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Optimizing crop management
strategies for improved yield,
water productivity, and
sustainability of quinoa in
shallow basaltic semi-
arid regions
Aliza Pradhan1*, Jagadish Rane1,2, P. S. Basavaraj1,
Neeraj Kumar1, Dhanashri Shid1, Nobin C. Paul1, K. K. Pal1

and K. Sammi Reddy1

1School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Pune,
Maharashtra, India, 2ICAR-Central Institute for Arid Horticulture, Bikaner, Rajasthan, India
Introduction: Recently, quinoa (Chenopodium quinoa Willd.) has gained global

recognition as a nutritious, adaptable crop suitable to adverse soil and climatic

conditions. However, knowledge about optimal management practices for its

cultivation in marginal areas of India is limited.

Methods: In this context, a field experiment was conducted in a split-split plot

design with four sowing dates (D1: 1st November; D2: 15th November; D3: 1st

December, D4: 15th December) in main plots, two irrigation levels (I1: 40% ETc; I2:

80% ETc) in sub-plots, and three nitrogen doses (N1: 100 kg N ha-1; N2: 150 kg N

ha-1; N3: 200 kg N ha-1) in sub-sub plots having three replications during 2021-22

and 2022-23 in shallow basaltic murram soils.

Results and discussion: Results indicated that sowing on 1st November yielded

the highest seed production of 1446 kg ha-1, as temperatures aligned closely with

optimal growth conditions. Quinoa's drought tolerance meant that deficit

irrigation was able to maintain the crop growth and yield. While the crop

responded positively to higher N doses, the study found that applying 100 kg

N ha-1 was optimal, considering shallow basaltic soil conditions and potential

lodging issues. Additionally, water productivity, protein, and saponin content

reflected similar trends to seed yield. The results suggested that early sowing,

irrigation at 40% ETc, and 100 kg N ha-1 produced a seed yield of 1446 kg ha-1,

demonstrating higher carbon efficiency and sustainability while minimizing N2O

emissions. However, these strategies should be tailored to specific agro-

ecological conditions. Overall, the findings confirm quinoa’s potential for

cultivation in India’s 26 million hectares of shallow basaltic murram soils,

where other crops may not thrive economically.
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1 Introduction

Recently, global agriculture has been emphasized by adopting

climate-resilient and environmentally sustainable practices while

aiming to reduce low greenhouse gas and carbon emissions.

However, the dilemma lies between feeding a growing population

and depletion of its natural resource base, particularly in water-

scarce environments of semi-arid and arid regions. In emerging

economies experiencing population growth like India, there is an

urgent need to address food and nutrition demands amid climate

variability (Srivastava et al., 2022). In this context, encouraging

climate-smart, nutritious crop production systems is crucial for

providing accessible, affordable, safe, and nutritious diets for

communities. In recent years, quinoa (Chenopodium quinoa

Willd.) has been gaining global attention as a highly nutritious

agro-industrial crop, capable of thriving in adverse soil and climatic

conditions (Fuentes and Bhargava, 2011; Hinojosa et al., 2018;

Langyan et al., 2023). Due to its stress tolerance mechanism and

minimal water requirement (300–400 mm), the crop is considered

highly suitable for marginal areas of arid and semi-arid regions

(Bhargava et al., 2006). Compared to dominant cereals such as rice,

wheat, and maize, quinoa stands out as a gluten-free pesudocereal 1

rich in protein (13%–17%), well-balanced amino acids, essential

vitamins, minerals, and bioactive compounds (Sindhu and Khatkar,

2019). Although quinoa's outer seed coat contains the bitter toxic

compound saponin (0.1%–5%), which must be removed before

consumption, it has significant industrial value due to its diverse

biological activities, including antifungal, antiviral, anticancer,

hypocholesterolemic, hypoglycemic, antithrombotic, diuretic, and

anti-inflammatory effects (Vilcacundo and Hernández-Ledesma,

2016). Quinoa's resilience and superior nutritional profile have

positioned it as a promising crop to combat silent hunger and

malnutrition while reducing the global food environmental

footprint (FAO, 2011). Further, cultivation of the crop demands

minimal investment, and its yield potential could enhance farmers'

profitability and resilience in climate change-affected environments.

Since the United Nations' declaration of the International Year

of Quinoa in 2013, there has been a rapid expansion in the

cultivated area dedicated to this crop, shifting perceptions and

elevating its status from a minor to a potentially major crop

(Bazile et al., 2016). With the expansion of quinoa cultivation to

over 120 countries, most of the scientific studies have focused on

location-specific technological aspects of crop production. While

quinoa is well-suited to a variety of agro-climatic conditions,

identifying the optimal planting date is crucial for successful

cultivation in a given region. Most studies have suggested that the

sowing window from October to December is ideal, with November

being the optimal planting month in arid and semi-arid regions

(Ramesh et al., 2019; Maamri et al., 2022). However, a few studies

have highlighted January (Asher et al., 2020), as well as March–
1 The quinoa plant produces starchy seeds that resemble grains and are

prepared and consumed in a similar manner, although botanically, it is

classified as a dicotyledon.
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May, as preferable sowing windows for the crop (Taaime et al.,

2023). Additionally, the stabilization of quinoa yields through

deficit irrigation has been emphasized in studies by Garcia et al.

