is found to affect its

feasibility for transfer and deployment. Although YOLOv5 has the

smallest model size, lower F1-score and mAP@0.5 values are

observed compared to the proposed DPD-YOLO. Overall, the

experimental results indicate that the proposed DPDYOLO

outperforms other classic object detection algorithms in detection

performance, and good practicality is demonstrated.

In Figures 10A, C, E represent the detection results of YOLOv8

before improvements, while Figures 10B, D, F show the results after

improvements. A comparison reveals that a considerable number

of false positives and missed detections are exhibited by the original

YOLOv8 when identifying pineapples. In contrast, significant

improvements in detection performance are shown by the

improved YOLOv8 in the same areas, with both false positives

and missed detections being effectively reduced. The detection

results of YOLOv8 on drone images of pineapples before and after

the improvements are illustrated in Figure 10. Before the

enhancements, numerous false positives and missed detections

were encountered by YOLOv8 when faced with complex

backgrounds and occlusions, particularly when pineapples were

partially obscured by other plants, which significantly impacted

detection accuracy. After the improvements, a marked

enhancement in YOLOv8’s detection performance was observed,

especially in handling occlusion scenarios. More effective

recognition of pineapples, even when partially covered, was
TABLE 3 Comparison of the effects of different attention mechanisms.

Attention P R F1 mAP@0.5 Size
(MB)

EMA 85.2% 59.0% 69.8% 57.2% 20.1

CPCA 85.9% 55.0% 67.0% 54.5% 20.5

SimAM 86.5% 58.0% 69.4% 55.8% 20.0

MLCA 87.8% 60.0% 71.2% 57.0% 20.1

Coordinate
Attention

86.2% 62.0% 72.1% 62.0% 20.1
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achieved by the improved model. Greater robustness was exhibited

by the improved model, with high detection accuracy being

maintained in complex environments, thereby enhancing target

recognition capabilities. It is indicated that the DPD-YOLO

algorithm has a clear advantage in handling dense small targets

and complex backgrounds.
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4 Conclusions

A novel algorithm named DPD-YOLO is proposed in this study,

which has been designed to address the challenges of detecting

pineapples in aerial images of pineapple fields captured by drones,

where targets are small, densely distributed, and heavily occluded.
FIGURE 8

(A) represents the original image, (B–F), in turn, represents the effect of EMA, CPCA, SimAM, MLCA, and Coordinate Attention.
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Based on YOLOv8, the BiFPN module with smallobject detection

layers has been integrated to enhance themodel’s ability to fuse features

of small targets. Additionally, the Coordinate Attentionmechanism has

been introduced, and Focaler IoU has been employed to improve the

traditional CIoU, enabling a more accurate focus on pineapple targets

in complex backgrounds. Furthermore, the original detection head has

been replaced with RT-DETR, which utilizes self-attention and cross-

attention mechanisms to capture spatial positional information of the

targets more effectively. Experimental results have been presented,

demonstrating that DPD-YOLO has outperformed existing stateof-

the-art object detection methods across multiple evaluation metrics

such as Recall, F1, and mAP@0.5, showcasing exceptional

performance. Notably, the method has been shown to possess

remarkable capability in accurately identifying pineapples, even in

complex and occluded backgrounds, thereby confirming the

robustness and efficacy of the model.

However, the current dataset is relatively limited, particularly in

terms of coverage under different environmental conditions. Therefore,

future research should focus on the expansion of the dataset to include
FIGURE 9

Training validation results. (A) represents the Box Loss curve of YOLOv8 and DPD-YOLO training, (B) represents the DFL Loss curve of YOLOv8 and DPD-
YOLO training, (C) represents the Box Loss curve verified by YOLOv8 and DPD-YOLO, (D) represents the DFL Loss curve verified by YOLOv8 and DPD-YOLO.
TABLE 4 Performance comparison of different algorithms.

Method P R F1 mAP@0.5 Size (MB)

Centernet 85.5% 8.9% 16.1% 27.3% 124

Faster R-CNN 19.7% 4.75% 7.7% 2.0% 521

SSD 6.9% 0.2% 0.4% 0.7% 90.6

Retainnet 86.8% 0.7% 1.4% 1.56% 138

YOLOv3 86.9% 51.0% 64.3% 51.7% 198

YOLOv5s 83.3% 56.0% 67.0% 57.2% 13.7

YOLO-X 89.9% 41.8% 57.1% 57.6% 34.3

YOLOv7 64.8% 2.3% 4.5% 17.1% 142

YOLOv8 83.5% 49.0% 61.8% 55.4% 21.4

YOLOv9 84.2% 54.0% 65.8% 57.0% 19.3

YOLOv10 80.8% 43.0% 56.1% 42.0% 15.7

DPD-YOLO 86.2% 62% 72.1% 62.0% 20.1
The red font in the table represents the DPD-YOLO model proposed in this paper and its
related experimental results.
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data from various lighting conditions and weather scenarios, ensuring

that pineapple targets can be effectively detected by DPD-YOLO in

diverse and complex environments, thus further enhancing the

robustness and practicality of the model. Additionally, further
Frontiers in Plant Science 14
optimization of the network architecture is needed to reduce the

model size and the number of parameters, which will result in

improved performance for practical applications, while meeting the

requirements for real-time efficiency and high performance.
FIGURE 10

(A, C, E) represent the detection results of YOLOv8 before improvements, (B, D, F) show the results of DPD-YOLO.
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