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Understanding how species traits, climate aridity, and soil resources interact to

influence beta diversity is critical for predicting changes in plant community

composition. This study aims to investigate how these interactions shape species

contributions to spatial turnover and beta diversity, focusing on the unique

dryland ecosystems of the Saint Katherine Protectorate (SKP) in Egypt. To

address this, we analyzed data from 84 vegetation plots, considering the direct

and indirect effects of climatic aridity, soil resources, and species traits (e.g., plant

height, leaf production, specific leaf area), as well as the relative abundance of C3

plants and phylogenetic diversity on species contribution to beta diversity

(SCBDeff). Using Generalized Linear Models (GLMs) and Structural Equation

Modelling (SEMs), the results revealed complex indirect effects of aridity and

soil resources on SCBDeff mediated by plant traits. SCBDeff was positively

influenced by climatic aridity, particularly in species with greater phylogenetic

distance, taller plants, high leaf production, and a higher relative abundance of C3

plants. Conversely, specific leaf area (SLA) had a negative effect. Phylogenetic

diversity emerged as a significant driver of beta diversity, with distantly related

species contributing more due to functional differentiation and niche

partitioning. The findings emphasize the critical role of species traits and

environmental conditions in shaping beta diversity. These insights can inform

conservation strategies aimed at enhancing ecosystem stability under shifting

climatic conditions, particularly in dryland environments where species adaptive

traits play a pivotal role.
KEYWORDS

climatic aridity, species turnover, phylogenetic diversity, species traits, soil resources,
species abundance
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Introduction

Understanding the factors influencing the spatial distribution of

species diversity is fundamental in ecology, as it forms the basis for

biodiversity conservation and ecosystemmanagement (MacArthur and

Wilson, 1967; Hubbell, 2001; Chave, 2013). Beta diversity, defined as

the variation in species composition among communities, encompasses

two primary components; species turnover, which identifies regions

with distinct ecological communities, and nestedness, which reflects

differences in species richness due to gain or loss of species across sites

(Whittaker, 1960; Legendre and De Cáceres, 2013; Baselga, 2010).

Mapping the spatial variation of beta diversity identifies areas with high

species turnover or unique assemblages, supporting the conservation of

ecosystems vulnerable to environmental stressors like those in arid

regions (Legendre and De Cáceres, 2013; Soininen et al., 2018; Frasconi

Wendt et al., 2021). These arid regions, known for their unique species

assemblages and high turnover rates, are primary conservation foci due

to increased risks from climate change and habitat fragmentation

(Nagendra et al., 2013; Maestre et al., 2012; Sala et al., 2000). These

regions also face additional challenges such as habitat degradation and

desertification, which are exacerbated by global change (Reynolds

et al., 2007).

Legendre and De Cáceres (2013) proposed the partitioning of

beta diversity into Local Contributions to Beta Diversity (LCBD)

and Species Contributions to Beta Diversity (SCBDeff), which

allows ecologists to discern the roles of spatial factors, species

traits, and abiotic drivers (e.g., climate, soil resources) in shaping

biodiversity patterns (Legendre and Gauthier, 2014; Chiu et al.,

2014). Local Contributions to Beta Diversity (LCBD), on the other

hand, identifies ecologically distinct sites that are essential for

regional biodiversity conservation, particularly in regions

vulnerable to habitat loss and degradation (Legendre and

Gauthier, 2014; Cadotte and Tucker, 2017). SCBDeff pinpoints

key species driving community composition differences,

highlighting those that play significant ecological roles and are

crucial for ecosystem stability (Anderson et al., 2011; Villéger et al.,

2013). Species with high SCBDeff values are vital for ecosystem

functionality, and their decline could trigger notable biodiversity

loss, making their conservation imperative. This is particularly

critical in arid areas, where environmental stressors such as water

scarcity and extreme temperatures amplify the vulnerability of

ecosystems to biodiversity loss (De et al., 2023; Liu et al., 2024;

Mouillot et al., 2013). Recognizing these species is instrumental in

developing conservation actions aimed at maintaining ecosystem

resilience and function (Pillar et al., 2013; Soininen et al., 2018;

Gonzalez et al., 2020).

A comprehensive understanding of beta diversity requires not

only an examination of species distributions but also an exploration

of the evolutionary relationships among these species. Phylogenetic

diversity plays a critical role in explaining beta diversity and species

turnover by providing insights into the evolutionary relationships

among species within communities. Closely related species often

exhibit similar ecological niches due to shared ancestry, which can

lead to lower beta diversity as these species tend to co-occur in similar

environments (Webb et al., 2002; Cavender-Bares et al., 2009).
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Conversely, distantly related species, which have diverged more

significantly in evolutionary terms, contribute to higher beta

diversity by occupying distinct niches and adapting to different

environmental conditions (Graham and Fine, 2008; Swenson,

2011). This phylogenetic divergence often results in greater species

turnover across environmental gradients, as different lineages

respond to various selective pressures (Hardy and Senterre, 2007).