(2003), Geerts et al. (2008); Pathan et al. (2023), and Mirsafi et al.

(2024). Regarding nitrogen fertilization, research indicates an

optimal nitrogen rate ranging from 90 kg N ha−1 to 225 kg

N ha−1, depending on cultivar, management practices, and soil

and environmental conditions (Kaul et al., 2005; Salim et al., 2019;

Berti et al., 2000; Wang et al., 2020; Keshtkar et al., 2022). However,

a positive increase in seed yield with higher irrigation levels

combined with increased nitrogen doses has been reported by

Bahrami et al. (2022) and AbdElgalil et al (2023). Further,

Bhargava et al. (2006) highlighted quinoa's potential for both

agricultural and industrial applications, particularly in India.

Given that a substantial portion of the Indian population lacks

access to protein-rich diets, quinoa's proteinaceous seed could

significantly contribute to addressing hunger. The study also

emphasized exploring the commercial potential of the crop for

product development and marketing. However, to date, there have

been limited developments in terms of quinoa's adaptation in India,

despite the country's arid and marginal environments.

Edaphic constraints, such as shallow (26.4 million ha) and low-

fertility soils (49.7 million ha), particularly in water-scarce and

drought-prone agro-ecologies of peninsular India (Minhas and Obi

Reddy, 2017), highlight the need for alternative crop-based

interventions. Hence, this study was conducted to explore quinoa

production techniques focusing on optimizing the sowing date,

irrigation, and nitrogen management to ensure successful quinoa

production in water-scarce marginal environments. The specific

objective of our study was to assess the impact of these crop

management strategies on quinoa yield, water productivity,

quality, and environmental sustainability in shallow basaltic semi-

arid regions.
2 Materials and methods

2.1 Study site

The field experiment was carried out during 2021–2022 and

2022–2023 at ICAR-National Institute of Abiotic Stress

Management (NIASM), India (18°09′30.62″ N latitude and 74°30′
30.08″ E longitude, altitude of 570 m above mean sea level)

(Figure 1). The site falls within the hot semi-arid agro-ecological

region in the Deccan Plateau of India, known for its extremely high

temperatures, unpredictable rainfall patterns, and extended periods

of dry weather (Pradhan et al., 2023). Its long-term average annual

rainfall is 576 mm, 70% of which occurs during June–September as

southwest monsoons and 21% during October–December as

retreating monsoons. The average values for temperature

(maximum and minimum), relative humidity (maximum and

minimum), and total rainfall and open pan evaporation during

the crop growing periods (November–March) were 30.8°C and

15.7°C, 84% and 39%, and 8.2 and 23.0 mm during 2021–2022 and

31.5°C and 14.3°C, 79.9% and 30.4%, and 7.8 mm and 25.1 mm
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during 2022–2023, respectively (Automatic Weather Station, ICAR-

NIASM). The details of the weather parameters are provided in

Supplementary Table 1. The soil of the experimental site is

originated from parental basaltic rocks and characterized as

shallow murrum (up to 40-cm depth) with 30% stones (>2 mm):

69% sand, 21% silt, 10% clay, and 5% available moisture holding

capacity. At the beginning of the experiment, the pH (1:2.5 soil:

water), electrical conductivity (EC), Walkley–Black carbon (C),

KMnO4 oxidizable nitrogen (N), 0.5 M NaHCO3 extractable

phosphorous (P), and 1 N NH4OAc extractable potassium (K)

were 7.2, 0.18 dS m−1, 0.14%, 98.32 kg ha−1, 2.51 kg ha−1, and 207 kg

ha−1, respectively.
2.2 Experimental details and
crop management

The experiment was laid out in a split-split plot design with four

sowing dates (D1, November 1; D2, November 15; D3, December 1,

D4, December 15) in main plots, two irrigation practices (I1, 40%

ETc; I2, 80% ETc) in sub plots, and three nitrogen doses (N1, 100 kg

N ha−1; N2, 150 kg N ha−1; N3, 200 kg N ha−1) in sub-sub plots

having three replications (Supplementary Figures 1, 2). The

nitrogen quantity was applied in two splits: 50% as basal and 50%

during the flowering period. The P and K doses (i.e., 60 kg ha−1)

were applied as basal in all the treatments. The experiment was

initiated in November 2021 using the quinoa accession "Jaipur
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Local", manually sown at a seed rate @ 5 kg ha−1 with 45 cm × 15 cm

spacing. Sowing was established by dibbling five to six seeds per

pocket in the soil to a depth of 1–2 cm. The gross and net plot areas

under each treatment were 9 × 5 m and 7.5 × 4 m, respectively. To

avoid border and interaction effects, a buffer area of 1.5 m was left

between experimental units. Irrigation to the crops was provided via

surface drip irrigation (having a discharge rate of 4 L h−1 through

16-mm laterals having inline emitters), and the crops were irrigated

based on the actual crop evapotranspiration (ETc) approach. The

crop ETc was computed using the following equation (Equation 1):

