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1Department of Horticulture, University of Arkansas, Fayetteville, AR, United States, 2Department of
Horticultural Science, University of Minnesota, St Paul, MN, United States, 3Southern Research and
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Soybean cyst nematode (SCN), Heterodera glycines, has become a significant

threat in common bean (Phaseolus vulgaris) production, particularly in regions

like the upper Midwest USA. Host genetic resistance offers an effective and

environmentally friendly approach to managing SCN. This study aimed to

conduct a genome-wide association study (GWAS) and genomic prediction for

resistance to SCNHG Types 7 (race 6), 2.5.7 (race 5), and 1.3.6.7 (race 14) using 0.7

million whole-genome resequencing-generated SNPs in 354 USDA worldwide

common bean germplasm accessions. Among these, 26 lines exhibited

resistance to all three HG types, with a female index (FI) of less than 10. Four

QTL regions on chromosomes (Chr) 2, 3, 6, and 10 were associated with

resistance to HG Type 7; four regions on Chrs 2, 6, 9, and 11 were associated

with resistance to HG Type 2.5.7; and three regions on Chrs 2, 6, and 10 were

associated with resistance to HG Type 1.3.6.7. Cross-prediction revealed high

prediction ability (PA) of 75% (r-value) for resistance to each of the three HG

types. However, low PA was observed for SCN resistance through across-

population prediction between the two domestications, Mesoamerican and

Andean common bean accessions. Yet, using a population of mixed

Mesoamerican and Andean accessions as a training set showed a high PA to

predict either sub-population. This study provides SNP markers for marker-

assisted selection and high PA for genomic selection in common bean molecular

breeding, enabling the selection of lines and plants with high SCN resistance.

Moreover, the study observed high PA for resistance among the three HG types.

Interestingly, the most highly associated SNP markers and QTL for SCN

resistance varied between the two domestications, and SCN resistance is more

associated with the Mesoamerican domestication than the Andean

domestication. This result suggests that resistance to SCN in common bean

may be related to domestication rather than co-evolution with SCN.
KEYWORDS

common bean, genomic prediction (GP), genomic selection (GS), genome-wide
association study (GWAS), Heterodera glycines, Phaseolus vulgaris, single nucleotide
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Introduction

The common bean (Phaseolus vulgaris L.) holds a vital role as

the most important edible legume crop worldwide, surpassing the

combined value of other food legumes like peas and chickpeas (Jain

et al., 2016). Its high nutritional content makes it a crucial protein

source for billions of people globally. In 2019, global production

reached 28.9 million tons (Nadeem et al., 2021). While commonly

harvested as dry beans, the crop is also grown as a green vegetable in

many regions, known as green beans or snap beans.

The United States (US) is one of top producers in the world for

common bean (Semba et al., 2021), with commercial production

across 18 states, and in 2022 U.S. was the 7th largest dry bean

producing country (Global Change Data Lab, 2022). The top five

producing states, North Dakota, Michigan, Minnesota, Nebraska,

and Idaho are responsible for a significant share of the country’s

annual yield, planting 1.5 to 1.7 million acres and harvesting

between 17.7 and 37.7 million tons of dry bean seeds

(Shahbandeh, 2023).

The production of dry edible beans faces significant challenges

from the soybean cyst nematode (SCN), particularly in regions

where both soybean and bean crops are grown. SCN, scientifically

known as Heterodera glyc ines Ichinohe (Tylenchida:

Heteroderidae), is the most damaging pathogen affecting soybean

(Glycine max (L.) Merr.), causing substantial yield losses in

soybean-growing regions globally. In the U.S. alone, SCN is

responsible for more soybean yield losses than any other

pathogen (Allen et al., 2017; Bandara et al., 2020; Koenning and

Wrather, 2010). Yield losses can exceed 40%, depending on factors

such as SCN population density, soil characteristics, precipitation

patterns, and the use of susceptible soybean varieties (Duan et al.,

2009; Koenning and Wrather, 2010).