By integrating phylogenetic information, researchers can better

understand how evolutionary history influences current patterns of

beta diversity, offering deeper insights into the mechanisms driving

community assembly and ecosystem functioning (Tucker et al.,

2017). This understanding lays the groundwork for examining how

both evolutionary and ecological processes interact to shape

biodiversity patterns, thereby complementing studies on species-

specific traits and environmental gradients.

Examining SCBDeff typically involves interactions between

environmental and species-based characteristics, such as

occupancy, abundance, niche breadth, and niche position. These

traits can exhibit inter-correlation (Tales et al., 2004; Heino, 2005;

Siqueira et al., 2009; Heino and Grönroos, 2017). For instance, species

with narrow niche breadths may inhabit constrained environments,

contributing significantly to beta diversity (Brown, 1984; Slatyer et al.,

2013). Similarly, species in marginal habitats often exist in restricted

environments, impacting SCBDeff differently from species in non-

marginal areas (Doledec et al., 2000; Heino and Grönroos, 2014).

Investigating the biotic and abiotic factors that influence SCBDeff is

also essential (Legendre and De Cáceres, 2013; Anderson et al., 2011)

as it allows to pinpoint species that significantly influence

compositional dissimilarities between communities, providing

insights into species-specific roles in ecological processes (Baselga,

2010; Podani and Schmera, 2011; Socolar et al., 2016). These insights

help predict how environmental conditions, species traits, or

community interactions may alter community composition and

ecosystem functioning (Legendre and De Cáceres, 2013). SCBDeff

enhances the detection of keystone or functionally distinct species

that disproportionately shape community structure, biodiversity

patterns, and ecosystem resilience (Anderson et al., 2011). Despite

the extensive focus on LCBD, SCBDeff studies are relatively limited,

particularly in how environmental stressors and species traits

influence beta diversity (Rodrıǵuez-Lozano et al., 2023).

Traits that influence species’ ability to adapt to environmental

gradients and ecological pressures were chosen for their key role in

shaping beta diversity and co-occurrence patterns. Species traits such as

seed mass and dispersal capacity were known due to their well-

documented influence on beta diversity by shaping species

occupancy and abundance patterns (Verberk et al., 2010; Heino and

Grönroos, 2014).While many traits could impact beta diversity and co-

occurrence patterns, this study focuses on traits that are particularly

relevant in structuring communities across environmental gradients.

Traits like drought resistance, water use efficiency, and nutrient uptake

strategies are especially crucial in stress-prone ecosystems, enabling

species to endure harsh conditions while maintaining functional

diversity and ecosystem resilience (Chaturvedi et al., 2021). Plant

functional traits such as specific leaf area (SLA), leaf nitrogen

content, and wood density are emphasized due to their role in
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influencing resource acquisition strategies and spatial turnover. For

instance, SLA is associated with dominance in resource-rich

environments, contributing to spatial variation and beta diversity

(Violle et al., 2007). By focusing on these traits, this study aims to

highlight their role in shaping community structure and adaptation to

stressors like aridity, thereby influencing beta diversity (Suding et al.,

2008; Dıáz et al., 2016).

This study investigated the direct, indirect, and interactive

effects of abiotic factors including climatic factors and soil factors,

and biotic factors including species traits on species contributions to

beta diversity (SCBDeff). Our research uniquely integrates climatic

aridity, soil resources, and plant traits such as height, specific leaf

area (SLA), number of leaves, and the relative abundances of C3 and

C4 plants. This multifaceted approach allows us to quantify and

characterize the levels of aridity and soil resources comprehensively,

shedding light on their direct and indirect effects on SCBDeff.

Moreover, the study employs advanced statistical techniques,

including structural equation modeling (SEM), to disentangle the

complex pathways through which these environmental factors

impact SCBDeff via plant traits. These innovative methodologies

and the integration of detailed plant traits and environmental

variables contribute new insights into how beta diversity operates

in arid, mountainous landscapes, providing a foundation for

improved conservation strategies in similar ecosystems globally.
Materials and methods

Study area

The Saint Katherine Protectorate (SKP) is an arid protected area

and a biodiversity hotspot located in south Sinai, Egypt. The SKP

diverse geomorphological and geological structures have led to the

emergence of various microhabitat types, each harboring distinct

ecological niches (Shaltout, 2018). Among these, the Wadis, acting

as drainage systems, play a crucial role in water collection and

provide favorable conditions for plant growth. However, the

persistence of such species-rich ecosystems in this challenging

arid landscape remains an intriguing subject of study (Hegazy

and Doust, 2016). This region has an arid climate characterized

by scarce and unpredictable rainfall, with a mean annual rainfall of

about 60 mm. However, the high peaks receive orographic

precipitation, some in snow, which may reach up to 300 mm

annually. The area is a part of the igneous crystalline Pre-

Cambrian formation, which is more than 600 million years old.