ETc(mm) = Kp � Kc � Epan (1)

where Kp is the pan coefficient (0.70), Epan is the cumulative pan

evaporation (mm), and Kc is the crop-specific coefficient. The Kc

values for quinoa as reported by Garcia et al. (2003) were

considered in our study. One common irrigation of 30 mm was

provided after sowing for uniform germination and crop stand

establishment. Scheduling of later irrigations was conducted as per

the treatment, i.e., at 40% and 80% ETc to quinoa. The total quantity

of water applied through drip irrigation to the cropping systems in

both the study years is given in Supplementary Table 2. All

recommended crop-specific packages and practices of weeding,

intercultural operations, and disease pest management were

strictly followed.

When the seeds matured and plants started drying, all the

morphological and yield attributing parameters were measured

from a total of 10 plants per treatment. The shoots (only stem
FIGURE 1

Location map of the study site.
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and leaves) and roots were oven-dried at 60°C for 48 h to determine

the respective dry matter content. The crops were manually

harvested using sickles as they matured, followed by sun drying

for 7 days. The dried panicles for each experimental plot were

threshed and winnowed manually. Seed yield was recorded at 12%

moisture content, while the stover was oven-dried at 60°C until

constant weight was obtained and then expressed as kg ha−1 for

respective treatments.
2.3 Water productivity

Water productivity (WP) was calculated using the following

equation (Equation 2).

WP(kg m−3) =
  Economic yield(kg ha − 1)

  Total water applied(m3   ha − 1)  
(2)
2.4 Phenology and growing degree days

The phenological developments, viz., 50% germination, 50%

visible bud, 50% flowering, and 50% maturity were recorded as and

when at least 50% of the plants were showing the indications in the

whole plot. Days to maturity was calculated from the date of

emergence to the date when the crop was harvested.

Growing degree days (GDD) was calculated based on the

following formula (Equation 3):

GDD = ½(Tmax + Tmin)=2� − Tbase (3)

where Tmax is the maximum temperature, Tmin is the minimum

temperature, and Tbase is the base temperature, which was 3°C for

quinoa (Jacobsen and Bach, 1998).
2.5 Protein and saponin contents in quinoa
seed and husk

The seed protein content was determined using the Kjeldahl

method of N estimation from plant samples with a conversion factor

of 6.25. The seed protein content was then multiplied with the seed

yield to estimate the protein yield under corresponding treatments.

The total saponin content of quinoa seed and husk was estimated

following the colorimetric determination procedure reported by Hiai

et al. (1976). All quinoa samples were ground with a blender and

passed through 1-mm sieve. Then, 10 g of each sample powder was

dissolved in 40 mL of 25% ethanol and kept in a mechanical shaker

for 12 hrs. Then, 0.5 mL of vanillin solution was added to 0.5 mL of

aqueous ethanol sample, followed by the addition of 5 mL of 72%

sulfuric acid and mixed in an ice-water bath. The mixture was then

warmed in the bath at 60°C for 10 minutes, followed by cooling in an

ice-water bath. A water blank with the reagents was also made.

Absorbance at 450 nm was recorded against the blank with the

reagents using a spectrophotometer. Quillaja saponin was used as a
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standard, and the total saponin content was expressed as g 100 g−1 of

dry weight.
2.6 Carbon budgeting, efficiency,
sustainable index, and nitrous
oxide emissions

The total C input and output were determined by adding the

carbon equivalents of all inputs and outputs during crop production.

Carbon equivalents (CE) of all inputs, operational activities, and

processes were combined to estimate the source-wise contribution to

C input (Supplementary Figure 3; Supplementary Table 3). Similarly,

the C output of each cropping system was quantified using

methodologies provided by Choudhary et al. (2017) and Equation 4.

Carbon output(kg CE ha−1)

= Total biomass(seed + stover)yield in kg ha−1 � 0:44 (4)

considering that C content accounts for 44% of the total plant

biomass as given by Lal (2004).

Carbon efficiency, an indicator of total C production over the

total input C, was calculated as follows (Equation 5).

Carbon efficiency =
 Total C output(kg CE ha − 1)
Total C input(kg CE ha − 1)  

(5)

Carbon sustainability index (CSI) was estimated as the net gain

in C over the total C input as given by Lal (2004) and Choudhary

et al. (2017) and depicted in Equation 6.

CSI =
  (Total C output − Total C input)

Total C input
(6)

Carbon footprint (CF): Carbon footprints of the cropping

systems indicated the total greenhouse gas (GHG) emissions in

terms of kg CE ha−1 to produce 1 kg of the economic product and

was computed as per Equation 7 as suggested by Yadav et al. (2021).

CF =
Total carbon input(kg CE ha − 1)

Economic yield(kg ha − 1)  
(7)

Estimation of nitrous oxide (N2O) emission included both

direct and indirect emissions. As direct N2O emission is

proportional to the amount of N applied, direct N2O emission

was computed using Equation 8.

