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Introduction: Stoichiometric homeostasis is an important strategy used by plants

to function optimally in changing environments.

Methods: In order to investigate whether plants under stricter resource

restrictions exhibit stronger homeostasis, this study took M. alba inhabiting in a

dry-hot valley as the research subject.

Results: The stoichiometry of M. alba leaves, their variations in response to

altitude and slope, and their correlations with soil were analyzed. The results

showed that soil nutrient levels were higher on the shady slope compared to the

sunny slope, and responded differently to altitude on the two slopes. On the

sunny slope, soil carbon (C) content increased significantly with altitude, whereas

on the shady slope, soil phosphorus (P) content decreased with increasing

altitude. The C: N and C: P ratios of the soil were lower than the average in

China. The C: N and C: P ratios ofM. alba leaves were lower than those of global

and Chinese forest ecosystems. The N: P ratio of M. alba leaves was < 14.

However, no significant correlation was observed betweenM. alba leaves and soil

C, N, P, or stoichiometric characteristics. The changes in C, N, and P and their

ratios inM. alba leaves did not correspond with those in the soil.M. alba exhibited

"strict homeostasis" on both sunny and shady slopes.

Discussion: The results suggest that M. alba's growth is limited by nutrients

availability, particularly nitrogen. The strict stoichiometric homeostasis is an

adaptation strategy for M. alba in dry-hot valleys to alleviate nutrient

limitations, which leads to a decoupling of ecological stoichiometry between

M. alba leaves and soil.
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1 Introduction

Ecological stoichiometry examines the balance of multiple

chemical elements in ecological interactions, with a focus on C, N,

and P (Elser et al., 2000, 2010; Fan et al., 2015). It serves as a powerful

tool for understanding plant adaptation strategies to changing

environments and detecting nutrient limitations (Güsewell, 2004;

Zhou et al., 2024). To function optimally, organisms must maintain a

relatively fixed C:N:P ratio, a concept known as stoichiometric

homeostasis (Sterner and Elser, 2002; Güsewell, 2004). This

homeostatic balance exists at both the individual and community

levels (Bertrand et al., 2019). The concept of stoichiometric

homeostasis was first introduced by Redfield in 1958, who

discovered that the C:N:P ratio of plankton remained consistently

at 106:16:1 (Redfield, 1958). Since then, stoichiometric homeostasis

has been observed in various organisms, including microbes, forests,

and herbaceous plants (Makino et al., 2003; Zhang et al., 2018).

However, plant stoichiometry often changes in response to

environmental fluctuations, as plants primarily obtain their

nutrients from the soil (Reich and Oleksyn, 2004). Wirtz and

Kerimoglu (2016) termed this variation as stoichiometric flexibility,

identifying it is a strategy autotrophs use to optimize resource

utilization under nutrient-limited conditions Stoichiometric

flexibility is influenced by various factors, including an organism’s

nature, climate, altitude, nutrient availability, intensity of

perturbation, and geographic range size (Elser et al., 2010; Sistla

and Schimel, 2012; Bertrand et al., 2019). To quantify an organism’s

ability to maintain stoichiometric homeostasis or its range of

stoichiometric flexibility, Sterner and Elser (2002) proposed a

continuously variable regulation parameter (H), which was found

to vary significantly among different organisms (Elser et al., 2010).

Numerous studies have explored stoichiometric flexibility across

various organisms and levels, leading to some generalizable

hypotheses. For instance, stoichiometric homeostasis tends to be

stricter at higher trophic levels compared than at lower ones (Hessen

et al., 2004; Sistla and Schimel, 2012) and increases with scale (Sistla

and Schimel, 2012). Moreover, autotrophs exhibit greater variability

in stoichiometric ratios than heterotrophs across the food web

(Hessen et al., 2004; Persson et al., 2010; Bertrand et al., 2019).

One of the main factors influencing stoichiometric flexibility is the

shift in nutrient limitation (Güsewell, 2004; Sistla and Schimel, 2012).

