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This research presents DepMulti-Net, a novel rice disease and pest identification

model, designed to overcome the challenges of complex background

interference, difficult disease feature extraction, and large model parameter

volume in rice leaf disease identification. Initially, a comprehensive rice disease

dataset comprising 20,000 images was meticulously constructed, covering four

common types of rice diseases: bacterial leaf blight, rice blast, brown spot, and

tungro disease. To enhance data diversity, various data augmentation techniques

were applied. Subsequently, a novel VGG-block module was introduced. By

leveraging depth-separable convolution, the model’s parameter quantity was

significantly reduced. A multi-scale feature fusion module was also designed to

effectively enhance the model’s ability to extract disease features from complex

backgrounds. Moreover, the integration of the feature reuse mechanism and

inverse bottleneck structure further improved the model’s recognition accuracy

for fine-grained disease features. Experimental results show that the DepMulti-

Net model has only 13.50M parameters and achieves an average accuracy of

98.56% in identifying the four types of rice diseases. This performance

significantly outperforms existing rice leaf disease identification methods. In

conclusion, this study offers an efficient and lightweight solution for crop

disease identification, which holds great significance for promoting the

development of smart agriculture.
KEYWORDS

rice leaf diseases, convolutional Neural Network, DepMulti-Net, depthseparable
convolution, multi-scale feature fusion, feature reuse
1 Introduction

Rice is one of the world’s most crucial food crops, particularly in Asia, Africa, and Latin

America, where it serves as the staple diet for over 50% of the population (Rashmi et al.,

2025). The high yield and stable production of rice are vital for global food security. However,

the frequent outbreaks of rice diseases severely impact its yield and quality, causing significant

economic losses for farmers and posing a threat to global food security (Gagandeep et al.,
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2024). Common diseases such as rice blast, brown spot, and bacterial

leaf blight can lead to substantial yield reductions if not detected and

managed promptly (Chinna et al., 2024).

For instance, China has a vast rice - planting area of 29,450.1

thousand hectares, accounting for 24.89% of the country’s total

sown area of food crops (Yuan, 2016). Approximately 60% of

China’s population depends on rice as their staple food. The rice

yield is of great significance for global food security. However, rice

diseases occur frequently. In 2022, the area affected by rice diseases

in China was around 0.62 billion hm² (Liu et al., 2023). Clearly, rice

diseases can have a detrimental impact on yield, not only affecting

farmers’ economic income but also directly threatening human food

security (Yang et al., 2023).

Traditional disease - identification methods primarily depend on

visual inspection and experience - based judgment by agricultural

experts. These methods are not only time - consuming and labor -

intensive but also subject to subjective biases, making it difficult to

achieve rapid and accurate disease detection in large - scale farmlands

(Teja et al., 2025). Moreover, with the increasing frequency and

complexity of diseases resulting from global climate change and the

intensification of agricultural activities, traditional methods can no

longer meet the requirements of modern agriculture (Simhadri et al.,

2024). In recent years, with the rapid development of artificial

intelligence and deep - learning technologies, disease - identification

methods based on computer vision have gradually become a research

focus (Han et al., 2024). Deep - learning models, especially

convolutional neural networks, have demonstrated excellent

performance in image classification and feature extraction. They can

automatically learn complex disease features from large amounts of

image data, significantly improving the accuracy and efficiency of

disease identification (Xu et al., 2022).

In the realm of rice disease identification, numerous researchers

have made remarkable contributions. Chen et al. pre - trained the VGG

network on the large - scale public dataset ImageNet to initialize the

model’s weights. Subsequently, they transferred these pre - trained

weights to a rice disease dataset for further training and achieved an

average recognition accuracy of 92.00%. However, this method has a

large number of parameters, which makes real - time identification

challenging. Identifying rice leaf diseases in complex background

environments remains a difficult task (Chen et al., 2020). Mannepalli

et al. proposed an innovative approach using the VGG16 convolutional

neural network to diagnose bacterial leaf blight, leaf - black - smut, and

brown spot in rice leaves. Based on VGG16, the model utilized small

convolutional kernels to extract rich features for image classification,

achieving a classification accuracy of 97.77% for the three diseases.

Although the model has a relatively large number of parameters, it laid

the foundation for subsequent network development (Mannepalli et al.,

2024). To reduce the number of model parameters, Zhou et al.

proposed an improved YOLOv4 - GhostNet method for rice disease

identification. This method combined the YOLOv4 object - detection

algorithm with the lightweight GhostNet network. It achieved an

average accuracy of 79.38% with a model parameter size of 42.45M.

However, there is still room for improvement in the model’s

recognition accuracy (Zhou and Liu, 2022). Weiwei Gao et al.

proposed the YOLO V5 - EFFICIENT model based on YOLO V5s.
Frontiers in Plant Science 02
They optimized the anchor box design using an improved K - Means

algorithm, incorporated the CBAM attention mechanism in the Neck

layer, replaced the BottleNeck Block with the RepVGG Block, and

upgraded the SPPF module to S - SPPF, forming the YOLO V5 -

EFFICIENT model. The mAP of the improved YOLO V5 -

EFFICIENT model reached 89.2% (Weiwei Gao et al., 2024).

Amitabha Chakrabarty et al. proposed an interpretable fusion model

integrating lightweight CNN and transformer architectures for rice leaf

disease identification. Themodel achieved a precision of 0.97, a recall of

0.96, and an F1 - score of 0.97. However, in complex background

environments, the recognition accuracy of this method drops

significantly (Chakrabarty et al., 2024).

In the field of other crop disease identification, many

researchers have also made significant achievements. Amreen

Abbas et al. generated synthetic tomato leaf disease samples using

a generative network and then trained a DenseNet121 model via

transfer learning. The classification accuracy for five types of tomato

leaf disease images reached 97.11% (Amreen et al., 2021). Bracino

et al. focused on apple leaf disease identification and extracted and

selected features based on the color and texture of apple leaf

diseases. However, multiple image - processing steps may lead to

the loss of detailed information, thus affecting the classification

accuracy (Bracino et al., 2020). Zhang et al. proposed a recognition

model based on an improved ResNet - 50 architecture for apple leaf

pests and diseases. The model integrated a Coordinate Attention

(CA) module and Weighted Adaptive Multi - scale Feature Fusion

(WAMFF) to enhance the image feature - extraction ability of

ResNet - 50. Nevertheless, these methods have poor transferability

and cannot be directly applied to rice leaf disease identification

(Zhang et al., 2023).