The diversity in geomorphological and geological structures of

SKP resulted in a unique landscape. Six landform microhabitat types

are identified: Wadis (valleys), Terraces, Slopes, Gorges, Cliffs, Farsh

(basins), and Caves. Wadis are one of the most important ecosystems

in SKP, acting as drainage systems that collect water from catchment

areas and form favorable habitats for plant growth (Khedr, 2007;

Omar, 2012). These areas are also rich in cultural and natural heritage

sites, such as Mount Sinai and the Monastery of St. Catherine, as well

as the Wadi Feiran watershed area. SKP harbors a large number of

endemic species, further adding to its ecological importance.
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Vegetation sampling

Field surveys were conducted across 84 randomly distributed 20

m × 20 m plots (see Supplementary Figure S1), to capture the

vegetation composition and species abundance within the region’s

sparse vegetation. In each plot, both species presence and abundance

were recorded, focusing exclusively on native species. The abundance

data was then used to calculate the relative abundance of C3 and C4

plants in the study area. Relative abundance was determined by

dividing the total abundance of each plant species by the total

abundance of C3 or C4 species within each plot.

In addition to species presence and abundance, we recorded two

key ecological characteristics; species dominance, quantified as the

percentage cover of each species within plots (%) and life-form

categories that were classified into shrubs, herbs, and trees following

Raunkiær’s system (Raunkiær, 1934).

We focused on vascular plants, which are the primary

contributors to vegetation structure in the area. Surveys were

conducted during April–June 2021 to coincide with peak vegetative

activity, ensuring that only species with visible vegetative parts were

included in the survey. This timing minimizes seasonal biases linked

to extreme heat or drought-induced dormancy. This approach

ensures that both common and less abundant species were

adequately represented, providing a full picture of the vegetation

structure across different microhabitats.
Environmental data and species traits data

The climate data, including the aridity index (AI), were

downloaded from the CGIAR-CSI Global database with a resolution

of 30 arc seconds (www.cgiar-csi.org, Trabucco et al., 2008; Fisher

et al., 2011). These data represent average climate conditions for the

period 1970–2000, aligning closely with the vegetation data

collected during April–June 2021 to ensure temporal consistency.

The physical and chemical soil properties were represented by

five quantitative variables downloaded from the ISRIC-World Soil

Information database at a depth of 0–2 m and a spatial resolution of

30 arc seconds. These data reflect soil conditions up to 2022. We

used the spatial analyst toolbox in ArcGIS 10.5 to generate mean

raster layers for different soil depths, which were then resampled to

a 2.5 arc-min (~5 km) resolution. A composite variable representing

the five soil variables was computed using Principal Component

Analysis (PCA), with the first axis capturing 79% of the variability.

This composite variable included soil organic carbon content, soil

pH, soil texture, cation exchange capacity, and water availability.

To link site-level environmental variables to species-level

analyses, we calculated the mean aridity and soil resource values

across all plots where each species occurred. This aggregation

transformed site-specific environmental data into species-specific

predictors, enabling direct integration with trait-based models of

species contributions to beta diversity (SCBDeff). For example, a

species occurring in 10 plots was assigned the mean aridity and soil

values of those 10 plots, ensuring environmental drivers were

contextualized to its realized niche. This approach follows
frontiersin.org

http://www.cgiar-csi.org
https://doi.org/10.3389/fpls.2025.1521596
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


El-Barougy et al. 10.3389/fpls.2025.1521596
established methods for scaling site-level abiotic factors to species-

level responses in heterogeneous landscapes (Araújo et al., 2019).

To address potential multicollinearity among the environmental

variables, we performed a Variance Inflation Factor (VIF) analysis

using the ‘usdm’ package (version 1.1-18) in R 4.1.1 (Naimi, 2015). A

VIF threshold of 10 was applied, which is a commonly used cut-off to

identify and exclude variables that exhibit significant multicollinearity.

Variables with VIF values above this threshold were excluded from the

analysis to ensure robust statistical modeling. The final variables

retained after the VIF analysis were the aridity index (AI), soil

composite variable (captured through PCA).

The measured plant traits included height from ground level

(cm), specific leaf area (SLA) in cm²/g, and the number of leaves per

plant (leaf production). Due to restrictions on plant removal, SLA

was measured following the method described by El-Barougy et al.

(2021a, 2021c). Specific leaf area was estimated using allometric

equations (Basuki et al., 2009). We scanned the leaves of native

species outside their protected range and measured the total leaf area

using the IMAGEJ software, version 1.49. Then, we dried the leaves

and determined the leaf dry weight and calculated the SLA (cm2/g) as

the leaf area divided by the leaf weight (Basuki et al., 2009).

To evaluate phylogenetic relationships among the native

species, a phylogeny was constructed using four commonly

sequenced genes available in GenBank (Benson et al., 2012): rbcL,

matK, ITS1, and 5.8s. Among the 67 native species, 60 had at least

one gene represented in GenBank. For the seven native species

without available sequence data, we used sequences from

congeneric relatives as a proxy, following phylogenetic guidelines

by Cadotte and Jin (2014). Specifically, we selected the closest

relatives within the same genus or, when unavailable, within the

same family, ensuring that these substitutes shared similar

ecological and morphological characteristics with the target species.