The top dry bean-producing states in the U.S., including North

Dakota, Michigan, Nebraska, and Minnesota, which collectively

contribute approximately 75% of the common bean production in

the country (Shi et al., 2021), are also among the top ten soybean-

producing states (Tylka and Marett, 2021). These regions have

witnessed widespread dissemination of SCN (Tylka and Marett,

2021). Limited reports have documented damages inflicted by SCN

on common bean through both field studies and greenhouse

experiments (Noel et al., 1982; Poromarto et al., 2010; Trueman

et al., 2022; Yan et al., 2017). Symptoms of SCN infection on common

beans are similar to those on soybean, including stunting plants,

yellowing leaves, reduced root mass, and discoloration of roots. The

presence of cysts on roots is a sign of SCN infestation. As common

bean is a suitable host for SCN, infections can lead to significant yield

losses, often without obvious above-ground symptoms, making SCN

a serious threat to common bean production (Poromarto and

Nelson, 2009; Poromarto et al., 2010). Microplot experiments in

North Dakota showed 27% to 56% dry bean yield loss depending on

dry bean genotypes, environments and SCN population densities

(Poromarto et al., 2010).

The use of host resistance is the most effective strategy for

managing SCN in soybean. Over half of the soybean germplasm

accessions in the United States have been evaluated for resistance to
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one or more SCN races (https://www.ars-grin.gov/). Extensive

research and breeding efforts have resulted in the development of

numerous SCN-resistant soybean cultivars, which are now widely

planted across U.S. soybean fields.

Despite extensive research on the genetics of SCN resistance in

soybean, only a few Quantitative Trait Loci (QTLs) harbor major

genes that confer SCN resistance (Bent, 2022; Concibido et al., 2004;

Grant et al., 2010; Guo et al., 2006; Mitchum, 2016). Among these,

the rgh1 and Rhg4 QTLs have been extensively studied and are

widely utilized in breeding commercial soybean cultivars (Bent,

2022; Mitchum, 2016). The rgh1 region, located on chromosome

(Chr) 18 (linkage group G) in most known sources of SCN

resistance, including Peking, PI 88788, and PI 437654, harbors

critical genes responsible for SCN resistance (Guo et al., 2006; Kim

et al., 2010; Lee et al., 2015). Copy number variations (CNV) in the

rhg1 region affect resistance, with susceptible soybeans typically

possessing one copy, while two or more copies confer resistance

(Cook et al., 2012). The Rhg4 QTL, located on chromosome 8

(linkage group A2), encodes serine hydroxymethyltransferase

(SHMT), also known as GmSNAP08 (Kandoth et al., 2017; Liu

et al., 2012; Patil et al., 2019; Yu et al., 2016). There are two major

types of SCN resistance: Peking-type and PI 88788-type, each

governed by distinct genetic mechanisms involving combinations

of CNVs in rhg1 and Rhg4. Recent studies have highlighted the role

of additional QTLs, such as rhg2 on chromosome 11, in

contributing to SCN resistance, particularly in combination with

rhg1-a or Rhg4 (Basnet et al., 2022; Bent, 2022). Further QTLs, such

as those on chromosome 10 in soybean line PI 567516C, have been

identified, although the genetic mechanisms involved are still

poorly understood. Interestingly, despite the presence of rhg1 in

PI 567516C, it does not contribute detectable SCN resistance,

suggesting other mechanisms are at play (Lian et al., 2014;

Usovsky et al., 2021; Vuong et al., 2010). These findings

underscore the complex genetic basis of SCN resistance in

soybean and the need for further research to fully understand the

mechanisms and apply them in breeding programs.

In common bean, research has demonstrated resistance to

soybean cyst nematode (SCN) in certain accessions and cultivars.