Despite the significant progress in disease identification, three

key issues remain unresolved: the complex background problem.

Image data collected in laboratory environments, free from complex

background interference, can achieve high recognition accuracy.

However, rice leaf images captured in natural environments are

easily influenced by complex backgrounds, resulting in a sharp

decline in recognition accuracy (Haikal et al., 2024). Fine - grained

identification of rice leaf diseases. Rice leaf lesions of different sizes

can cause a reduction in recognition accuracy during feature

extraction and classification. Some tiny lesions are easily

overlooked (Zhou et al., 2024). The large number of parameters

and complex structure of deep - learning models themselves require

a large amount of rice leaf disease image training data. This makes

them prone to overfitting and difficult to perform real - time

identification (Yang et al., 2023).

The main objective of our research is to address the above -

mentioned issues. We propose an economical and efficient method

for rice leaf disease identification. The main contributions of this

study are summarized as follows:
1. To improve the accuracy of rice leaf disease identification in

complex backgrounds, we created an original dataset

consisting of 5,000 rice disease images. These images were

all captured in real - world paddy fields, differentiating them

from laboratory - environment image data.
frontiersin.org
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Fron
2. To enhance the feature - extraction ability for lesions of

different sizes in complex backgrounds, we employed multi

- scale feature fusion and feature - reuse techniques. This

increased the network’s ability to extract key disease

features, thus improving the model’s recognition accuracy.

3. By constructing a depth - separable convolution module

that integrates feature reuse and multi - scale feature fusion

through depth - separable convolution, we reduced the

number of model parameters and accelerated model

convergence. This ultimately enabled high - performance

classification of rice leaf diseases.
The rest of this paper is organized as follows. Section 2 details

the dataset, computational environment, and methodology used in

this study. Section 3 presents the experimental results and analysis

of the proposed method. Section 4 concludes the paper and points

out potential future research directions.
2 Materials and methods

2.1 Self-build dataset

2.1.1 Data acquisition
In this study, rice disease images were captured using a Sony

A7M3 camera in Hunan Province, a major rice - producing region

in China. To ensure that the dataset comprehensively represented

real - world conditions, all images were taken in actual paddy field

environments under both strong - light and weak - light conditions.

The captured images were saved in JPG format and resized to

224×224 pixels. This standardization was essential for preparing the

data for model training, ensuring uniformity of input format and

thereby enhancing model performance.

The dataset was then divided into training and test sets at a ratio

of 8:2. Prior to training and testing, the data were randomly shuffled.

This randomization step was crucial for unbiased model evaluation,

ensuring that the model was tested on a representative sample of

the data.

Details of the dataset, including the number of samples in each

category and the sample images under different lighting conditions,

are presented in Table 1. Compared with the public dataset

PlantVillage, all images in our dataset were captured in real -

world paddy field environments, fully considering outdoor noise

conditions. In contrast, the images in the PlantVillage dataset were

taken under laboratory conditions with a uniform background,

which limits their applicability in real - world scenarios.

2.1.2 Image enhancement of rice leaves
In actual real - world scenarios, such as in the middle of rice

farmland, rice leaves are often exposed to strong direct light, interweave

with each other, cast shadows on each other, and sway in the wind

(Cheng et al., 2024). Strong direct light can affect the extraction of

disease features by the model. The interweaving of rice leaves and the
tiers in Plant Science 03
obstruction caused by overlapping leaves increase the difficulty of

extracting disease features. Additionally, leaves that are blown or

shaken by the wind can easily blur the image (Canbilen 2024).

Considering these practical factors, the present study employs

image preprocessing methods such as Gaussian noise, random

occlusion, random luminance, and motion blur (Too et al., 2019)

to preprocess the original dataset. Each preprocessing method is

applied to one original image. After batch preprocessing of the

images in the original dataset, a new augmented dataset is created.

During the training process, the model learns more disease features

in complex environments, achieving the goal of simulating real -

world scenarios and improving the accuracy of model validation.

Figure 1 shows some examples of image preprocessing.

Data augmentation methods are crucial in the field of crop pest

and disease identification, especially for small or imbalanced

datasets of pest and disease images. These methods aim to

increase the sample size and balance the dataset, which is

essential for deep - learning models with increasing depth and

parameters (Lei et al., 2024). To address this issue, we used data

augmentation techniques such as inversion, cropping, scaling,

panning, and rotation to produce an enhanced dataset. This

dataset contains four types of rice leaf disease images: 5,000

bacterial blight images, 5,000 blast images, 5,000 brown spot

images, and 5,000 tungro images, for a total of 20,000 images.

Specific statistics are shown in Table 2.
2.2 DepMulti-Net model (depth separable
VGG-inverted bottleneck multiscale
feature multiplexing net)

As shown in Figures 2, 3, the model comprises nine DepMulti-

Inverted Bottleneck modules, one mean pooling layer, and one fully

connected layer. The input sample image size is 224×224×3. After

feature extraction by the nine DepMulti-Inverted Bottleneck

modules, the classification results are generated in the mean

pooling layer and the fully connected layer, and are ultimately

output via the classifier softmax.

2.2.1 Depthwise separable convolution
Although convolutional neural network (CNN) models have

demonstrated high accuracy in pest recognition, the substantial

number of parameters presents several challenges. These include

prolonged model training durations, the necessity for a large

quantity of training samples, and difficulties in practical real -

world applications (Lu et al., 2023).

To address these challenges, the conventional standard

convolution operation has been decomposed into channel - by -

channel convolution (depthwise convolution) and point - by - point

convolution (pointwise convolution). This decomposition can

significantly reduce the number of parameters in CNNs. The

differences between depth - separable convolution and traditional

standard convolution are vividly illustrated in Figures 4, 5.
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In traditional standard convolution, a feature map is derived

from the input 3 - channel RGB image. Each filter consists of three

convolutional kernels, which independently perform convolution

operations on each channel. This process yields three distinct

convolutional feature maps. These feature maps are then

combined through element - wise addition to generate the final
Frontiers in Plant Science 04
output feature map. Essentially, each output feature map is the

result of convolution operations performed on each input channel

(Howard and Zhu, 2017).