Direct N2O(kg CO2 − eq ha−1)

= Quantity of N fertilizer(kg ha−1)� 0:016� 1:571� 298 (8)

where 0.016 is the default emission factor for N fertilizer

application, 1.571 is the conversion factor used to convert N2 to

N2O, and 298 is the global warming potential (GWP) of N2O

concerning CO2.

Similarly, indirect N2O emissions included loss of N fertilizer in

the form of volatilization and were calculated using the

Intergovernmental Panel on Climate Change (IPCC) guidelines of

Tier 1 and Equation 9.
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Indirect N2O(kg CO2 − eq ha−1)

= Quantity of N fertilizer(kg ha−1)� 0:1� 0:010� 1:571� 298

(9)

where 0.1 is the fraction used for volatilization, 0.010 is the

default emission factor used for volatilization, 1.571 is the

conversion factor used to convert N2 to N2O, and 298 is the

GWP of N2O concerning CO2.
2.7 Statistical analysis

The recorded data were statistically analyzed using analysis of

variance (ANOVA) for split-split plot design using the "Agricolae"

package of R (R Development Core Team, 2015). A mixed model was

used considering sowing date as the main plot factor, irrigation as sub

plot factor, and nitrogen management as the sub-sub plot factor and

analyzed in a split-split plot design. Since no major differences were

observed among the treatments for the recorded observations, the

results were averaged for 2021–2022 and 2022–2023. The F-test and

least significant difference (LSD) (p < 0.05) were used to decipher the

significance of the means of treatments and their interactions.
3 Results

3.1 Quinoa phenology

The impact of different sowing dates on quinoa's growth

duration, developmental stages, and corresponding temperature

ranges is illustrated in Figure 2. For sowing on November 1, the
Frontiers in Plant Science 05
vegetative stage continued for 38 days after sowing (DAS), with

temperatures ranging from a maximum of 27.35°C to 31.45°C and a

minimum of 12.45°C to 19.1°C. The flowering period extended over

22 days, with temperatures reaching a maximum of 27.9°C to 31.4°

C and a minimum of 11.25°C to 18.2°C. The seed-filling and

maturity stages began at 60 DAS and continued for 33 days,

resulting in a total crop duration of 99 days. During this phase,

maximum temperatures ranged from 28°C to 31.5°C, while

minimum temperatures ranged from 10.35°C to 14.9°C. Sowing

on November 15 reduced the total crop duration by 1 week

compared to November 1. The vegetative stage lasted 35 days,

with a wider window for flowering (30 days). The seed-filling and

maturity stages started at 65 DAS and lasted for 33 days.

Temperatures during these stages were as follows: vegetative stage

(27.35°C to 31.8°C maximum and 11.25°C to 19.1°C minimum),

flowering stage (28°C to 31.4°C maximum and 11°C to 16.05°C

minimum), and seed-filling and maturity stages (27.15°C to 32.1°C

maximum and 10.35°C to 14.5°C minimum), respectively. Sowing

in December resulted in a longer flowering period (35–40 days) and

shorter seed-filling and maturity periods (20–23 days). During the

seed-filling and maturity phases, temperatures were notably higher:

31.3°C to 34.85°C maximum and 11.6°C to 15.25°C minimum for

December 1 sowing and 31.25°C to 35.25°C maximum and 14.5°C

to 19.15°C minimum for December 15 sowing.
3.2 Cumulative growing degree days

For cumulative growing degree days (CGDD), the highest

accumulation was observed for the earliest sowing date,
FIGURE 2

Effect of date of sowing on quinoa phenological stages. (a) November 1, (b) November 15, (c) December 1, and (d) December 15.
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November 1, with 1,900.40°C (Table 1). Sowing on November 15,

December 1, and December 15 resulted in lower CGDD values of

1,785.30°C, 1,661.75°C, and 1,789.25°C, respectively.
3.3 Plant height, dry matter accumulation,
and yield attributes

Sowing date and nitrogen levels showed significant effects (p <

0.05) on quinoa height, dry matter accumulation, and yield

attributes (Table 2). The maximum plant height (113.67 cm) was

obtained during the November 1 sowing. Height decreased by 7%–

20% with later sowing dates, reaching a minimum (91.28 cm) for

sowing on December 15. A similar trend was seen for both shoot

and root dry matter, ranging from 11.39 to 72.43 g plant−1 and 3.52

to 8.69 g plant−1, respectively. Among the yield attributes, sowing

on November 1 produced the maximum panicle weight, panicle

length, seed weight, and husk weight, which were 2.6, 1.7, 7.2, and

2.7 times, respectively, than those from December 15 sowing

(19.05 g plant−1, 18.24 cm plant−1, 10.15 g plant−1, and 4.70 g

plant−1). However, irrigation levels did not significantly affect these

parameters except panicle length, which was 8.8% higher in 80%

ETc than in 40% ETc (22.93 cm plant−1) (Table 2). Among the

nitrogen doses, the highest mean values for plant height, shoot dry

matter, and yield attributes were achieved with N3 (200 kg N ha−1)

and the lowest with N1 (100 kg N ha−1). The application of 150 kg N

ha−1 was significant as compared to 100 kg N ha−1 only for shoot

dry matter and seed weight. The maximum seed weight was

observed under N3, which was 33% higher than that under N2

(39.25 g plant−1) and 56% higher than that under N1 (33.40 g

plant−1). The seed weight of N2 was 18% higher than that of N1 (p <

0.05). Husk weight was significantly higher for November sowing

(12. 8 g plant−1) and for 200 kg N ha−1 (11.95 g plant−1) (p < 0.05).