Additionally, to establish the root of the phylogeny, the genetic

sequence of Amborella trichopoda Baill, an early diverging angiosperm,

was included as an outgroup species. The phylogenetic tree (see

Supplementary Figure S2) was constructed using methods previously

described in El-Barougy et al. (2021b). Phylogenetic relatedness within

plots was calculated using the mean pairwise phylogenetic distance

(MPD) following Swenson’s method (2014) with the “MPD” function

in the R package picante (version 1.8, Kembel et al., 2010).
Assessment of species contribution to beta
diversity (SCBDeff)

According to Legendre andDe Cáceres (2013), we calculated total

beta diversity (BDtotal) and species contribution to beta diversity

(SCBDeff). BDtotal provides a measure of the overall variability in

species composition across all plots within a study. To compute

BDtotal, species composition data were first transformed using the

Hellinger method (Legendre and Gallagher, 2001), which

standardizes the data while preserving ecological distance. This

transformation enabled the calculation of SCBDeff, representing

each species’ contribution to beta diversity within the dataset.

We employed a species abundance matrix, where rows represented

species and columns denoted different spatial units, to calculate
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SCBDeff using the “beta.div” function from the adespatial package

in R. SCBDeff was expressed as each species’ percentage contribution,

calculated as a fraction of the total contribution.
Beta regression for calculating SCBDeff

Since SCBDeff values range between 0 and 1, we applied beta

regression, a statistical approach suitable for modeling dependent

variables constrained within this interval. This method assumes that

the dependent variable follows a beta distribution and relates it to

explanatory variables using a linear predictor combined with a logit

link function (e.g. Cribari-Neto and Zeileis, 2010). However, a

limitation of SCBD analyses is that this metric is inherently

influenced by the distribution and abundance of species across

sites. Specifically, species that occur only at a single site or

ubiquitously across all sites contribute minimally to beta diversity.

The contribution of a species to beta diversity is not solely

determined by its occurrence frequency but rather by the

variability in its abundance across sites and the environmental

heterogeneity influencing its distribution (see Heino and Grönroos,

2017; Xia et al., 2022). Consequently, we suggest a two steps

approach. First, we remove the effect of occurrence using a

quadratic beta regression with occurrence as independent variable

(Figure 1) by extracting the residuals. We call this metric effective

SCBD (SCBDeff), which is defined for species i as: SCBDeff,i = SCBDi

– predicted (SCBDi). Second, we use linear models to relate SCBDeff

to biologically meaningful explanatory variables (e.g., species traits).

For the Beta regression, we utilized the R function “betareg” from

the R packages betareg (Cribari-Neto and Zeileis, 2010). This

approach aligns with methods for site contribution to beta

diversity as proposed by Legendre and De Cáceres (2013).
Generalized linear models

To explore the influence of aridity and soil resources on SCBDeff,

we conducted generalized linear models (GLMs) with Gaussian

family distribution, setting SCBDeff as the response variable.

Explanatory variables included the soil resources composite, climate

aridity index, mean pairwise phylogenetic distance (MPD), the C3/C4

relative abundance ratio, and species-level traits as defined above.

Residuals were visually examined using QQ plots, confirming no

transformations were necessary. The importance of interaction terms

observed in initial models led us to employ structural equation

modeling for a detailed analysis of direct and indirect influences.
Structural equation model

Structural equation modeling (SEM) was utilized to estimate

both the direct and indirect effects of explanatory variables on

SCBDeff (Grace and Pugesek, 1997; Grace, 2006). We initially

constructed a comprehensive model that accounted for all

possible direct and indirect effects of the variables under

consideration. This model was subsequently refined through
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backward elimination, guided by the Akaike Information Criterion

corrected for small sample sizes (AICc) values.

Prior to model fitting, the distributional assumptions of

normality for all variables were assessed using the Shapiro-Wilk

test and by examining Q-Q plots. SEM analyses were performed

using the lavaan package (version 0.6-9; Rosseel, 2012) in R, with

the function “sem” for model fitting and lavaan.survey package

(version 1.1.3.1; Oberski, 2014) to account for survey design effects

using the lavaan.survey function.

Model adequacy was evaluated using three fit indices: The

Standardized Root Mean Square Residual (SRMR), with a

threshold of less than 0.08 indicating a good fit; the Goodness-of-

Fit Index (GFI), where values greater than 0.95 suggest a good fit;

and the chi-squared test, where a P-value greater than 0.05 is

considered satisfactory fit (Kenny et al., 2015). These indices were

used synergistically rather than hierarchically to provide a

comprehensive assessment of model fit, ensuring robust

conclusions about model adequacy. All statistical analyses were

conducted in R version 4.2.1 (R Core Team, 2022).
Results

Influences of the interactions of species
traits, climate and soil on SCBD

A total of 67 native plant species was recorded during the

survey period (April–June 2021; see Supplementary Table S1). The

GLM analysis of two-way interactions demonstrated that SCBDeff

was significantly influenced by climatic aridity and soil resources,

with notable modulation by species traits (Figures 2, 3).