In deep - learning models, each layer of the neural network

generates a large number of feature maps, which correspondingly

increases the volume of convolutional computations and the
TABLE 1 Original dataset.

Diseases Numbers Strong light conditions Weak light conditions

Bacteriablight 1000

Blast 1000

Brownspot 1000

Tungro 1000
FIGURE 1

Sample images of pre-processing. (a) Gaussian noise (b) Random brightness (c) Random blocked (d) Motion blur.
frontiersin.org
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number of parameters. This computational complexity and the

large number of parameters demand a substantial quantity of data

for deep - learning models to learn effectively.

However, in practical applications, rice disease images are

frequently scarce, and the availability of image samples is often

limited. In the absence of a large number of data samples, deep -

learning models are highly susceptible to overfitting, which can lead

to a decrease in recognition accuracy. Additionally, the amount of

computation and the number of parameters directly impact the

speed of model recognition. Generally, the fewer the parameters, the

more favorable it is for the practical application of the model in real

- world testing scenarios. Thus, reducing the number of parameters

in convolutional neural networks is a crucial challenge in the

application - oriented research of deep learning.

Depth - separable convolution comprises two components: channel

- by - channel convolution (depthwise convolution) and point - by -

point convolution (pointwise convolution), as illustrated in Figure 5.

The first step involves performing channel - by - channel

convolution on the input 3 - channel RGB image. In this process,

the number of output channelsmatches the number of input channels,

the number of filters equals the number of input channels, and each
Frontiers in Plant Science 05
filter contains a single convolution kernel with a size of 3×3. As a

result, the number of feature maps output through channel - by -

channel convolution is equal to the number of input channels. The

second step entails performing point - by - point convolution on the

feature maps obtained from the channel - by - channel convolution.

Channel - by - channel convolution is similar to standard convolution,

but the convolution kernel size is uniformly 1×1. Compared with

standard convolution, channel - by - channel convolution significantly

reduces the number of parameters in the convolutional layer by

decreasing the number of filters from 3 to 1 and the number of

convolution kernels per filter from 3 to 1. This reduction in

parameters is crucial for achieving a lightweight model design.

Channel - by - channel convolution performs separate

convolution calculations for each channel, which means the

interconnections between channels are lost. Therefore, point - by

- point convolution essentially uses a 1×1 convolution kernel. This

type of convolution does not consider the connections between

pixels and their surrounding pixels; instead, it performs linear

integration across channels. In other words, each feature map is

linearly superimposed on the channels, thereby achieving

dimensionality enhancement.
TABLE 2 Rice disease Aug-dataset.

Diseases Total Aug-dataset Train-dataset Test-dataset

Bacteriablight 1000 5000 4000 1000

Blast 1000 5000 4000 1000

Brownspot 1000 5000 4000 1000

Tungro 1000 5000 4000 1000

Total 5000 20000 16000 4000
FIGURE 2

VGG - DepMulti-inverted bottleneck.
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The spatial schematic diagram of channel - by - channel

convolution and point - by - point convolution is shown in

Figure 6. The difference in parameter quantity between

conventional standard convolution and depth - separable

convolution is presented in Equation 1:

ParametersDepthwise   separable   convolution
ParametersStandard   convolutions

= DK�DK�M+M�N
DK�DK�M�N = 1

N + 1
D2
K

(1)

As an example, the convolution calculation shown in Figures 4,

5 can be obtained through Equation 2:

ParametersDepthwise   separable   convolution
ParametersStandard   convolutions

= 3�3�3+3�4
3�3�3�4 = 39

108 ≈
1
3 (2)
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Based on the aforementioned formula, the number of parameters

for depth - separable convolution can be reduced to (1/N+1/DK
2) of that

for standard convolution. For instance, considering the convolution

calculations illustrated in Figures 4, 5, with a convolution kernel size of

3×3, 3 input channels, and 4 output channels, the number of parameters

for depth - separable convolution can be reduced to one - third of that

for standard convolution.

2.2.2 Depth-separable convolution-based VGG-
block module

In this study, VGG16 was employed as the baseline model. The

VGG network streamlines the model construction process and
FIGURE 3

Overall process of DepMulti-Net rice disease recognition.
FIGURE 4

Standard convolutions.
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increases the model depth through the use of convolutional blocks

(Szegedy et al., 2014). The architecture of VGG16 is depicted

in Figure 7.

The VGG16 network comprises 13 convolutional layers and 3

fully connected layers, with a model parameter count of

approximately 138 million. The detailed parameters are presented

in Table 3.

Given the substantial number of parameters in VGG networks,

there is a pressing need to reduce the number of parameters in

model lightweighting research. To this end, the VGG network was

employed as a baseline for VGG block lightweighting research in

this study. The VGG network comprises five VGG - blocks and

three fully connected layers. Depth - separable convolution was

utilized in place of the regular standard convolution in VGG -

blocks. The conversion schematic is depicted in Figure 8.

The convolutional calculations in Equations 1 and 2

indicate that the number of parameters in a single VGG - block

module is:

ParamsConv1 _ 1 = DK � DK �M � N = 3� 3� 3� 64 = 1728
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ParamsConv1 _ 2 = DK � DK �M � N = 3� 3� 64� 64 = 36864

ParamsConv1 = ParamsConv1 _ 1 + ParamsConv1 _ 2 = 38592

The number of parameters for a single VGG - block module

replaced by depth - separable convolution is:

ParamsDConv1 _ 1 = DK � DK �M +M � N

= 3� 3� 32 + 32� 64 = 2336

ParamsDConv1 _ 2 = DK � DK �M +M � N

= 3� 3� 64 + 32� 128 = 4672

ParamsDConv1 = ParamsDConv1 _ 1 + ParamsDConv1 _ 2 = 7008

The above calculations demonstrate that replacing the standard

convolution with depth - separable convolution reduces the number

of parameters in a single VGG - block module to 18% of the original

count. This number remains lower than the number of input

channels, with a maximum of 32 channels.
FIGURE 5

Depthwise separable convolution. (a) Depthwise Convolution. (b) Pointwise Convolution.
frontiersin.org
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ParamsDConv1=ParamsConv1 = 7008=38592 ≈ 0:18

Through the above theoretical derivation and mathematical

calculations, it has been proven that using deeply separable

convolution can greatly reduce the number of parameters in

convolutional neural networks.
2.2.3 Depth-separable convolutional module
based on multiscale feature fusion

To address the challenges posed by complex background

environments and the varying scales of disease spots, which can

impact recognition accuracy, parallel convolutional kernel operators

of different scales are employed. These operators are followed by

feature fusion to effectively extract disease features corresponding to
Frontiers in Plant Science 08
spots of different scales, thereby mitigating the influence of complex

backgrounds (Shuli and Malrey, 2020). To ensure the accuracy of

model recognition, a multi - scale feature fusion module was

constructed. A depth - separable convolution module based on

multi - scale feature fusion is proposed by cascading the depth -

separable convolution module with the multi - scale feature fusion

module. The structure is depicted in Figure 9.