The 1000-seed weight of quinoa ranged from 2.22 to 2.74 g, with

plots sown in November recording a 17% higher value than that of

December sown plots (2.2 g) (p < 0.05). Similarly, providing

irrigation at 80% ETc and 200 kg N ha−1 reported 10% and 7%

higher 1000-seed weight than 40% ETc (2.35 g) and 100 kg N ha−1

(2.39 g), respectively.
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3.4 Quinoa seed yield and
water productivity

The seed yield was significantly higher in plots sown on

November 1 (1,446 kg ha−1), which was reduced by 50% for

sowings on November 15 and December 1 sowing, and the lowest

yield was recorded for December 15 sowing (345.61 kg ha−1) (p <

0.05) (Figure 3). There were no differences in seed yield between the

two irrigation levels. However, nitrogen levels had a significant

effect on quinoa seed yield (p < 0.05) with maximum values under

N3 (916.58 kg ha
−1) and N2 (815.04 kg ha

−1), with the latter being at

par with N1 (723.50 kg ha−1).

The water productivity of quinoa production ranged from

0.85 kg m−3 to 0.18 kg m−3 for our study (Figure 4). Water

productivity was maximum for November 1 sowing (0.85 kg

m−3), followed by November 15 (0.52 kg m−3) and December 1

(0.37 kg m−3), and minimum for December 15 (0.18 kg m−3).

Providing irrigation at 40% ETc was 69.38% higher water

productive than that at 80% ETc (0.36 kg m−3). However, water

productivity was not significantly influenced by the nitrogen levels.
3.5 Quinoa protein and saponin content

Since the treatment had no significant effect on seed protein

content, the system protein yield followed a similar trend as that of

seed yield (Supplementary Table 4; Supplementray Figure 4). Seed

and husk saponin contents evaluated in the current study ranged

from 0.51 to 1.26 g per 100-g dry weight and 0.64 to 1.67 g per

100-g dry weight, respectively (Figure 5). The seed saponin

content was 19% higher in November sown crops than in the

December 1 sowing (1.01 g 100 g−1 dry weight). However, the

minimum saponin content of 0.51 g 100 g−1 dry weight was

reported for the December 15 sowing. Similarly, providing

irrigation at 40% ETc had 39% lower saponin as compared to

that under 80% ETc (1.26 g 100 g
−1 dry weight). The application of

a higher dose of N increased the seed saponin content with N1

having the lowest value (0.77 g 100 g−1 dry weight), followed by N2

(1.06 g 100 g−1 dry weight) and N3 (1.21 g 100 g
−1 dry weight). The
TABLE 1 Cumulative growing degree days (CGDD in °C) of different phenological stages for different sowing dates in quinoa.

Quinoa phenological stages November 1 November 15 December 1 December 15

(CGDD in °C)

50% germination 208.05 331.33 155.58 96.85

50% visible buds 868.28 698.46 670.31 595.25

50% flowering 1,021.73 925.41 936.19 1,031.38

50% maturity 1,486.01 1,377.26 1,339.44 1,434.38

Harvesting 1,900.40 1,785.30 1,661.75 1,789.25

Crop duration (days) 99 93 87 91
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saponin content of husk was higher than that of seed with

irrigation levels having a significant impact, following a similar

trend to that of seed saponin content. Delayed sowing, i.e., on

December 15, also reported a reduced husk saponin content than

the rest of the sowing dates.
3.6 Carbon budgeting, efficiency, and
sustainability index

Averaged over 2 years, the carbon budgeting and related indices

differed among the treatments (Table 3). Early sowing dates, i.e.,

November 1 sowing (D1), had the lowest C footprint (0.19 kg CE

kg−1 seed) and the highest C efficiency (3.69) and were more

sustainable (CSI, 2.69) (p < 0.05). This may be due to improved

biomass production leading to higher C output (1,018.26 kg CE ha−1)

and moderate C input (276 kg CE ha−1) in S1. Sowing during

December 15 (D4) resulted in the highest C footprint (0.80 kg CE

kg−1 seed) and the lowest C efficiency (0.88) and was not sustainable

(CSI, −0.12), which was due to significantly less C output (243.31 kg CE

ha−1) as proportionate to the quantity of C input (279.53 kg CE ha−1).