Specifically, SCBDeff showed a positive and significant
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interaction with climatic aridity (b = 0.002, p = 0.001), which

was further intensified by high values of mean phylogenetic

distance (MPD), the relative abundance of C3 plants, increased

plant height, and high leaf production, while low specific leaf area

(SLA) also contributed positively (Figure 2). In contrast, SCBDeff

exhibited a negative interaction with soil resources (b = -0.262, p =

0.001), with the direction and strength of this negative effect

strongly influenced by low SLA values alongside high plant

height and leaf production (Figure 3). These findings warranted

the inclusion of species traits in the SEM analysis to examine their

direct and indirect interactions with climatic aridity and

soil resources.
Direct and indirect effects on SCBD

The SEM results provided comprehensive insights into the

direct and indirect influences of species traits and their

interactions with climate and soil predictors on SCBDeff. SCBDeff

was significantly and positively associated with plant height, leaf

production, and the relative abundance of C3 plants (b = 0.01, 0.01,

0.032; p = 0.01, 0.026, 0.01, respectively), suggesting that increases

in leaf production and the relative abundance of C3 plants are

directly linked to higher contributions to beta diversity among

native species. Conversely, SLA exhibited a significant direct

negative effect on SCBDeff (b = -0.02, p = 0.027), indicating that

species with high SLA values tend to have lower contributions to

beta diversity. Additionally, MPD had a significant direct effect on

SCBDeff, indicating that distantly related species contribute more to

beta diversity than closely related species (Table 1; Figure 4).
Indirect effects of climatic aridity and soil
resources on SCBD

Climatic aridity and soil resources were the primary indirect

influencers on SCBDeff. Climatic aridity had a significant negative

effect on SLA, which was subsequently associated with an increase

in SCBDeff (b = -0.034, p = 0.001). This finding suggests that higher

aridity values correlate with lower SLA (b = -0.134, p = 0.012),

indirectly contributing to an increase in SCBDeff. Furthermore,

climatic aridity exerted negative effects on plant height and leaf

production (b = -0.339, -0.163; p = 0.001, 0.012), which in turn was

associated with a reduction in SCBDeff, indicating that elevated

aridity leads to lower plant height and leaf production, indirectly

decreasing SCBDeff.

Similarly, soil resources significantly positively affected

height, SLA, and leaf production, which indirectly influenced

SCBDeff. Higher soil resource availability was linked to increases

in plant height and leaf production, indirectly raising SCBDeff.

However, higher SLA in response to soil resources indirectly

negatively affected SCBDeff. Additionally, the interaction between

aridity and soil resources significantly positively affected SCBDeff

(b = 0.008, p = 0.001), indicating that the combined influence of

aridity and soil resources contributes positively to SCBDeff.
FIGURE 1

Beta regression illustrating the response of species contributions to
beta diversity (SCBD) to the probability of species occurrence. The
x-axis represents the probability of species occurrence, while the y-
axis shows SCBD values. The solid line indicates the regression
trend, and dashed lines represent the 95% confidence intervals.
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Discussion

The study provides useful insights into the complicated

mechanisms driving SCBDeff by analyzing the interconnections of

native species characteristics, climate, and soil resources. We found that

the SCBDeff is regulated by soil resources and climate aridity, with
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species traits functioning as significant modulators (Grace and Pugesek,

1997; Dıáz et al., 2016). This indicates that the distribution of native

plant species and their contribution to beta diversity is strongly

influenced by the availability of water resources, as measured by the

aridity index and soil water content (Fick andHijmans, 2017; Trabucco

and Zomer, 2019). These findings underscore the role of
FIGURE 2

Results of GLM models showing the response of SCBDeff to the two-way interactions between climatic aridity index and: (a–c) species traits, (d)
phylogenetic relatedness (MPD), (e) C3 vs C4 plant species. In panels a to d, red solid line (High) represents species in the upper 75th percentile of
the trait distribution; green dashed line (Mean) between the 25th and the 75th percentile, and purple dotted line (Low) in the lower 25th percentile.
Shaded regions: Indicate the 95% confidence intervals around the regression lines.
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environmental factors in structuring plant communities, with

implications for understanding ecosystem stability and resilience in

arid regions, especially as climate change intensifies water scarcity

(Allen et al., 2010; IPCC, 2014). The positive direct effect of climatic

aridity on SCBDeff shows that higher aridity levels are linked to a

greater contribution of certain studied species to beta diversity, such as
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Achillea fragrantissima and Adiantum capillus-veneris. Achillea

fragrantissima is a drought-tolerant shrub commonly found in arid

and semi-arid environments, thriving in rocky and sandy soils with

minimal water availability. In contrast, Adiantum capillus-veneris is a

fern species typically associated with moist, shaded microhabitats such

as the edges of springs and damp rock crevices. Despite their
FIGURE 3

Results of GLM models showing the response of SCBDeff to the two-way interactions between soil resources and: (a–c) species traits, (d) C3 vs C4
plant species, (e) phylogenetic relatedness (MPD). Legend as in Figure 2.
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TABLE 1 Results of the SEM for the direct and indirect effects of the climatic aridity index, soil resources, and species traits on SCBDeff.