In theory, stoichiometric homeostasis is a strategy plants use tomitigate

resource limitations (Rastetter and Shaver, 1992; Wirtz and Kerimoglu,

2016). From this perspective, plants in nutrient-limited environments

are expected to maintain stricter stoichiometric homeostasis (Güsewell,

2004). To achieve this, they employ various adaptive strategies. An

excessively strong homeostatic mechanism could even lead to the

decoupling of plants from soil. Some researchers have found that soil

nutrients influence plant stoichiometric homeostasis, with plants

experiencing stricter resource limitations exhibiting stronger

homeostasis (Yu et al., 2011; Chen et al., 2016; Su and Shangguan,

2022). Han et al. (2011) proposed the Stability of Limiting Elements

Hypothesis, which suggests that variability and environmental

sensitivity are lowest for elements that are most limiting in nature,

indicating that plant stoichiometric homeostasis varies with nutrient

limitation. Chen et al. (2016) found that during the ecological
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restoration, as soil nutrients improved, the stoichiometry of D.

dichotoma shifted from strong stoichiometric homeostasis in the

early stage to weak stoichiometric homeostasis in the later stage. This

finding also suggests that plants exhibit stronger internal homeostasis

in more nutrient-restricted environments. However, this hypothesis

remains unconfirmed, as the studies mentioned above did not directly

address the flexibility of plants’ stoichiometric ratios are in resource-

constrained environments.

The dry-hot river valley is a distinct type of river valley

characterized by high temperatures, aridity, and low air humidity (Ya

et al., 2004). In China, these valleys are primarily found in Yunnan,

northwestern Taiwan, southwestern Hainan, and southwestern

Sichuan. Within Sichuan Province, they are mainly located along the

Jinsha, Yalong, and Dadu rivers in southern Ganzi, as well as the Jinsha

River in Panzhihua and Liangshan (Zheng, 2010). Plant growth in

these valleys is severely limited by high temperatures, arid conditions,

poor soil fertility, and severe soil erosion (Shoukang et al., 2022). To

optimize their fitness, plants in dry-hot river valley have evolved

specific stoichiometric strategies to adapt to this environment. They

typically exhibit higher leaf N and P contents and lower C:N and C:P

ratios (Hong-bo et al., 2021). However, previous research has primarily

focused on nutrient content and ratios, with no studies to date

investigating the homeostatic stoichiometric features of plants in this

region. It remains unclear whether plants enhance their adaptability

through strong homeostasis. Furthermore, numerous studies have

indicated that soil fertility in dry-hot valleys increases with

precipitation and soil nutrient content along an elevation gradient

(Lei Shan-Yu et al., 2022; Chang-ming et al., 2023) and is higher on

shaded slopes compared to sunny slopes (Shoukang et al., 2022;

Chang-ming et al., 2024). However, it remains uncertain whether

these variations in nutrient status influence the homeostasis of plants in

dry-hot valleys.

Morus alba is a common economic timber species in China’s

dry-hot valleys, valued for both its fruit and leaves (Batiha et al.,

2023). It plays a crucial role in soil and water conservation and soil

improvement, exhibiting a rapid growth rate, strong drought

resistance, and high environmental adaptability (Jianfeng et al.,

2016; Xie et al., 2024). As a result, it has been widely planted

throughout the Jinsha River valley since the 1990s (Mingqin, 1996;

Sheng et al., 1999). This study examines M. alba by analyzing the

stoichiometric characteristics of its leaves, its variation with altitude,

differences between sunny and shady slopes, and correlations with

soil. The objective is to determine whether plants in dry-hot valleys

exhibit strong stoichiometric homeostasis and whether this

homeostasis varies with altitude and slope.
2 Materials and methods

2.1 Study sites

The study area is located in Yanbian County, Panzhihua City,

Sichuan Province, China (101.52°∼101.53°E, 26.95°∼26.96°N),

within the dry-hot river valley at the junction of Sichuan and

Yunnan provinces (Figure 1). This region experiences a typical

South Asian tropical dry-hot valley climate, with an annual average
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temperature was 19.2°C. The three main soil types are bauxite, red

soil, and yellow-red soil.