For instance, Smith and Young (2003) evaluated 20 common bean

lines in greenhouse studies and observed that Mesoamerican

genotypes displayed higher resistance to SCN compared to

Andean genotypes. Similarly, in North Dakota, a total of 416

USDA core accessions of Phaseolus vulgaris were evaluated, and

around 23% of them were highly resistant to SCN HG Type 0 (Jain

et al., 2019; Poromarto et al., 2012). Wen et al. (2019) conducted a

study in Illinois, evaluating 363 accessions from the same core

collection and identified 16 accessions (around 4.4%) with high

resistance to SCN HG Type 2.5.7. These findings provide a valuable

foundation for breeding programs aimed at developing SCN-

resistant common bean cultivars.

Several studies have identified genetic markers and candidate

genes linked to SCN resistance in common bean, although research

is less extensive compared to soybean. Jain et al. (2016) performed a

transcriptome analysis comparing the SCN-resistant line PI 533561

and the susceptible line GTS-900, identifying differentially
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expressed genes involved in plant defense. These included genes

encoding nucleotide-binding site leucine-rich repeat (NLR)

proteins, WRKY transcription factors, pathogenesis-related (PR)

proteins, and heat shock proteins, providing key molecular insights

into SCN resistance. Additionally, Wen et al. (2019) conducted

genome-wide association studies (GWAS) and discovered SNP

markers on chromosome 1 associated with resistance to SCN HG

Type 2.5.7, near a gene cluster orthologous to the rhg1 locus in

soybean. Other resistance-related QTLs were found on

chromosome 7. In further GWAS research, Jain et al. (2019)

identified several QTLs related to resistance to SCN HG Type 0,

spanning chromosomes 7, 8, 9, and 11. These findings provide a

roadmap for understanding the genetic architecture of SCN

resistance in common bean and facilitate marker-assisted

selection (MAS) for breeding resistant cultivars.

A significant research project funded by the Minnesota

Department of Agriculture (July 2017 to June 2020) evaluated

common bean accessions for SCN resistance. Out of 315 USDA

core accessions tested, 20 lines (~4.7%) exhibited resistance to SCN

HG Type 0, with a female index (FI) ranging from 4.8 to 9.9,

indicating reduced reproduction compared to susceptible soybean

varieties (Shi et al., 2021). Subsequent GWAS analysis using the

BARCBean6K_3 Infinium BeadChips identified 11 SNP markers

strongly associated with resistance to SCN HG Type 0, distributed

across chromosomes 4, 6, 7, 9, and 11. Further GWAS analysis

extended to SCN resistance to HG Types 2.5.7 and 1.3.6.7, utilizing

phenotypic data from Wen et al. (2019) and the same genotyping

platform. This led to the identification of six SNP markers for HG

Type 2.5.7 on chromosomes 1, 2, 3, and 7, and 12 SNP markers for

HG Type 1.3.6.7 on chromosomes 1, 3, 6, 7, 9, 10, and 11 (Shi

et al., 2021).

To further advance the identification of SCN-resistant lines, the

screening initiative was expanded to include a broader collection of

common bean germplasm from the USDA. An additional 840 lines

were selected for preliminary screening, revealing significant

variation in SCN resistance. Based on these findings and the core

line evaluation by Shi et al. (2021), a panel of 354 purified lines was

curated for further assessment of resistance to SCN HG Types 7,

2.5.7, and 1.3.6.7. This panel includes the 23 accessions with FI < 10

for HG Type 0 resistance, as identified by Shi et al. (2021). The

objectives of this research are twofold: to identify additional SCN-

resistant common bean germplasm and to explore the genetic

mechanisms underpinning SCN resistance. These efforts aim to

contribute to the development of resilient and productive common

bean varieties, promoting food security and sustainability in bean

production systems.
Materials and methods

Plant and nematode materials

A total of 354 common bean germplasm accessions were used in

this study, sourced from the USDA GRIN collection. These

accessions were collected from 46 countries, with a predominant
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focus on 10 countries, contributing 254 accessions (72.0% of the

total). The major contributors were Mexico (62 accessions),

Bulgaria (39), China (39), the United States (30), Turkey (20),

India (17), Macedonia (14), Hungary (13), France (11), and the

Netherlands (10) (Supplementary Table S1).