Firstly, three different - scale feature extraction modules, with

kernel sizes of 1×1, 3×3, and 5×5, are constructed using depth -

separable convolution to extract disease features corresponding to

spots of different scales. Subsequently, a depth - separable

convolution module is cascaded. This approach aims to reduce

the number of model parameters while improving the accuracy of

model recognition.
FIGURE 7

VGG16 Convolution neural.
FIGURE 6

Spatial Schematic of Depthwise separable convolution.
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2.2.4 Depth-separable convolutional module
based on feature multiplexing and multiscale
feature fusion

While depth - separable convolution reduces the number of

model parameters, it also decreases the number of convolutional

kernels in each filter. This can lead to the loss of key disease features

during feature extraction, resulting in lower recognition accuracy

compared to conventional standard convolution. Therefore,

balancing model recognition accuracy while reducing the number

of model parameters is crucial for lightweight research.

To address this, a multi - scale feature fusion module is employed,

followed by the cascading of residual connections from ResNet

networks to deepen the model layers and enhance recognition

accuracy (Liu et al., 2022). Residual connections in ResNet

networks are a form of feature reuse, designed to mitigate the

problems of gradient vanishing and network degradation. This

concept has been widely cited in networks such as DenseNet and

Transformer (Huang et al., 2017). Feature reuse not only addresses
Frontiers in Plant Science 09
the issue of vanishing gradients but also prevents network

degradation by allowing the model to bypass certain convolutional

layers. If key features are lost in one segment of the convolutional

layer, they can be re - extracted in the subsequent segment.

Thus, this study integrates feature reuse into multi - scale

feature fusion using depth - separable convolution to compensate

for the accuracy loss caused by the reduction in convolutional

kernels. The schematic diagram of the depth - separable

convolution module for multi - scale feature fusion incorporating

feature reuse is shown in Figure 10.

After employing the multi - scale feature fusion module, the

features from the previous layer are reused. Feature reuse is

achieved through Add feature fusion, where the feature maps are

summed without altering the number of channels. This method

increases the amount of information describing the features of an

image while maintaining the dimensions of the image itself. The

increased information per dimension is beneficial for the final

classification of the image.

2.2.5 Inverted bottleneck structure module based
on feature multiplexing and multiscale
feature fusion

Due to the reduction in the number of channels resulting from

depth - separable convolution, the network is highly likely to lose a

substantial quantity of feature information. To endow the network

with the ability to extract more abundant feature information, we

have transformed the commonly - used Bottleneck structure in

convolutional neural networks into an Inverted Bottleneck

structure, which has a spindle - shaped configuration. As shown

in Figure 11, the Bottleneck is similar to that of a bottle, employing a

dimensionality reduction mode before feature extraction. This

approach has the advantage of reducing the number of channels

and parameters, and is widely used in convolutional neural

networks (Sandler et al., 2018).

However, after using depth - separable convolution, the

convolution kernel is drastically reduced during the convolutional

computation process. This leads to a reduction in the number of

channels in the bottleneck structure and results in the loss of more

feature information. Given the small scale of rice leaf disease

features, the high similarity between different diseases, and the

significant influence of natural environmental factors on images,

disease feature extraction becomes particularly challenging. To

more fully extract disease features, the bottleneck structure

(Bottleneck) was changed to a spindle - shaped structure with an

anti - bottleneck structure (Inverted Bottleneck).

As shown in Figure 12, dimensionality ascension followed by

convolution calculation is used to fully extract feature information.

The spindle - shaped structure of the Inverted Bottleneck is fused

with a depth - separable convolution module based on feature

multiplexing and multi - scale feature fusion. This integration

constructs a DepMulti - Inverted Bottleneck module based on

feature reuse and multi - scale feature fusion. The schematic

diagram of the module is depicted in Figure 12.

As shown in Figure 12, the DepMulti - Inverted Bottleneck

module first performs a point - by - point convolution using a 1×1
TABLE 3 Parameters of the VGG16 network.

Convolution
layer

Kernel Input
Size

Channel Params

Input // 224×224 3 //

Conv1_1 3×3 224×224 64 1728

Conv1_2 3×3 224×224 64 36864

Pool 1 2×2 112×112 64 //

Conv2_1 3×3 112×112 128 73728

Conv2_2 3×3 112×112 128 147456

Pool 2 2×2 56×56 128 //

Conv3_1 3×3 56×56 256 294912

Conv3_2 3×3 56×56 256 589824

Conv3_3 3×3 56×56 256 598924

Pool 3 2×2 28×28 256 //

Conv4_1 3×3 28×28 512 1179648

Conv4_2 3×3 28×28 512 2359296

Conv4_3 3×3 28×28 512 2359296

Pool 4 2×2 14×14 512 //

Conv5_1 3×3 14×14 512 2359296

Conv5_2 3×3 14×14 512 2359296

Conv5_3 3×3 14×14 512 2359296

Pool 5 2×2 7×7 512 //

FC 1 // 1×1 4096 102760448

FC 2 / 1×1 4096 16777216

FC 3 // 1×1 1000 4096000

SoftMax // 1×1 4 //

Total 138362328
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convolution kernel to amplify the features of the input image.

Subsequently, after normalization in the Batch Normalization

(BN) layer and the introduction of nonlinearity via the ReLU

activation function, convolution kernels of sizes 1×1, 3×3, and

5×5 are employed to extract features through channel - by -

channel convolution. Finally, 1×1 point - by - point convolution

kernels are used to reduce the dimensionality of the features.