The predominant variety of M. alba cultivated in this region is

Yunsang No. 2, which is used for both fruit and leaf production. In

the study area,M. alba is primarily found at altitudes between 1,000

and 2,000 m asl, with most trees concentrated in the mulberry forest

at 1,200–1,500 m asl. At altitudes of 1,000∼1,200 and 1,500∼2,000
m asl,M. alba was observed to be scattered along roadsides, ditches,

and near houses.
2.2 Sampling and analysis

All samples were collected in June 2023 from eight sampling

sites in mulberry orchards that had been established for more than 3

years, at altitudes ranging from 1,200 to 1,500 m asl. Sampling was

conducted on both sunny and shady slopes (Figure 1). The

mulberry trees had trunk diameters of 6–10 cm, with row spacing

of 1.5–2 and plant spacing of 0.6–1 m.

At each sampling site, three 10 m2 × 10 m2 sampling plots were

randomly selected. Withon each plot, three 1 m2 × 1 m2 quadrats

were placed along the diagonal (at both ends and the midpoint). In

each quadrat, five soil samples were collected from the center and

corners at a depth of 0 to 25 cm using a soil drill, then combined

into a single composite sample. Similarly, healthy M. alba leaf

samples were collected from each quadrat.

M. alba leaves were oven-dried at 70°C for 48 h and then

powdered. Soil samples were air-dried and subsequently ground.

The ground samples were used to determine organic carbon

content, total nitrogen content, and total phosphorus content
Frontiers in Plant Science 03
using the potassium dichromate oxidation external heating

method, the micro-Kjeldahl method, and the ammonium

molybdate method, respectively. Measurement results are

expressed as nutrient content per unit mass (g kg−1).
2.3 Statistical analyses

Statistical analyses were performed using R (version 4.4.1) and

SPSS 22.0 (SPSS Inc, Chicago, USA). Variance decomposition was

conducted to assess the relative effects of altitude, slope, and their

interactions using the “vegan” package in R. Nutrient levels and

stoichiometric ratios between sunny and shady slopes were

compared using a t-test. To identify trends in nutrient contents

and stoichiometric ratios at different altitudes, linear curve fitting

was applied to examine the link between C, N, and P contents,

stoichiometric ratios, and altitude. Spearman correlation analysis

was used to assess the relationships between the stoichiometric

ratios and C, N, and P contents.

The distribution ranges of difference values (D-values) for

nutrient contents and stoichiometric ratios between M. alba leaves

and soil were analyzed to determine if M. alba leaves maintained

synchrony with soil. Firstly, the nutrient concentrations and

stoichiometric ratios of mulberry leaves and soil were standardized

as follows:

Observed value −Mean value
Mean value

Subsequently, the difference between the two standardized

values was calculated (e.g., leaf C − soil C). If the distribution of
FIGURE 1

The study area.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1520936
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2025.1520936
D-values remained within the 95% confidence interval of its mean,

it indicated that changes in leaves were synchronized with those in

the soil. Conversely, if the distribution exceeded the 95% confidence

interval, it was assumed that leaf changes were not synchronized

with soil changes.

The strength of plant stoichiometric homeostasis was analyzed on a

log–log scale using the model: log(y) = log(c) + (1/H)log(x), where y

represents the content of C, N, or P, or the ratios of C:N, C:P, or N:P in

leaves; x represents the content of C, N, or P, or the ratios of C:N, C:P, or

N:P in soil; and c is a constant. Values for H and c are determined

through regression analysis of the relationship between y and x. The

value of 1/Hwas derived from the regression slope between log x and log

y, ranging from 0.00 to 1.00. To assess stoichiometric homeostasis, one-

tailed tests with a = 0.10 were conducted. If the regression relationship

was not significant (p > 0.10), the plant was classified as “strictly

homeostatic”. However, if the regression relationship was significant

(p < 0.10), stoichiometric homeostasis was categorized into four levels:

homeostatic (0 < 1/H < 0.25), weakly homeostatic (0.25 < 1/H < 0.5),

weakly plastic (0.5 < 1/H < 0.75), and plastic (1/H > 0.75) (Figure 2).