Response Variable Predictors Coefficient Std. Err Z-value P(>|z|)

Direct Effects

SCBDeff

Height (cm) 0.012 0.002 5.309 0.001

SLA -0.02 0.013 -1.523 0.027

Leaf Production 0.015 0.004 2.232 0.026

MPD 0.013 0.034 0.383 0.02

Aridity Index 0.034 0.005 6.328 0.000

Soil resources 0.036 0.006 6.328 0.000

C3 plants-abundance 0.032 0.01 2.43 0.015

Indirect effects

SLA (cm2/gm) Soil resources 4.950 0.045 110.000 0.000

Height Soil resources 4.880 0.050 107.644 0.000

MPD Soil resources 0.189 0.011 17.467 0.000

Leaf Production Soil resources 5.073 0.047 106.957 0.000

c3-plants abundance Soil resources 0.065 0.01 2.45 0.11

Height (cm) Aridity Index -0.339 0.037 -9.2 0.000

SLA Aridity Index -0.134 0.053 -2.515 0.012

leaf Production Aridity Index -0.163 0.133 -1.23 0.0219

MPD Aridity Index -0.02 0 -4.561 0.000

C3-plants abundance Aridity Index 0.121 0.011 2.34 0.000

Soil resources Aridity Index 0.008 0.001 15.995 0
F
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0.036***  0.034*** 

0.012** 

0.015* 
-0.020* 

-0.032* 

-0.013* 

Chi2 2.166 
P-value 0.714 
 

SRMR  0.005 
CFI  0.99 

4.88*** 
-0.339*** 

 
5.07*** 4.95*** 

0.189*** 
 
-0.163*  -0.134* 

-0.020***  -0.121*** 

0.008*** 

FIGURE 4

Structural equation model showing the effects of the climatic aridity index, soil resources, and species traits on SCBDeff. Numbers adjacent to
arrows are path coefficients. Solid and dashed arrows represent positive and negative relationships, respectively. Only significant pathways are shown
(P < 0.05). Asterisks (*) indicate the significance levels of the path coefficients (*P < 0.05, **P < 0.01, ***P < 0.001). The proportion of variance
explained (R²) appears alongside each response variable in the model. The goodness-of-fit statistics (Chi2 and associated P-value, SRMR, CFI) are
presented in the gray table within the model.
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contrasting habitat preferences, both species coexist within transitional

zones where microclimatic variations create niches that support their

growth, reflecting the diverse ecological conditions influencing beta

diversity in arid landscapes. This suggests that certain native plant

species in the study may flourish and predominate in more arid

environments (Maestre et al., 2015).

Additionally, beta diversity encompasses both spatial and

temporal dimensions. Climate change, by driving temporal

turnover, may further influence the interplay between biotic and

abiotic factors and SCBDeff (Harrison et al., 2015; Lenoir et al.,

2020). Thus, shifts in beta diversity over time could alter the balance

between these factors, affecting the overall ecosystem dynamics.

Species features, including the mean pairwise phylogenetic distance

(MPD), the relative abundance of C3 plants, leaf production,

specific leaf area (SLA), and plant height, further regulate this

positive effect (Webb et al., 2002; Swenson, 2011). These traits

enable species to adapt to arid conditions, contributing more to beta

diversity. For example, species with higher specific leaf area (SLA)

had a lower contribution to SCBDeff, likely due to their water-

conservative strategies (Chaturvedi et al., 2021; Wright et al., 2004).

In comparison to previous studies, this research emphasizes the

importance of climatic aridity in shaping beta diversity (Dhirendra

et al., 2022; Dietrich et al., 2021; Hoffmann et al., 2019; Götzenberger

et al., 2012; Kraft et al., 2011). The positive relationship between

SCBDeff and the aridity index suggests that species contribute more

to beta diversity in increasingly arid conditions. This aligns with

studies showing that arid environments select for species with

drought-adaptive traits, promoting higher species turnover and

greater contributions to beta diversity (Liu et al., 2019; Panja et al.,

2022; Cornwell and Ackerly, 2009). Such conditions likely favor

species with efficient water-use strategies, leading to a high turnover

of species adapted to dry conditions. This turnover contributes

significantly to beta diversity, enhancing resilience in arid

environments by supporting a diverse range of adaptive strategies

(Schimper, 1903; de Bello et al., 2013).

