Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Technical Advances in Plant Science
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1522662
This article is part of the Research Topic Optimizing Fertilizer and Irrigation for Specialty Crops Using Precision Agriculture Technologies View all 7 articles

Data-Driven Nitrogen Application for Satinleaf: Leveraging Optical Sensors in Urban Landscape Management

Provisionally accepted
  • Florida International University, Miami, United States

The final, formatted version of the article will be published soon.

    The use of sensor technology is essential in managing fertilization, especially in urban landscape where excessive fertilization is a common issue that can lead to environmental damage and increased costs. This study focused on optimizing nitrogen fertilizer application for Satinleaf (Chrysophyllum oliviforme), a native Florida plant commonly used in South Florida landscaping. Fertilizer with an 8N-3P-9K formulation was applied in six different treatments: 15 g (control), 15 g (15 g twice; T1), 15 g (15 g once; T2), 30 g (15 g twice; T3), 30 g (15 g once; T4), and 45 g (15 g twice; T5). Evaluations of plant growth and nutrient status were conducted at several intervals: baseline (0), and 30, 60, 90, 120, 150, and 180 days post-fertilizer application. Three types of optical sensors-GreenSeekerâ„¢, SPAD meter, and atLEAF chlorophyll sensor -were used to monitor chlorophyll levels as an indicator of nitrogen content. The study found that the 30 g (15 g twice; T3) treatment was most effective in promoting plant growth and increasing nitrogen content in leaves and soil, while the 45 g (15 g twice; T5) treatment resulted in higher nutrient runoff, indicating potential environmental risks. These findings emphasize the value of using optical sensors for precise nitrogen management in plant nurseries to enhance growth, lower costs, and minimize environmental impact.

    Keywords: Chrysophyllum oliviforme, SPAD, AtLEAF, NDVI, Runoff pollution, nitrogen fertilization

    Received: 04 Nov 2024; Accepted: 21 Jan 2025.

    Copyright: © 2025 Nogueira Souza Costa and Khoddamzadeh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Amir Ali Khoddamzadeh, Florida International University, Miami, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.