All figures in this paper were created using Origin 2024

(OriginLab Corporation, Northampton, MA, USA).
3 Results

3.1 Differences in the stoichiometric ratios
and contents of C, N, and P in soil and M.
alba leaves

The soil had significantly lower C, N, and P contents, as well as C:N,

C:P, and N:P ratios, compared to M. alba leaves (p < 0.05). Moreover,

the coefficients of variation for soil C, N, and P contents, as well as C:N,

C:P, and N:P ratios, were higher than those forM. alba leaves (Table 1).

Slope significantly influenced soil C, N, C:N, C:P, and N:P (p <

0.01), whereas altitude had a significant effect on soil P (p < 0.01).

Additionally, soil C:P was influenced by both slope and altitude.
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Variance decomposition analysis indicated that slope was the

primary factor influencing soil C, N, C:N, C:P, and N:P. For soil

C, N, and N:P, the order of influence magnitude was slope >

interaction effects > altitude. For soil C:N and C:P, the order of

influence magnitude was slope > altitude > interaction effects. The

dominant factor affecting soil P was slope (Figure 3).
3.2 C, N, and P contents and
stoichiometric ratios between
different slopes

The nutrient content and stoichiometric ratios of the soil differed

significantly between the shady and sunny slopes (p < 0.05). The shady

slope had a higher concentration of carbon (15.47 g·kg−1) than the

sunny slope (5.93 g·kg−1). Similarly, nitrogen content was significantly

higher on the shady slope (2.10 g·kg−1) compared to the sunny slope

(0.69 g·kg−1). In contrast, the difference in phosphorus content

between the two slopes was not significant (p > 0.05), with the

shady slope having a slightly higher concentration (0.69 g·kg−1) than

the sunny slope (0.68 g·kg−1). The C:P and N:P ratios were

significantly higher on the shady slope than on the sunny slope (p <

0.05), whereas the C:N ratio was lower (p < 0.05) (Figure 4a).

However, no significant difference was found in the

stoichiometric ratios or the C, N, and P contents of M. alba

leaves between the shady and sunny slopes (p > 0.05) (Figure 4b).
3.3 Responses of C, N, and P contents and
stoichiometric ratios to altitude

The response of nutrient contents and stoichiometric ratios in

soil and M. alba leaves to altitude varied significantly between

sunny and shady slopes (Table 2).
FIGURE 2

Potential patterns relating soil to plant stoichiometry (adapted from
Sterner and Elser, 2002; Zhou et al., 2024).
TABLE 1 Variation coefficients for stoichiometric ratios and C, N, and P
contents in soil and M. alba leaves.

Item Mean ± standard
error

Variation
coefficients

Soil C (g kg−1) 10.7 ± 1.31 0.49

Soil N (g kg−1) 1.4 ± 0.2 0.58

Soil P (g kg−1) 0.68 ± 0.03 0.19

Soil C:N 8.33 ± 0.39 0.19

Soil C:P 16.21 ± 2.33 0.58

Soil N:P 2.12 ± 0.37 0.7

Leaf C (g kg−1) 403.25 ± 3.41b 0.03

Leaf N (g kg−1) 29.52 ± 0.89 0.12

Leaf P (g kg−1) 2.79 ± 0.09 0.13

Leaf C:N 13.65 ± 0.49 0.14

Leaf C:P 146.04 ± 5.68 0.16

Leaf N:P 10.69 ± 0.36 0.13
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On the sunny slope, only soil C showed a significant linear increase

with altitude (p < 0.05). In contrast, on the shady slope, soil P decreased

linearly with altitude, while soil C:P and N:P increased (p < 0.05).