Similarly, irrigating the crop at 40% ETc proved to be more C efficient

and sustainable as compared to irrigating them at 80% Etc. Among the

nitrogen levels, the application of 100 kg N ha−1 (N1) registered the

lowest C footprint (0.33), higher C efficiency (2.14), and CSI (1.14),

which was comparable to N2, i.e., 150 kg N ha−1. However, higher N

levels, i.e., application at 200 kg ha−1 (N3), resulted in higher C output
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(632.07 kg CE ha−1) but at the cost of efficiency and increased C

footprint; therefore, they were less sustainable (CSI, 0.86).
3.7 Nitrous oxide emissions

Among the treatments, N2O emissions (both direct and

indirect) were significantly influenced only by N levels (Figure 6).

The N2O emissions increased with the applied N fertilizer dose. The

application of 200 kg N ha−1 had maximum direct (1,497.15 kg

CO2-eq ha−1), indirect (93.57 kg CO2-eq ha−1), and total (1,590.72

kg CO2-eq ha
−1) N2O emissions, followed by 150 and 100 kg N ha−1

(p < 0.05).
4 Discussions

Optimizing production technology is essential for achieving the

highest economic returns from any crop introduced to a new agro-

ecological region. In this study, we evaluated how various sowing

dates, irrigation regimes, and nitrogen management strategies

affected quinoa yield, water productivity, and quality in shallow

basaltic regions with a semi-arid climate. Our findings indicated

significant differences in these parameters under different

management scenarios. Although quinoa has the potential to

tolerate a wide range of temperatures (−8°C to 35°C), this

tolerance varies depending on the genotype and developmental
TABLE 2 Effect of sowing date, irrigation, and nitrogen levels on quinoa plant height, dry matter accumulation, and yield attributes.

Treatments Plant
height
(cm)

Shoot dry
matter
(g plant−1)

Root dry
matter
(g plant−1)

Panicle
weight
(g plant−1)

Panicle
length
(cm plant−1)

Seed
weight
(g plant−1)

Husk
weight
(g plant−1)

1000-
seed
weight (g)

Date of sowing (D)

D1: November 1 113.6 a 72.4 a 8.7 a 49.8 a 30.9 a 73.1 a 12.8 a 2.7 a

D2:
November 15

104.8 b 64.5 a 7.9 a 33.3 b 23.7 b 46.4 b 12.6 a 2.6 a

D3: December 1 98.0 c 50.3 b 7.2 a 26.6 c 22.9 b 32.8 b 9.4 ab 2.3 b

D4:
December 15

91.3 d 11.3 c 3.5 b 19.1 d 18.2 c 10.2 c 4.7 b 2.2 b

LSD (p < 0.05) 5.38 11.17 1.59 6.05 3.49 13.71 5.01 0.19

Irrigation levels (I)

I1: 40% ETc 102.1 a 46.8 a 6.3 a 21.3 a 22.9 b 39.7 a 9.3 a 2.4 b

I2: 80% ETc 106.8 a 52.6 a 7.3 a 12.3 a 24.9 a 41.5 a 10.4 a 2.6 a

LSD (p < 0.05) NS NS NS NS 1.89 NS NS 0.10

Nitrogen levels (N)

N1: 100 kg ha−1 99.5 b 36.2 c 6.0 b 26.6 b 23.3 b 33.4 c 8.1 b 2.4 b

N2: 150 kg ha−1 103.7 ab 47.4 b 6.0 b 30.6 b 23.7 ab 39.3 b 9.5 b 2.4 b

N3: 200 kg ha−1 104.2 a 65.4 a 8.6 a 39.3 a 24.8 a 52.2 a 12.0 a 2.6 a

LSD (p < 0.05) 4.52 4.41 1.46 5.42 1.37 7.39 2.27 0.12
Means followed by different lowercase letters within a column are significantly different at p < 0.05 according to LSD test.
LSD, least significant difference.
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stages. A sudden increase in temperature during the critical stages

of the crop, i.e., flowering and seed filling, can significantly reduce

yield and poses a major limitation to quinoa's global expansion

(Dao et al., 2020). High temperatures at anthesis are crucial for

quinoa pollination and can reduce pollen production and viability

(Jacobsen et al., 2003). Temperatures above 35°C leading to

substantial yield reductions due to empty seeds and seeds lacking

inflorescence, reabsorption of quinoa seed endosperm, and
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inhibition of anther dehiscence has been reported by Bonifacio

(1995). Even temperatures above 30°C hinder quinoa growth and

productivity by reducing photosynthetic activity, flowering rates,

and seed filling, leading to lower yields, as has already been

highlighted by Hirich et al (2014). In our study, the average

temperatures during critical growth stages for November 1

sowing were close to quinoa's optimal growth range (20°C–25°C),

which may have led to better phenological development, growth,
FIGURE 3

Effect of date of sowing, irrigation, and nitrogen levels on quinoa seed yield (kg ha−1). Vertical bars represent mean ± SE of the observed values.
Values followed by different lowercase letters are significantly different at p < 0.05 within the treatment levels according to LSD test. LSD, least
significant difference.
FIGURE 4

Effect of date of sowing, irrigation, and nitrogen levels on quinoa water productivity (kg m−3). Vertical bars represent mean ± SE of the observed
values. Values followed by different lowercase letters are significantly different at p < 0.05 within the treatment levels according to LSD test. LSD,
least significant difference.
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and yield. These findings are in agreement with Choukr-Allah et al.