Feature reuse is then performed using the method of feature

fusion via addition.

In the VGG16 network, the DepMulti - Inverted Bottleneck

module replaces the VGG - block to reduce the number of model

parameters. Meanwhile, the recognition accuracy of the model is

enhanced by feature reuse methods and the spindle - shaped

structure. To further reduce the number of model parameters, the
Frontiers in Plant Science 10
three fully connected layers in the VGG16 network are modified to

one mean pooling layer and one fully connected layer. The

schematic diagram of the model structure is shown in Figure 12,

and the specific computational parameters of the model are

presented in Table 3.

After replacing VGG - blocks with DepMulti - Inverted

Bottleneck blocks, the newly formed DepMulti - Net network

comprises nine DepMulti - Inverted Bottleneck modules, as well

as Conv2d, AvgPool, and fully connected layers. First, Conv2d is

used to preprocess the input 224 × 224 × 3 image, resulting in a

feature map of 112 × 112 × 32 with 864 parameters in this layer.

Then nine DepMulti-Inverted Bottleneck modules are employed for

feature extraction, with the number of parameters in each layer

shown in Table 4. Finally, mean pooling is used to introduce
FIGURE 8

Schematic diagram of VGG-block conversion.
FIGURE 9

Depthwise separable convolutional Block based on Multiscale Feature fusion.
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nonlinearity, and four classification results are output after the fully

connected layer.

Through the above modifications, the total number of parameters

in the VGGNet network is reduced from 138million to 13.50 million,

and the number of parameters in the newly constructed DepMulti -

Net network is only 9.7% of that in the VGGNet network.
2.3 DepMulti-Net model memory
requirements analysis

The neural network model proposed in this study has a

parameter count of 13,501,536. Typically, model parameters are

stored in the form of 32-bit floating-point numbers, with each

parameter occupying 4 bytes of memory space. Therefore, just the

model parameters require approximately 54,006,144 bytes of

memory, which is about 51.5 MB. However, when running the

model, in addition to the storage of parameters, extra memory is
Frontiers in Plant Science 11
needed to store intermediate activation values, which is usually 1-2

times the parameter counts. Nevertheless, when the model is

deployed on agricultural drones or smartphones for inference,

real-time gradient computation is usually not required, so this

part of memory requirement can be neglected. Taking all factors

into account, the actual memory requirement for this model during

operation is around 100 MB. Modern smartphones typically have

4GB - 12GB of memory, while drones usually have memory ranging

from several hundred MB to several GB, with high-end professional

drones possibly equipped with 2GB - 4GB of memory. The memory

requirement of this model is within its bearable range.
3 Experimental results and analyses

3.1 Experimental environment

The experimental software environment consists of a Windows

10 64 - bit operating system, the PyTorch deep - learning open -

source framework, and Python as the programming language. The

hardware configuration includes 16 GB of RAM, an AMD Ryzen 7

5800H processor with Radeon Graphics, and an NVIDIA GeForce

RTX 3070 Laptop GPU, which accelerates image processing tasks.
3.2 Experimental settings

In this study, the SGD optimization algorithm was employed

with the CrossEntropyLoss loss function. The training

configuration included a batch size of 32, 20 training epochs, an

initial learning rate of 0.01, and a momentum of 0.9.
FIGURE 10

Depth separable convolutional Block for multi-scale feature fusion based on feature multiplexing.
FIGURE 11

Schematic diagram of Bottleneck to Inverted Bottleneck.
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3.3 Evaluation metrics

When training a classification recognition model, the input

sample data are divided into four categories, corresponding to the

four main variables defined in the confusion matrix: TP (True

Positive) denotes the number of samples with positive true values
Frontiers in Plant Science 12
and positive predicted values; TN (True Negative) denotes the

number of samples with negative true values and negative

predicted values; FP (False Positive) denotes the number of

samples with negative true values and positive predicted values;

and FN (False Negative) denotes the number of samples with

positive true values and negative predicted values. Four main
FIGURE 12

Schematic diagram of DepMulti-inverted bottleneck.
TABLE 4 DepMulti-net model parameter.

Convolution layer Kernel InputSize Channel Params

Conv2d 3×3 224×224 3/32 864

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 112×112 32/64 13056

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 112×112 64/128 46592

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 56×56 128/128 125952

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 56×56 128/256 175104

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 28×28 256/256 481280

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 28×28 256/512 677888

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 14×14 512/512 1880064

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 14×14 512/1024 2666496

DepMulti-Inverted Bottleneck 1×1, 3×3, 5×5 7×7 1024/1024 7430144

AvgPool 7×7 7×7 1024/1024 //

FC // 1×1 1024/4 4096

SoftMax // 1×1 4 //

Total 13501536
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evaluation metrics were calculated to assess the performance of the

classification model in deep learning tasks.

Accuracy: Accuracy is the proportion of samples with

completely correct predictions to the total number of samples. It

is typically used to evaluate the overall classification performance of

deep learning models, including both positive and negative samples.

The calculation formula is shown in Equation 3.

Accuracy = TP+TN
TP+TN+FP+FN (3)

Precision: Precision is the proportion of all predicted positive

samples that are actually positive. It represents the accuracy of

predicting positive samples and is calculated as shown in Equation 4.

Precision = TP
TP+FP (4)

Recall: Recall is the proportion of all samples with positive true

values that are correctly predicted as positive. A higher recall rate

indicates a higher probability of predicting true positive samples.

The formula is shown in Equation 5.

Recall = TP
TP+FN (5)

F1 score: The F1 Score represents the harmonic mean of

Precision and Recall, providing a balanced measure of the two. It

is calculated as shown in Equation 6.

F1 − score = 2�Precision�Recall
Precision+Recall (6)
3.4 Ablation experiments

To verify the feasibility of the proposed method in this study,

the depth - separable convolution module, multi - scale feature

fusion module, feature reuse module, and inverted - bottleneck

structure were tested and compared on the VGG network. Firstly, a

comparative test of depth - separable convolution was conducted on

VGG by replacing the standard convolution with depth - separable

convolution to evaluate the model’s parameters, accuracy, and other

performance indicators. Subsequently, based on these results,

additional comparison tests were performed on multi - scale

feature fusion, feature reuse, and the inverted - bottleneck
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structure. These three structures were integrated into the VGG

network, and their combined effect on performance enhancement

was compared to that of the original model.