For M. alba, leaf C scaled linearly and positively with altitude on

the sunny slope (slope = 0.0186, R2 = 0.66, p < 0.05) but negatively on

the shady slope (slope = − 0.0146, R2 = 0.69, p < 0.01). Leaf N, P, and

N:P decreased linearly with increasing altitude on the shady slope (p <
Frontiers in Plant Science 05
0.05) but showed no significant change on the sunny slope (p > 0.05).

Similarly, leaf C:N increased linearly with altitude on the shady slope

(p < 0.05) but remained relatively constant on the sunny slope

(p > 0.05). In contrast, leaf C:P showed a positive linear

relationship with altitude on the sunny slope (slope = 0.0599,

R2 = 00.57, p < 0.01), but no significant linear relationship was

found on the shady slope (p > 0.05).
FIGURE 3

The effects of altitude and slope and their interactions on C, N, and P contents and stoichiometric ratios of soil and M. alba leaves. *p < 0.05;
**p < 0.01; ***p < 0.001. Alt, altitude; Slo, slope; Int, interactions; Une, unexplained.
FIGURE 4

C, N, and P contents and stoichiometric ratios in soil (a) and M. alba leaves (b) on sunny and shady slopes. *p < 0.05; **p < 0.01;.
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3.4 Correlations among C, N, and P
contents and stoichiometric ratios

A positive correlation between was found between soil C and N

(r = 0.98, p < 0.05). Additionally, both soil C and N were positively

correlated with soil C:P and N:P but negatively correlated with

soil C:N (p < 0.05). However, the correlations among leaf C, N, and

P and leaf stoichiometric ratios were all found to be insignificant

(p > 0.05). Leaf N was negatively correlated with leaf C:N, but

positively correlated with leaf N:P (p < 0.05). Similarly, leaf P

showed a negative correlation with leaf C:P but a positive

correlation with N:P (p < 0.05). Furthermore, no significant

correlation was found between soil and leaf (p > 0.05) (Figure 5).
3.5 D-values of nutrient contents and
stoichiometric ratios between M. alba
leaves and soil

On both shady and sunny slopes, theD-values in nutrient contents

and stoichiometric ratios between M. alba leaves and soil did not

stabilize within a specific range (95% confidence interval of the means).

These results suggested that the nutrient contents and stoichiometric

ratios ofM. alba leaves did not correspond to changes in soil (Figure 6).
3.6 Homeostasis on sunny and
shady slopes

In this study, the regression relationships between M. alba

leaves and soil on both shady and sunny slopes were not

significant (p > 0.10). Therefore, M. alba should be classified as

strictly homeostatic (Table 3).
Frontiers in Plant Science 06
4 Discussion

4.1 Nutrient limitation

The dry-hot valley has traditionally been regarded as a nutrient-

poor and water-scarce environment, unsuitable for plant growth

(Ya et al., 2004; Duan et al., 2017). However, in this study area, the

average soil organic carbon, total soil nitrogen, and total

phosphorus were 10.7, 1.4, and 0.68g·kg−1, respectively. These

values indicate that the soil nutrient level in the study area is at a

medium level compared to the national average (Fangyan et al.,

2007; Tian et al., 2010; Zi-qi et al., 2022). Further analysis revealed

that the soil nutrient level on the sunny slope was lower, consistent

with most studies on dry-hot valleys (Guo, 2014; Guan, 2022; Hang

et al., 2022; Yiting et al., 2023), whereas the nutrient level on the

shady slope was at a medium level. These findings highlight the

importance of distinguishing between the two slopes in

future research.