(2016) and Alvar-Beltrán et al. (2019). For early sowing dates

(November 1 and 15), the maximum temperatures recorded were

approximately 30°C during the anthesis, seed-filling, and maturity

stages. However, December sowing experienced higher

temperatures (34°C–35°C) during these stages, resulting in
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decreased yield and water productivity due to a shortened life

cycle, with earlier flowering and improper seed maturation

(Maestro-Gaitán et al., 2022; Matıás et al., 2021). The temperature

variations observed during this time of year and at this location

were typical of tropical semi-arid zones. The length of the growing

period varied with sowing dates, with the longest period occurring
FIGURE 5

Effect of date of sowing, irrigation, and nitrogen levels on saponin contents of quinoa seed and husk (g 100 g−1 dry weight). Vertical bars represent
mean ± SE of the observed values. Values followed by different lowercase letters are significantly different at p < 0.05 within the treatment levels
according to LSD test. LSD, least significant difference.
TABLE 3 Effect of date of sowing, irrigation, and nitrogen levels on carbon input–output parameters.

Treatments Total C output
(kg CE ha−1)

Total C input
(kg CE ha−1)

Carbon footprint
(kg CE kg−1 seed)

Carbon
efficiency

Carbon sustainability
index (CSI)

Date of sowing (D)

D1: November 1 1,018.2 a 276.0 a 0.2 c 3.7 a 2.7 a

D2: November 15 541.3b 274.0a 0.4b 1.9b 0.9b

D3: December 1 501.7b 276.2a 0.4b 1.9c 0.9c

D4: December 15 243.3c 279.5a 0.8a 0.9d −0.1d

LSD (p < 0.05) 48.70 NS 0.05 0.03 0.06

Irrigation levels (I)

I1: 40% ETc 526.6a 254.7b 0.3b 2.2a 1.2a

I2: 80% ETc 625.2a 286.7a 0.4a 1.9b 0.9b

LSD (p < 0.05) NS 15.70 0.01 0.01 0.01

Nitrogen levels (N)

N1: 100 kg N ha−1 452.1b 210.9c 0.3b 2.1a 1.1a

N2: 150 kg N ha−1 573.8a 275.5b 0.3b 2.1ab 1.1ab

N3: 200 kg N ha−1 632.1a 340.6a 0.4a 1.9b 0.9b

LSD (p < 0.05) 67.32 21.50 0.02 0.03 0.01
Means followed by different lowercase letters within a column are significantly different at p < 0.05 according to LSD test.
LSD, least significant difference.
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when sown on November 1 (99 days) and the shortest when sown

on December 1 (87 days). This growing period was shorter

compared to that observed in subtropical regions, which had

durations of 169 and 134 days (Hassan, 2015; Präger et al., 2018).

Regarding CGDD, the values reported in our study were

comparable to those for similar agro-climatic regions (Präger

et al., 2018). A higher accumulation of degree days among early

sown plants of quinoa was also reported by Alvar-Beltrán

et al. (2019).

In terms of irrigation, there was no significant difference in seed

yield between 80% and 40% of crop evapotranspiration (ETc), as

quinoa, being drought-tolerant, can thrive with limited water

availability. By limiting water applications, this practice aims to

enhance the water productivity and stabilize yields rather than

maximize them (Geerts and Raes, 2009) and has been well

investigated as an important and sustainable practice for arid and

semi-arid regions (Garcia et al., 2003; Geerts et al., 2008). In

contrast, other reports indicate that deficit irrigation can reduce

seed yield by up to 50% compared to full irrigation (Hirich et al.,

2012, Hirich et al., 2013). The variable response of irrigation on

quinoa seed yield may be attributed to genotypes, soil, climate, and

other crop management practices. However, crop WP ranged from

0.18 to 0.85 kg m−3 and was 67% higher under 40% ETc compared

to 80% ETc (0.36 kg m−3). These findings align with the results

reported by Fghire et al. (2013), confirming quinoa's high water use

efficiency under drought-stress conditions. Quinoa's physiological

responses to drought include rapid stomatal closure, sunken

stomata, restricted root growth, and accelerated leaf senescence,

which contribute to its adaptability in dry environments (Jacobsen

et al., 2003).

Nitrogen is a well-known key factor influencing total plant

biomass. However, optimizing crop yields with increased nitrogen

rates depends on factors such as soil type, location, and
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management practices. In our study, significant differences were

observed in various crop morphological traits, yield attributes, and

seed yield between nitrogen rates of 100 kg ha−1 and 200 kg ha−1.

However, both these doses were comparable to the moderate dose

of 150 kg ha−1. Since the seed yield at 100 kg N ha−1 was at par with

that of 150 kg N ha−1, indicating no proportional yield increase with

an additional 50 kg N ha−1 application, 100 kg N ha−1 was

considered optimal for our study. No differences in crop water

productivity were found at higher nitrogen applications (150 and

200 kg ha−1) likely due to lower yield gain in proportion to the

amount of water applied. Further, crop lodging (personal

observation) occurred in plots receiving 200 kg N ha−1, likely due

to increased plant biomass and the shallow soil depth at the study

site, which restricted root growth and hindered proper anchorage.