As shown in Tables 5, 6, the original VGG - 16 network

achieved an accuracy of 95.79% with 138 million parameters.

After replacing the standard convolution with depth - separable

convolution, the model’s parameter count was reduced to 12.47

million, and the recognition time for a single image decreased from

0.296 seconds to 0.032 seconds. However, the network’s accuracy

decreased by 3.02 percentage points. Although depth - separable

convolution significantly reduced the number of model parameters,

it also lowered the recognition accuracy. The reduction in the

number of channels and convolution kernels can lead to the loss

of disease feature information.

After introducing the multi - scale feature fusion module, the

number of model parameters increased from 12.47 million to 13.01

million, and the recognition accuracy improved to 96.41%, an

increase of 3.64 percentage points. The recognition time increased

by 0.021 seconds. After incorporating the feature reuse module and

using the Add method to keep the number of model parameters

unchanged, the network’s recognition accuracy improved to

97.53%, an increase of 1.12 percentage points. The recognition

time for a single image increased to 0.060 seconds.

After introducing the inverted - bottleneck structure, the network’s

recognition accuracy improved to 98.56%, an increase of 1.03

percentage points. Due to the additional convolutional layers, the

number of parameters increased slightly by 0.13 million. However,

compared with the original VGG - 16 network, the overall reduction in

the number of parameters was 124.86 million, and the accuracy

improved by 2.77 percentage points. The number of parameters in

the improved model is only 9.7% of the original model.

Experimental results show that the use of depth - separable

convolution, multi - scale feature fusion, feature reuse, and the

inverted - bottleneck structure increased the recognition accuracy to

98.56%. The inverted - bottleneck structure can reduce the number

of model parameters while balancing recognition accuracy. The

comparison graph of recognition accuracy for each improved

method is shown in Figure 13.

The performance metrics for each method comparison test are

presented in Table 7. After incorporating depth - separable

convolution, the multi - scale feature fusion module, the feature

reuse module, and the inverted - bottleneck structure, the newly

constructed DepMulti - Net model demonstrated the best

performance in terms of recognition accuracy, precision, recall,

and F1 score. Specifically, the precision, recall, and F1 score reached

97.06%, 97.64%, and 97.17%, respectively.
3.5 Comparison experiment of the
DepMulti-Net and other models

To verify the overall performance of the model, the DepMulti -

Net model based on the improved VGG was compared with

common convolutional neural networks such as AlexNet, VGG -

16, ResNet - 18, DenseNet - 121, MobileNetV2, and ShuffleNetV2.
TABLE 5 Parameters rate accuracy of different approaches.

Model Parameters/
million

Rate/s Accuracy
rate

VGG-16 138.36M
(138362328)

0.296s 95.79%

VGG- Depthwise
separable convolution

12.47M
(124700252)

0.032S 92.77%

VGG- multi-scale
feature fusion

13.01M
(130167905)

0.053s 96.41%

VGG-Feature Multiplexing 13.01M
(130167905)

0.060S 97.53%

DepMulti -Inverted
Bottleneck(DepMulti-Net)

13.50M
(13501536)

0.073s 98.56%
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Comparison experiments were conducted on the same dataset. The

specific experimental data are shown in Tables 8, 9. The results

indicated that the DepMulti - Net model proposed in this study

achieved an accuracy of 98.56% with a recognition time of only

0.073 seconds for a single disease image, while the parameter count

was 13.50 million.

The DepMulti - Net model outperformed common convolutional

neural networks such as AlexNet, VGG - 16, ResNet - 18, and

DenseNet - 121, as well as lightweight models such as MobileNetV2

and ShuffleNetV2. Specifically, AlexNet achieved an accuracy of

95.07% with 60 million parameters, VGG - 16 achieved 95.79%

with 138 million parameters, and ResNet - 18 achieved 96.25% with

25.5 million parameters. DenseNet - 121 achieved an accuracy of

96.53% with 7.1 million parameters. It is evident that the DepMulti -

Net model proposed in this study is superior to the aforementioned

common convolutional neural networks.

Comparison tests were also conducted with lightweight models

such as MobileNetV2 and ShuffleNetV2. Although these models have

fewer parameters, their recognition accuracy was lower than that of the

DepMulti - Netmodel in actual rice pest recognition tests. MobileNetV2

achieved a recognition accuracy of 97.45% with 4.2 million parameters,

while ShuffleNetV2 achieved 96.28% with 2.48 million parameters. The

combined comparison chart is shown in Figure 14.

The final experimental results demonstrate that the DepMulti - Net

model based on the improved VGG outperforms common

convolutional neural networks such as AlexNet, VGG - 16, ResNet -
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18, and DenseNet - 121, as well as lightweight models such as

MobileNetV2 and ShuffleNetV2, in terms of recognition accuracy.

The model achieves high recognition accuracy with fewer parameters,

effectively balancing the trade - off between model complexity and

performance. This provides a valuable reference for addressing

challenges such as limited crop pest datasets, excessive model

parameters, and difficulties in model mobility and deployment.
3.6 Comparison between proposed
method and empirical methods

The proposed method (DepMulti - Net) was compared with

various empirical methods in image recognition tasks. The datasets

involved included images of various plants, such as millet crop

images, general plant images, ImageNet, NBAIR, and rice leaf

images. The models used covered VGG - 16, VGGNet, ResNet -

101, AlexNet, GhostNet, RePVGG, Transformer, etc.

As shown in Table 10. In terms of accuracy, different research

findings showed varying performance across respective datasets and

models. For instance, Coulibaly et al. (2019) achieved an accuracy of

95.00% using VGG - 16 for millet crop images. Abdalla et al. (2019)

obtained an accuracy of 93.00% with VGG - 16 for general plant

images. On the ImageNet dataset, Chen et al. (2020) reached 91.83%

with VGGNet, while Suh et al. (2018) achieved 98.00% using

AlexNet. For the rice leaf image dataset, the accuracies of
TABLE 6 The recognition accuracy of different diseases for each method.