In addition, we included seven soybean SCNHG Type indicator

lines: PI 548402 (Peking), PI 88788, PI 90763, PI 437654, PI 209332,

PI 89772, and PI 548316 (Niblack et al., 2002), along with four SCN

race differential lines: PI 548402 (Peking), PI 548982 (Pickett 71) or

PI 548988 (Pickett), PI 88788, and PI 90763 (Riggs and Schmitt,

1988). Williams 82 (PI 518671) was included as a susceptible

control. These lines were utilized to validate the virulence

phenotypes of the SCN populations (Supplementary Table S2).

The 354 common bean accessions were evaluated for resistance

against three SCN HG Types: 7 (race 6), 2.5.7 (race 5), and 1.3.6.7

(race 14) (Supplementary Table S2). These SCN populations were

originally collected from fields in Swift County (2007), Waseca

County (2007), and Murray County (1997), respectively, in

Minnesota, USA. HG Type 7 was initially prevalent in Minnesota

and the north central region, and it is avirulent to the major sources

of SCN resistance soybean PI 88788 and Peking. With the use of

SCN-resistant soybean cultivars for decades, most of SCN

populations in the region have changed to HG Type 2.5.7 that

can overcome the PI 88788 resistance. The frequency of occurrence

of HG Type 1.3.6.7, which can overcome resistance from Peking,

also has been increasing (Chen et al., 2010; Howland et al., 2018).

Consequently, we chose these three HG Types for this study to

capture a broad spectrum of resistance in common bean and

identify genomic regions associated with resistance across

different virulence profiles.
SCN resistance phenotyping

Since their collection, the SCNpopulationsweremaintained either

in a greenhouse on susceptible soybean cultivars or stored at -20°C.

Prior to the experiment, the nematode populations were cultured on

the susceptible soybean cultivar ‘Sturdy’ for approximately 45 days.

Inoculum eggs were prepared using the method described by Shi et al.

(2021). The experiments were carried out in a growth room

(Supplementary Figure S1), following a randomized complete block

design (RCBD) with three replicates, using the same approach as

previously described by Shi et al. (2021). Briefly, each replicate

consisted of two common bean plants grown in two separate cone-

tainers. Additionally, control soybean plants of ‘Williams 82’ were

included in each replicate, withfive plants infive separate cone-tainers.

The cone-tainers were filled with autoclaved soil, which comprised

80% sand and 20% field clay loam soil. Subsequently, 4,000 SCN eggs

were added to each cone-tainer, and one common bean or soybean

seed was sown in each cone-tainer. The cone-tainers were arranged on

a rack and maintained in the growth room for 35 days with the

temperature set at 28°C and daily artificial lights of 16 h. Adequate soil

moisturewasmaintainedby applyingwater using a sprinkler irrigation

system (Supplementary Figure S1). No fertilizer or pesticide

was applied.
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The cysts (females) developed on each plant were extracted and

counted following the established procedures (Shi et al., 2021). To

standardize the data across different tests, Female Index (FI), rather

than cyst counts were used. Female Index for each plant was

determined by comparing the number of SCN females on a line

to the average number of females on five Williams 82 plants, using

the formula: FI = (Number of females on a given plant) × 100/

(Mean number of females on Williams 82) (Riggs and Schmitt,

1988). For this calculation, the FI for Williams 82 was set to 100.
Phenotypic data analysis

Phenotypic FI data were analyzed using analysis of variance

(ANOVA) via the GLM procedure in JMP Genomics 7 (SAS

Institute, Cary, NC). Descriptive statistics, including the mean,

range, standard deviation (SD), standard error (SE), and

coefficient of variation (CV) for FI, were calculated using the

‘Tabulate’ function. Pearson’s correlation coefficients (r) were

computed to assess relationships between FI values for different

SCN HG types, and the distribution of FI values was visualized

using the ‘Distribution’ function in JMP Genomics 9.

