
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Abiotic Stress
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1521460
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Neodymium (Nd), a rare earth element (REEs), is widely utilized in industry. Although the detailed biological role of Nd in plant biology is unclear, recent reports have noted its oxidative phytotoxicity at concentrations higher than 200 mg kg -1 soil. At present it is unclear if these detrimental effects could be offset by the global rise in atmospheric carbon dioxide concentration ([CO2]) which has been shown to enhance photosynthesis and growth in a wide range of C3 plant species. To assess any amelioration effects of [CO2], a phytotoxic dose of Nd (III) was given to wheat grown under two scenarios of atmospheric CO2, ambient levels of CO2 (aCO2, 420 ppm) and eCO2 (620 ppm) to assess growth and photosynthesis. Our results suggest that at ambient [CO2], Nd treatment retarded wheat growth, photosynthesis and induced severe oxidative stress.In contrast, eCO2 reduced the accumulation of Nd in wheat tissues and mitigated its negative impact on biomass production and photosynthesis related parameters, i.e., photosynthetic rate, chlorophyll content, Rubisco activity and photochemical efficiency of PSII (Fv/Fm). Elevated[CO2] also supported the antioxidant defense system in Nd-treated wheat, enhanced production of enzymatic antioxidants, and more efficient ascorbate-glutathione recycling was noted. While additional data are needed, these initial results suggest that rising [CO2] could reduce Nd-induced oxidative stress in wheat.
Keywords: Neodymium, elevated CO2, wheat, Photosynthesis, Antioxidants
Received: 01 Nov 2024; Accepted: 18 Mar 2025.
Copyright: © 2025 Saleh, Haridy, Mohammed, Ziska, Alotaibi, Khalil, Madany, Abdelgawad and Amer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Afrah Mohammed, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.