Model Bacteriablight Blast Brownspot Tungro

VGG-16 97.00% 95.33% 95.00% 94.80%

VGG- Depthwise separable convolution 91.67% 93.08% 92.86% 93.64%

VGG- multi-scale feature fusion 96.50% 96.33% 96.67% 96.4%

VGG-Feature Multiplexing 97.30% 97.67% 97.60% 97.40%

DepMulti -Inverted Bottleneck(DepMulti-Net) 98.625% 98.50% 98.60% 98.40%
FIGURE 13

Comparison of recognition accuracy of each improved method.

FIGURE 14

Comparison of recognition accuracy of each model.
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different models varied significantly. Zhou and Liu (2022) reported

an accuracy of 79.38% with GhostNet, Gao et al. (2024) achieved

89.2% using RePVGG, Mannepalli et al. (2024) reached 97.77%

with VGG - 16, and Amitabha Chakrabarty et al. (2024) obtained

97.00% with Transformer.

The proposed method, using the DepMulti - Net model, achieved

an accuracy of 98.60% on the rice leaf image dataset, surpassing other

empirical methods. This indicates that the proposed method has a

significant advantage in rice leaf image recognition tasks, with

outstanding performance. It holds potential for application and

research value in the field of plant image recognition.
3.7 The differences between this study and
other leaf disease recognition studies

This study introduces a novel leaf disease identification model

(DepMulti-Net) by incorporating depthwise separable convolution

and multi-scale feature fusion techniques, significantly enhancing

the model’s recognition accuracy and lightweight nature. As shown

in Table 11. Compared to existing research, the main differences

and innovations of this study are as follows.

The DepMulti-Net model proposed in this study demonstrates

outstanding performance in rice leaf disease identification tasks.

Compared to existing research, this study utilizes a dataset from real

paddy fields with complex backgrounds, whereas current studies

often employ datasets from laboratory environments with more

uniform backgrounds. The feature extraction method in this study

integrates multi-scale features, making it suitable for lesions of

varying sizes, while existing research, which typically extracts
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features at a single scale, has limited capability in recognizing

small disease spots.

In terms of recognition accuracy, DepMulti-Net achieves an

impressive 98.56% accuracy rate, significantly outperforming

existing methods that show poor adaptability in complex

backgrounds. The model is also lightweight, with a parameter

count of only 13.5 million, making it highly suitable for

deployment on edge devices such as drones and mobile phones.

This contrasts with existing research that generally requires high-

performance computing platforms due to larger parameter counts.

Overall, DepMulti-Net offers a practical and efficient solution

for leaf disease identification, with a strong emphasis on real-world

applicability and high accuracy in complex environments.
4 Discussion

The DepMulti-Net model proposed in this study has

demonstrated exceptional performance in rice disease

identification tasks, achieving an average recognition accuracy of

98.56% with only 13.50 million parameters. This result significantly

outperforms various existing convolutional neural networks and

lightweight models. To comprehensively evaluate the contributions

of this study, we compared its results with those of similar research

and further explored the model’s strengths, limitations, and

potential directions for future improvement.

In existing research on rice disease identification, many scholars

have employed different deep - learning models and methods. For

instance, Chen et al. utilized a pre - trained VGG network on the

ImageNet dataset for transfer learning, achieving an average

recognition accuracy of 92.00% (Chen et al., 2020). However, their
TABLE 7 Accuracy precision recall F1-score of different approaches.

Model Accuracy rate Precision Recall F1-score

VGG-16 95.79% 93.07% 92.51% 92.29%

VGG- Depthwise separable convolution 92.77% 90.42% 91.36% 90.89%

VGG- multi-scale feature fusion 96.41% 94.89% 94.06% 94.45%

VGG-Feature Multiplexing 97.53% 96.58% 95.89% 96.23%

VGG-Inverted Bottleneck(DepMulti-Net) 98.56% 97.06% 97.64% 97.17%
TABLE 8 Comparison test results of different models.

Model Parameters/
million

Accuracy Rate

AlexNet 60M 95.07% 0.168S

VGG-16 138M 95.79% 0.296S

ResNet-18 25.5M 96.25% 0.101s

DenseNet-121 7.1M 96.53% 0.034S

MobileNetV3 4.2N 97.45% 0.021s

ShuffleNetV1 2.48M 96.28% 0.018s

DepMulti-Net 13.5M 98.56% 0.073S
TABLE 9 Comparison test results of different models.

Model Bacteriablight Blast Brownspot Tungro

AlexNet 95.17% 94.93% 95.28% 95.05%

VGG-16 97.00% 95.33% 95.00% 94.80%

ResNet-18 95.00% 97.08% 96.11% 96.00%

DenseNet-121 96.50% 96.53% 96.05% 97.23%

MobileNetV3 97.69% 97.19% 97.40% 97.68%

ShuffleNetV1 95.20% 97.20% 96.25% 96.64%

DepMulti-Net 98.625% 98.50% 98.56% 98.40%
fro
ntiersin.org

https://doi.org/10.3389/fpls.2025.1522487
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hu et al. 10.3389/fpls.2025.1522487
model’s large parameter size made real - time recognition challenging.

In contrast, the DepMulti - Net model proposed in this study

significantly reduced the number of parameters while improving

recognition accuracy by 6.56 percentage points, making it more

suitable for practical applications in agricultural environments.

Mannepalli et al. proposed a rice disease identification method based

on the VGG16 network, achieving an accuracy of 97.77% (Mannepalli

et al., 2024). However, their model’s parameter size was as high as 138

million, far exceeding that of the DepMulti - Net model proposed in

this study. Although their accuracy was high, the large parameter size

limited its deployment on mobile or edge computing devices. By

employing depthwise separable convolution and multi - scale feature

fusion techniques, this study maintained high accuracy while

significantly reducing the model’s parameter size, offering greater

flexibility for practical applications. Additionally, Zhou et al.

proposed a lightweight rice disease identification method based on

YOLOv4 - GhostNet, but their average accuracy was only 79.38%, with

a parameter size of 42.45 million (Zhou and Liu, 2022). In comparison,

DepMulti - Net achieved a nearly 20 percentage point improvement in

accuracy with only 13.50 million parameters, demonstrating its

superior balance between lightweight design and high accuracy.