The significant direct effects of certain species traits on SCBDeff,

such as plant height, leaf production, and the relative abundance of

C3 plants, regulate their crucial role in driving SCBDeff. This

observation is consistent with other research that has highlighted

the significance of functional traits in determining species

dominance and their contributions to beta diversity (Pardo, 2021;

Peya, 2018; Westoby et al., 2002; Dıáz et al., 2016). The negative

direct effect of specific leaf area (SLA) on species contribution to

beta diversity suggests that species with lower SLA values typically

follow conservative water-use strategies, contributing less to beta

diversity. This finding aligns with previous research emphasizing

the role of water-use efficiency traits in arid ecosystems, where

efficient resource utilization can provide a competitive advantage

(Wright et al., 2005; Reich, 2014; Liu et al., 2022; Carvajal et al.,

2019). However, with increasing aridity, the relationship between

SLA variance and ecosystem stability may shift from positive to

negative (Garcıá-Palacios et al., 2018). Species with low SLA values

may be favored in drylands, as their conservative water-use

strategies help maintain biomass stability (Dıáz et al., 2006;

Shipley et al., 2006). However, communities with high SLA
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variance may see shifts toward more competitive, drought-

avoiding species, leading to greater variability in biomass and

ecosystem processes (Lohbeck et al., 2015). Under these harsh

conditions, communities with high SLA variance may indicate the

replacement of stress-tolerant evergreen species by competitive,

summer-deciduous plants that avoid drought through leaf shedding

(Grime, 2006; Poorter et al., 2009), leading to increased variability

in plant biomass over time.

The positive direct effect of mean pairwise phylogenetic distance

(MPD) on SCBDeff highlights the crucial role of phylogenetic diversity

in shaping species’ contributions to beta diversity. This finding

indicates that distantly related species with greater evolutionary

divergence tend to contribute more significantly to beta diversity

than closely related species (Webb et al., 2002; Cavender-Bares et al.,

2009). In the context of the study area vegetation, which includes desert

and shrubland ecosystems, this effect is particularly pronounced. These

ecosystems are characterized by harsh environmental conditions,

where phylogenetic diversity among plant species may play a pivotal

role in enabling community resilience and functional differentiation

(Swenson, 2011; Graham and Fine, 2008). As species diverge through

evolutionary history, they accumulate distinct traits and ecological roles

that promote functional differentiation between communities (Hardy

and Senterre, 2007). This process, known as niche differentiation,

increases ecological differences across communities and subsequently

enhances beta diversity. Cadotte (2017) emphasized that greater

phylogenetic diversity increases the likelihood of complementary

resource use, strengthening ecological differences between

communities and driving higher beta diversity (Cadotte et al., 2009).

Phylogenetic diversity can also lead to phylogenetic over-

dispersion, where distantly related species co-occur due to divergent

functional traits that reduce competition and allow coexistence. This

over-dispersion results in communities with higher functional

differentiation, further contributing to beta diversity (Tucker and

Cadotte, 2013; Ding et al., 2021; Montaño-Centellas et al., 2020; Zhao

et al., 2022). Additionally, evolutionary history significantly drives

ecosystem processes, as distantly related species exhibit a broader

range of functional traits. Communities with high phylogenetic

diversity are more likely to support varied ecosystem functions, such

as nutrient cycling and productivity, due to the wide range of functional

traits represented. This enhanced beta diversity could strengthen

ecosystem resilience by allowing functional compensation during

environmental changes. Communities with greater phylogenetic

diversity are more likely to differ in ecosystem functions such as

productivity, nutrient cycling, and resilience to environmental

changes, which further enhances beta diversity (Flynn et al., 2011).

Alternatively, environmental filtering can lead to phylogenetic

clustering, where harsh environmental conditions select closely

related species with similar functional traits, thereby reducing beta

diversity (Webb et al., 2002; Cavender-Bares et al., 2009; Swenson,

2013). However, in ecosystems with weaker environmental filtering,

distantly related species with different adaptations colonize distinct

environments, promoting higher beta diversity through greater

community turnover (Helmus et al., 2007; Violle et al., 2011; Pavoine

and Bonsall, 2011). Overall, the positive association between MPD and

SCBDeff underscores the importance of considering evolutionary
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history in biodiversity assessments (Cadotte et al., 2008; Tucker et al.,

2017). Distantly related species contribute more to beta diversity

because their evolutionary divergence translates into greater

functional differentiation and niche partitioning, which supports

ecosystem functioning across different environments (Kraft et al.,

2007; Mouquet et al., 2012; Gerhold et al., 2015). Incorporating

phylogenetic diversity in conservation planning may help preserve

evolutionary distinctiveness and ensure stable ecosystem functions in

the face of environmental changes, particularly in arid regions (Faith,

1992; Srivastava et al., 2012; Winter et al., 2013).

The negative indirect effects of climatic aridity and soil resources

on SCBDeff through specific leaf area, plant height, and leaf production

highlight the complex influence of environmental factors on plant traits

and community structure, indirectly affecting beta diversity (Diaz et al.,

2007; Wright et al., 2005; Reich, 2014). Water scarcity due to climatic

aridity can shape plant communities by promoting species with traits

adapted to conservative water-use strategies, which may reduce their

contributions to beta diversity (Grime, 2006; Cornwell and Ackerly,

2009; Liu et al., 2019). Similarly, while nutrient-rich soils generally

support the growth of taller plants with numerous leaves, which

positively influences beta diversity, they may also promote species

with lower water-use efficiency (Maire et al., 2015; Craine et al., 2013).