Similar reports of crop lodging with higher doses of N application

were also reported by Wang et al. (2022). Our findings also align

with reports from Kaul et al. (2005) and Shams (2012), which

indicate that while quinoa yields and biomass increase with higher

nitrogen application, they stabilize at a specific dosage for a given

agro-ecological condition. In semi-arid regions, where water and

nitrogen are crucial limiting factors, maintaining a well-developed

crop canopy under full irrigation with high nitrogen doses is not

sustainable. Therefore, leveraging the combined benefits of limited

soil fertility and deficit irrigation can create a more effective

strategy. Thus, for shallow basaltic regions using deficit irrigation,

recommending a nitrogen application rate of 100 kg ha−1 will have

optimum economic yield.

The 1000-seed weight observed in this study (2.22–2.74 g) is

comparable with findings from other field studies (Tan and Temel,

2018) but lower compared to ranges reported for the Andean

regions (3.0 g–4.7 g) (Miranda et al., 2012), which may be due to

difference in terms of genotypes and pedo-climatic conditions. In

general, early sowing is conducive to better seed filling and seed
FIGURE 6

Nitrous oxide (N2O) emissions as affected by nitrogen levels. Means followed by different lowercase letters are significantly different at p < 0.05
according to LSD test. LSD, least significant difference.
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weight compared to late sowing. Therefore, the lower seed weight

under late sowing dates can be attributed to the shortened seed-

filling phase, where increased temperatures and longer

photoperiods likely played significant roles. Other studies have

also reported reduced 1000-seed weight due to limited irrigation

and lower nitrogen application (Hirich et al., 2014b; Shams, 2018).

Further, the seed and husk saponin content in our study falls within

the range typically reported for quinoa (Pulvento et al., 2012; De

Santis et al., 2016). The decrease in seed saponin content with

delayed sowing may be related to the length of the crop growing

period. Short-duration quinoa genotypes with lower seed saponin

content (0.62 g 100 g−1 DM) were found to have less saponin

compared to long-duration genotypes with higher content (1.92 g

100 g−1 DM), as noted by Oustani et al. (2023). Studies also reported

that quinoa under water-deficit conditions tends to have lower

saponin content, indicating better quality (Soliz-Guerrero et al.,

2002; Gómez et al., 2011), which aligns with our results on irrigation

levels. Further, saponin content with a positive and significant

relationship with N dose has already been reported by Bilalis

et al. (2012) and González et al. (2020).

Considering the impact of climate change and human-induced

greenhouse gas emissions, promoting crop management practices

that are more efficient and sustainable with minimal carbon

footprints is essential (Yadav et al., 2021). The carbon input–

output parameters reported in this study revealed that the early

date of sowing, irrigation at 40% ETc, and the application of N @

100 kg ha−1 were more C efficient and sustainable. This may be

attributed to lesser emissions from irrigation and nitrogen coupled

with higher proportionate C output. Similarly, the N2O emissions

(both direct and indirect) increased in proportion to nitrogen

fertilizer application. A significant and positive correlation of N2O

emissions with N fertilizer application under drip irrigation was

also reported by Kumar et al. (2021). Therefore, implementing

optimal water and nutrient management strategies could stabilize

N2O emissions while enhancing the carbon footprint and efficiency

of quinoa production in shallow basaltic regions.

5 Conclusion

In shallow basaltic semi-arid regions, sowing quinoa on

November 1, i.e., when temperatures align more closely with

optimal quinoa growth conditions, can enhance crop biomass,

yield, and water productivity. Higher temperatures during critical

growth stages, i.e., anthesis and seed filling, and a short growing

cycle are among the factors that reduced quinoa's yield in late

November and December sowing. Therefore, planning agricultural

activities, particularly through a well-planned sowing calendar, is

crucial for quinoa cultivation so that temperatures during the

critical growth stages must be as close as possible to the mean

optimal temperatures. In our study, quinoa's growth, development,

and yield were unaffected by irrigation levels. Therefore, frequent

irrigation, but in small quantities, is highly suggested to reduce

evapotranspiration and increase water productivity in quinoa in

shallow basalticmurram soils. Further, nitrogen application at 100 g

N ha−1 was found suitable considering the shallow basaltic rock,
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root restrictions, limited irrigation, and lodging issues. These

optimization strategies are location-specific and can be tailored

according to particular agro-ecological situations. However, the

results confirm quinoa's ability to produce seed yields up to 1,446

kg ha−1, a level of production that most food crops cannot achieve

economically in the shallow basaltic rocky terrains of drought-

prone environments. This makes quinoa a promising candidate for

crop diversification in India and other countries with similar

climatic conditions. Furthermore, there is also a need to design a

product marketing strategy and raise awareness among farmers and

government agencies about quinoa's potential as a stress-tolerant

alternative crop for marginal environments.
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