Soil stoichiometry is a useful tool for understanding the cycling of

elements in soil (Klemmedson and Wienhold, 1992; Zechmeister-

Boltenstern et al., 2015). Soil C:N and C:P ratios reflect the rates of

soil organic matter (SOM) decomposition, nutrient mineralization or

immobilization, and plant nutrient limitation. A lower C:N ratio

indicates a faster SOMmineralization rate, with the cumulative SOM

rate being lower than the decomposition rate (Enwezor, 1976; Bui

andHenderson, 2013; Pan et al., 2024). Although less frequently used,

the soil C:P ratio also serves as a useful indicator of the source/nature

of organic matter, with a lower C:P suggesting a higher SOM

mineralization rate (Bui and Henderson, 2013). In this study, the

C:N ratio in the dry-hot valley (8.33) was lower than the Chinese

national average (11.9) (Tian et al., 2010; Pan et al., 2024) and

findings from other studies on dry-hot valleys (Changming et al.,

2022; Yiting et al., 2023; Zhifeng et al., 2024). Similarly, the C:P ratio
TABLE 2 Curve fitting of nutrient contents, stoichiometric ratios, and altitude.

Item Sunny slope Shady slope

Common Slope Slope CI (95%) R2 p-value Common Slope Slope CI (95%) R2 p-value

Soil C 0.1225 (0.0572, 0.1878) 0.69 < 0.05 0.0124 (− 0.1177, 0.1425) 0.01 NA

Soil N − 0.0235 (− 0.0632, 0.0162) 0.18 NA 0.0135 (0.0002, 0.0268) 0.40 NA

Soil P − 0.0003 (− 0.0037, 0.0031) 0.00 NA − 0.0029 (− 0.0048, − 0.0009) 0.59 < 0.05

Soil C:N 0.0115 (− 0.0102, 0.0333) 0.15 NA − 0.0052 (− 0.0144, 0.004) 0.17 NA

Soil C:P 0.0464 (− 0.2058, 0.2985) 0.02 NA 0.1504 (0.047, 0.2537) 0.58 < 0.05

Soil N:P − 0.0066 (− 0.015, 0.0017) 0.29 NA 0.0154 (0.0083, 0.0225) 0.75 < 0.01

Leaf C 0.0186 (0.0079, 0.0293) 0.66 < 0.05 − 0.0146 (− 0.0224, − 0.0068) 0.69 < 0.01

Leaf N 0.0029 (− 0.0001, 0.0058) 0.38 NA − 0.0032 (− 0.0044, − 0.002) 0.82 < 0.01

Leaf P − 0.0009 (− 0.0018, 0) 0.39 NA − 0.0013 (− 0.0019, − 0.0007) 0.75 < 0.01

Leaf C:N − 0.0012 (− 0.0078, 0.0055) 0.02 NA 0.0178 (0.0106, 0.025) 0.80 < 0.05

Leaf C:P 0.0599 (0.0182, 0.1015) 0.57 < 0.05 − 0.0056 (− 0.0177, 0.0066) 0.12 NA

Leaf N:P 0.0088 (0.0004, 0.0171) 0.42 NA − 0.0027 (− 0.0041, − 0.0013) 0.71 < 0.01
fr
CI, confidence interval.
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in the study area (16.21) was significantly lower than the Chinese

national average (61) (Tian et al., 2010; Pan et al., 2024) and findings

from other studies on dry-hot valleys (Changming et al., 2022; Yiting

et al., 2023; Zhifeng et al., 2024). These results suggest that SOM

mineralization in the study area was higher than the Chinese national

average and other reported dry-hot valley studies (Tian et al., 2010;

Bui and Henderson, 2013).

Nitrogen and phosphorus are essential nutrients for plant

growth and often serve as limiting factors in terrestrial

ecosystems (Reich and Oleksyn, 2004; Yanan et al., 2014; Zhang

et al., 2018). The N:P ratio in plant tissues is a widely used indicator
Frontiers in Plant Science 07
of nutrient limitation, with values > 16 suggesting phosphorus

limitation and values < 14 indicating nitrogen limitation

(Güsewell, 2004; Han et al., 2005; Bertrand et al., 2019). In this

study, no significant difference was observed in the N:P ratio of M.