This could lead to a decrease in contributions to beta diversity due to

the dominance of such species in resource-rich environments (Chapin

et al., 2000; Swenson et al., 2012). Future research could further

investigate these interactions by exploring additional environmental

factors, such as temperature fluctuations and anthropogenic impacts,

and examining SCBDeff across different ecosystems over time (Thuiller

et al., 2011; Newbold et al., 2015). Such studies would provide valuable

insights into how trait-environment interactions shape biodiversity

patterns and ecosystem resilience in changing climates (Lavorel and

Garnier, 2002; McGill et al., 2006).

Conclusion

The results of this study highlight the complex interactions

between species traits, climate aridity, and soil resources in shaping

species contributions to beta diversity (SCBDeff). Climatic aridity

emerged as a significant driver of SCBDeff, particularly in species with

traits such as greater phylogenetic distance, taller plant height, higher

leaf production, and a relative abundance of C3 plants. These traits

enable species to adapt to arid conditions, contributing more to beta

diversity. On the other hand, species with higher specific leaf area

(SLA) had a lower contribution to SCBDeff, likely due to their water-

conservative strategies. Phylogenetic diversity also played a pivotal

role, with distantly related species contributing more to beta diversity

due to functional differentiation and niche partitioning. Furthermore,

the complex indirect effects of climatic aridity and soil resources on

SCBDeff, mediated by species traits, emphasize how environmental

factors shape plant communities and their contribution to ecosystem

diversity. These results provide valuable insights into the mechanisms

driving beta diversity, suggesting that species adapted to arid

environments and with specific traits may play a pivotal role in

maintaining ecosystem function and stability. The study findings

highlight the importance of preserving species with key functional
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and phylogenetic traits, particularly in arid landscapes, where

diversity is essential to sustaining ecosystem health. Understanding

these interactions is essential for developing conservation strategies,

particularly in arid and resource-limited ecosystems in the face of

climate change, where monitoring the functional and phylogenetic

diversity will be key to enhancing ecosystem stability. Future research

should aim to explore the effects of additional environmental

stressors, such as temperature extremes and habitat fragmentation,

and assess these interactions over time. Such studies will provide

essential data to guide conservation actions for ecosystem resilience

in changing climates.
Study limitations

Despite the valuable insights provided by this study, several

limitations should be considered when interpreting the findings.

Firstly, the study was conducted within a specific region (the Saint

Katherine Protectorate in Egypt), which may limit the generalizability

of the results to other arid regions with different environmental

conditions. Additionally, the reliance on a single set of environmental

variables (climate and soil resources) and plant traits, while

comprehensive, may not fully capture the complex interactions that

influence beta diversity in other ecosystems. The study’s focus on a

limited number of plant traits, such as height, specific leaf area (SLA),

and leaf number, may not account for the full spectrum of functional

traits that could influence species contributions to beta diversity,

potentially oversimplifying the role of functional diversity.

Furthermore, although the study used advanced statistical

techniques such as structural equation modeling (SEM) and beta

regression to explore the relationships between environmental factors

and SCBD, the complexity of these models may lead to issues with

model fit or overfitting, especially given the limited sample size (84

plots). Lastly, while phylogenetic information was incorporated, the

use of gene sequences from closely related species for some species

may introduce uncertainties in phylogenetic relationships, potentially

affecting the accuracy of the phylogenetic analyses. These limitations

highlight the need for further studies across broader scales and with

more diverse datasets to refine the understanding of beta diversity

dynamics in arid ecosystems.
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Lohbeck, M., Poorter, L., Martıńez-Ramos, M., and Bongers, F. (2015). Functional trait
strategies of trees in dry and wet tropical forests are similar but differ in their consequences
for succession. PloS One 10, e0123741. doi: 10.1371/journal.pone.0123741

MacArthur, R. H., and Wilson, E. O. (1967). The theory of island biogeography
(Princeton and Oxford: Princeton University Press).

Maestre, F. T., Quero, J. L., Gotelli, N. J., Escudero, A., Ochoa, V., Delgado-
Baquerizo, M., et al. (2012). Plant species richness and ecosystem multifunctionality
in global drylands. Science 335, 214–218. doi: 10.1126/science.1215442

Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V.,
Gozalo, B., et al. (2015). Increasing aridity reduces soil microbial diversity and
abundance in global drylands. Proc. Natl. Acad. Sci. 112 (51), 15684–15689.
doi: 10.1073/pnas.1516684112

Maire, V., Wright, I. J., Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M.,
et al. (2015). Global effects of soil and climate on leaf photosynthetic traits and rates.
Global Ecol. Biogeography 24, 706–717. doi: 10.1111/geb.2015.24.issue-6

McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M. (2006). Rebuilding
community ecology from functional traits. Trends Ecol. Evol. 21, 178–185.
doi: 10.1016/j.tree.2006.02.002

Montaño-Centellas, F. A., McCain, C., and Loiselle, B. A. (2020). Using functional
and phylogenetic diversity to infer avian community assembly along elevational
gradients. Global Ecol. Biogeography 29, 232–245. doi: 10.1111/geb.13021
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