The DepMulti - Net model proposed in this study exhibits

significant advantages in the following aspects:

Through depthwise separable convolution and feature reuse

techniques, the model’s parameter size was significantly reduced to

only 9.7% of that of VGG - 16. This makes it suitable for deployment

on resource - constrained devices such as mobile devices or drones.

Supported by multi - scale feature fusion and inverted bottleneck

structures, the model’s ability to extract disease features in complex

backgrounds was significantly enhanced. It achieved a recognition

accuracy of 98.56%, outperforming most existing models. Through

data augmentation techniques and the construction of a dataset from

real - field environments, the model demonstrated stable performance

under complex backgrounds and varying lighting conditions,

exhibiting strong generalization capabilities.
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Despite the DepMulti - Net model’s excellent performance in

rice disease identification, it still has some limitations:

This study focused on only four common rice diseases. For rare

disease categories, the model’s recognition capabilities may be

insufficient. Future work should expand the dataset to include more

disease types to improve the model’s generalizability. In the multi -

scale feature fusion module, the choice of convolutional kernels

significantly impacts recognition results. Although this study selected

1×1, 3×3, and 5×5 convolutional kernels through experiments, further

optimization of kernel sizes and combinations may be necessary for

different disease scales. The DepMulti - Net model was primarily

designed for rice disease identification, and its performance in

identifying diseases in other crops has not been validated. Future

research could explore the application of this model to disease

identification tasks for other crops and further optimize the model

structure to adapt to the characteristics of different crops.

Based on the achievements and limitations of this study, future

research directions may include the following:

Collecting more types of rice disease images, especially those of

rare diseases, to enhance the model’s generalization ability.

Additionally, introducing disease datasets for other crops could

explore the model’s potential in cross - crop disease identification.

Further experiments and statistical analyses could optimize the sizes

and combinations of convolutional kernels in the multi - scale

feature fusion module to improve the model’s ability to recognize

disease features at different scales. Although DepMulti - Net has

achieved a high level of lightweight design, further exploration of

model compression and acceleration techniques, such as

quantization and pruning, could enhance the model’s real - time

performance and deployment efficiency. Investigating how to apply

the DepMulti - Net model to disease identification tasks for other

crops and exploring a universal model for crop disease

identification could provide broader support for smart agriculture.
TABLE 10 Comparison between proposed method and
empirical methods.

Authors Dataset Model Accuracy

Coulibaly et al. (2019) Millet
crop images

VGG-16 95.00%

Abdalla et al. (2019) Plant images VGG-16 93.00%

Chen et al. (2020) ImageNet VGGNet 91.83%

Thenmozhi and
Reddy (2019)

NBAIR ResNet-101 95.02%

Suh et al. (2018) ImageNet AlexNet 98.00%

Mannepalli et al. (2024) RiceLeaf VGG-16 97.77%

Zhou and Liu (2022) RiceLeaf GhostNet 79. 38%

Gao et al. (2024) RiceLeaf RePVGG 89.2%

Chakrabarty et al. (2024) RiceLeaf Tansformer 97.00%

Proposed Method RiceLeaf DepMulti-Net 98.56%
TABLE 11 Comparison of leaf disease identification studies.

Feature
Our Study

(DepMulti-Net)
Existing Research

Dataset
Real paddy field

environmental data,
complex backgrounds

Laboratory environmental
data, single background

Feature Extraction
Multi-scale feature
fusion, suitable for

different scale lesions

Single-scale feature
extraction, limited
capability for small
lesion recognition

Recognition Accuracy
98.56%, excellent
performance in

complex backgrounds

Poor adaptability in
complex backgrounds

Model Lightweight

Parameter count is
only 13.5M, suitable

for edge
device deployment

Larger parameter count

Practical Application

Suitable for drones,
mobile phones, and

other
lightweight platforms

Mainly for high-
performance

computing platforms
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5 Conclusion

This study focuses on identifying four common rice leaf

diseases: Blast, Brownspot, Tungro, and Bacterial blight. By

integrating depthwise separable convolution, feature reuse

techniques, and inverted bottleneck structures, we developed a

feature reuse and multi - scale feature fusion - based inverted

bottleneck module, proposing the DepMulti - Net model.

Comparative experiments with various convolutional neural

networks yielded the following key conclusions:
Fron
1. The proposed DepMulti - Net model achieved an average

recognition accuracy of 98.56% with only 13.50 million

parameters, significantly outperforming existing rice

disease identification methods. The use of depthwise

separable convolution substantially reduced the number of

parameters, addressing the issues of high parameter counts,

extensive training data requirements, and difficulties in real -

time recognition associated with traditional deep - learning

models. This provides an efficient and lightweight solution

for crop disease identification.

2. To address the challenges of complex background

interference and difficulty in disease feature extraction in

rice disease identification, this study introduced a multi -

scale feature fusion module and a feature reuse mechanism.

These enhancements effectively improved the model’s

ability to extract disease features in complex backgrounds,

particularly excelling in identifying lesions of varying

scales. The incorporation of the inverted bottleneck

structure further enhanced the model’s precision in

recognizing fine - grained disease features, ensuring its

applicability in real - world field environments.

3. This study constructed a rice disease dataset comprising 20,000

images, covering the four common rice diseases, and enhanced

data diversity through data augmentation techniques. This

dataset serves as a valuable resource for future research,

advancing the field of rice disease identification.

4. Through comparative experiments with widely used

convolutional neural networks and lightweight models

such as AlexNet, VGG - 16, ResNet - 18, DenseNet - 121,

MobileNetV3, and ShuffleNetV1, DepMulti - Net achieved

an optimal balance between parameter count and

recognition accuracy, significantly outperforming existing

models. The model is not only suitable for rice disease

identification but also provides a lightweight solution that

can be adapted for other crop disease identification tasks.
The practical application value of this study lies in providing

an efficient and lightweight disease identification tool for smart

agriculture, enabling farmers to promptly identify and control rice

diseases, thereby reducing economic losses and ensuring food

security. Future work will focus on expanding the dataset to

include more disease categories and images under various

environmental conditions to enhance the model’s generalization
tiers in Plant Science 17
capabilities. Additionally, we will explore the potential of applying

this model to the identification of diseases in other crops.
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Appendix A

Dataset and code are available at: https://github.com/kuihu-hk.
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