alba leaves between the sunny and shady slopes in the dry-hot

valley, with an average of 10.28 on the sunny slope and 11.10 on the

shady slope—both below 14. These findings suggest that M. alba

growth is limited by nitrogen. The C:N and C:P ratios of plant leaves

reflect nitrogen and phosphorus use efficiency as well as the plant’s

capacity for carbon fixation (Sun et al., 2019; Pan et al., 2024). In

this study, the C:N and C:P ratios of M. alba leaves in the dry-hot
FIGURE 6

D-values of nutrient contents and stoichiometric ratios between M. alba leaves and soil on shady (a) and sunny (b) slopes. The bars above and below
the box represent the 95% confidence intervals of the mean.
FIGURE 5

Correlations among C, N, and P contents and stoichiometric ratios in soil and M. alba leaves. *p < 0.05.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1520936
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guo et al. 10.3389/fpls.2025.1520936
valley were 13.65 and 146.04, respectively, which were lower than

the value reported for global (37.1, 469.2) and Chinese forest

ecosystems (28.5, 513.0) (Han et al., 2005). This indicates that the

plant’s nitrogen and phosphorus utilization efficiency, as well as its

carbon fixation capacity, are lower in this study area compared to

broader global and Chinese ecosystems (Sun et al., 2019).

Additionally, reducing the C:N and C:P ratios is a known

adaptive strategy that plants use to cope with resource-limited

environments (Elser et al., 1996, 2000). Some species in dry-hot

valleys have been observed to adopt this strategy (Lin et al., 2019;

Jingwen et al., 2020; Hang et al., 2022), and M. alba appears to

employ a similar mechanism to enhance its growth under

these conditions.
4.2 The influences of slope and altitude on
soil nutrients and stoichiometry

Slope aspect significantly influences soil nutrient levels by

regulating water and energy availability and energy input, thereby

shaping local abiotic and biotic environments (Bale et al., 1998;

Yang et al., 2020; Qin et al., 2021). This is consistent with the

findings of this study, where the primary effects on soil organic

carbon, soil nitrogen, C:N, C:P, and N:P were attributed to slope

differences. Previous studies have also shown that shady slopes,

characterized by lower temperatures, reduced solar radiation,

smaller temperature fluctuations, and higher topsoil water

retention, promote organic matter accumulation, leading to more

fertile compared to sunny slopes (Sharma et al., 2010; Zhaoyang

et al., 2019; Tan et al., 2020; Yang et al., 2020; Liu et al., 2024).

Research conducted in the dry-hot valleys of the Jinsha River

(Chang-ming et al., 2024) and Minjiang River (Nan, 2016; Yang

et al., 2020) similarly indicates that soil fertility is higher on shady

slopes, which is consistent with the results of this study.

In mountainous areas, altitude is the primary factor driving

spatial heterogeneity. Soil nutrient levels and stoichiometry vary

significantly between higher and lower altitudes due to differences

in climatic conditions, precipitation patterns, vegetation, and

microbiome composition (Jeyakumar et al., 2020; Chang-ming

et al., 2023). In this study, altitude was identified as the main

factor influencing soil phosphorus content and the C:P ratio.

Numerous studies have demonstrated that in dry-hot valleys,

increasing altitude results in reduced dry-hot winds and higher

precipitation, leading to a steady accumulation of soil organic

carbon, nitrogen, and phosphorus, and ultimately enhancing soil

fertility (Chunming et al., 2003; Mullen, 2011; Peng et al., 2011).
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However, previous studies have not thoroughly examined how soil

nutrient changes with altitude differ between sunny and shady

slopes. In this study, we found that soil nutrient levels responded

differently to altitude depending on slope aspect. On sunny slopes,

soil organic carbon exhibited a significant increasing trend with

altitude, aligning with findings from other research in dry-hot

valleys (Chunming et al., 2003; Mullen, 2011; Peng et al., 2011),

In contrast, on shady slopes, soli phosphorus decreased with

increasing altitude, indicating a reduction in soil nutrient levels.

The levels of soil carbon, nitrogen, and phosphorus are influenced

by various processes, including nutrient input, mineralization,

immobilization, and leaching (Johnson et al., 1998; Wang et al.,

2001; Soon and Arshad, 2002). As altitude increases, higher

precipitation promotes vegetation growth and enhances soil

organic matter accumulation (Chang-ming et al., 2024). However,

unlike soil carbon and nitrogen, soil phosphorus primarily

originates from the parent material rather than SOM (Tian et al.,

2010). At higher altitudes, increased precipitation may lead to

greater nutrient leaching, which in turn reduces soil phosphorus

levels (Maojie, 2011; Liu et al., 2019). A similar decline in soil

phosphorus with increasing altitude has also been observed in other

studies on dry-hot valleys (Xueju, 2005; Zhen-heng and Yuan-bo,

2018). Similarly, another study found that soil nutrient levels

responded differently to altitude between sunny and shady slopes,

with soil nitrogen increasing with altitude on sunny slopes but

decreasing on shady slopes (Zhen-heng and Yuan-bo, 2018).
4.3 Decoupling of nutrients and
stoichiometry between M. alba leaves
and soil

Stoichiometric homeostasis is a key parameter in ecological

stoichiometry (Zhou et al., 2024). Plants with strong stoichiometric

homeostasis are relatively conservative in nutrient use, whereas those

with weaker homeostasis can flexibly use nutrients (Yu et al., 2010).

Thus, the level of stoichiometric homeostasis reflects plant ecological

adaptation mechanisms (Wirtz and Kerimoglu, 2016; Peng et al.,

2017). In this study, M. alba exhibited strong homeostasis, as no

significant correlation was found between the nutrient contents and

stoichiometry ratios of M. alba leaves and soil. Additionally,M. alba

leaves and soil responded differently to slope aspects and altitude.

Moreover, the differences in nutrient content and stoichiometry

between M. alba and soil were not constrained within a specific

range. The 1/H calculation results indicated that M. alba was strictly

homeostatic. These findings clearly support our expectation that
TABLE 3 Homeostasis coefficients (1/H) between sunny and shady slopes.

Slopes N P C:N C:P N:P

1/H R2 p-value 1/H R2 p-value 1/H R2 p-value 1/H R2 p-value 1/H R2 p-value

Shady slope 0.507 0.134 0.199 0.436 0.055 0.28 0.396 0.016 0.331 0.436 0.055 0.28 0.38 < 0.01 0.353

Sunny slope 0.166 < 0.01 0.694 −
0.317

< 0.01 0.445 0.267 < 0.01 0.522 −
0.374

< 0.01 0.361 0.235 < 0.01 0.576
fron
1/H, regression slope.
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plants in resource-limited environments, such as dry-hot valleys,

exhibit strong stoichiometric homeostasis. Plants employ various

metabolic and physiological mechanisms to maintain stable

nutrient levels when nutrients limit their growth. The level of

homeostatic flexibility largely depends on how effectively they

use these limited resources (Hessen et al., 2004; Peng et al., 2017;

Hong-bo et al., 2021; Su and Shangguan, 2022). Previous studies have

reported that plants in dry-hot valleys can maintain stoichiometric

stability by increasing nutrient absorption and resorption, which may

lead to a decoupling of plant and soil stoichiometry (Jingwen et al.,

2020). Plants with stronger stoichiometric homeostasis are better

adapted to environmental changes (Chen et al., 2016; Peng et al.,

2017; Wei et al., 2021). Our study demonstrated thatM. alba, with its

strict stoichiometric homeostasis, is well-equipped to thrive in a dry-

hot environment.
5 Conclusions

The results of this study support the expectation that plants in

dry-hot valleys exhibit strong stoichiometric homeostasis to cope

with resource-limiting environments. Although the total nutrient

level in the study area was at a medium level compared to the

Chinese national average, the growth of M. alba was limited by

nutrient availability, particularly nitrogen.M. albamaintained strict

stoichiometric homeostasis on both sunny and shady slopes, despite

significantly better nutrient conditions on the shady slope. This

strict stoichiometric homeostasis represents an adaptive strategy of

M. alba to the dry-hot valley, and its strength led to a decoupling of

nutrient content and stoichiometry between M. alba leaves and

the soil.
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