Broad-sense heritability (H²) was estimated using the formula

described by Holland et al. (2003) and Shi et al. (2021), where H² =

s²g/[s²g + (s²e/b)]. Here, s²g represents the genetic variance, s²e
represents the residual variance, and b denotes the number of

replicates. The estimates for s²g and s²e were calculated as [EMS

(G) - Var(Residual)]/b and Var(Residual), respectively, based on

values derived from the ANOVA table.
Genotyping

DNA was extracted from fresh bean leaves using the CTAB

method, and the genomic DNA was randomly sheared into

fragments of approximately 350 bp. Library construction was

performed using the NEBNext® DNA Library Prep Kit according

to the manufacturer ’s instructions (Novogene, http://

en.novogene.com/). The process included end repair, dA-tailing,

ligation with NEBNext adapters, and PCR enrichment with P5 and

indexed P7 oligos to obtain fragments between 300–500 bp.

Purification and quality checks were conducted using a Qubit®

2.0 fluorometer for library concentration and the Agilent® 2100

bioanalyzer for insert size assessment. Quantitative real-time PCR

(qPCR) was then used to confirm the effective concentration of each

library. Libraries with insert sizes and effective concentrations above

2 nM were deemed suitable for Illumina® high-throughput

sequencing.

Qualified DNA libraries were pooled based on effective

concentrations and expected data output. Paired-end sequencing

(PE150 bp reads) was performed on the Illumina® platform. The

common bean genome reference Pvulgaris 442_v2.1, from the

Phytozome website (https://genome.jgi.doe.gov/portal/pages/

dynamicOrganismDownload.jsf?organism=Pvulgaris), was used

for mapping short reads with the Burrows–Wheeler aligner
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software (BWA, 0.7.8-r455). BAM files were sorted and duplicate

reads removed using SAMtools (0.1.19-44428cd), while Picard

(v.1.111) was employed to merge BAM files for each sample. SNP

and InDel detection and filtering were performed using GATK

software (v.3.5), with annotation carried out via ANNOVAR.

A total of 24.4 million SNPs were identified across the 354

accessions on 11 chromosomes, ranging from 1.47 million SNPs

on Chr 6 to 2.93 million SNPs on Chr 8. After applying filtering

criteria—minor allele frequency >2%, missing allele rate (MAF)

<10%, and heterozygosity rate <30%—0.7 million SNPs from

whole-genome resequencing (WGR) were selected for further

analyses in this study.
Genetic diversity and population
structure analysis

A model-based clustering method implemented in the

STRUCTURE 2.3.4 program (Pritchard et al., 2000) was employed

to infer the population structure of the 354 common bean accessions

based on 6,600 SNPs, with 600 SNPs randomly selected from each of

the 11 common bean chromosomes. The burn-in period was set at

50,000 iterations, followed by 10,000 Markov Chain Monte Carlo

iterations, utilizing an admixture model with correlated allele

frequencies independent for each run (Lv et al., 2012). Ten runs

were performed for each simulated value of K, ranging from 1 to 10.

The statistical value delta Kwas calculated for each simulatedKusing

the formula described by Evanno et al. (2005) to identify the optimal

K capturing the major structure in the data. The optimal K was

determined using Structure Harvester (Earl and Vonholdt, 2012)

(http://taylor0.biology.ucla.edu/structureHarvester/, accessed in

2022 but now this site was closed on September 22, 2024).

Subsequently, each common bean genotype was assigned to a

cluster (Q) based on the probability determined by the software

that the genotype belonged in the cluster, with a cut-off probability

for assignment set at 0.50 or above. Finally, a bar plot with ‘Sort by

Q’ was generated to visualize the population structure among the

common bean genotypes (accessions) based on the optimum K.

Genetic diversity was further assessed, and phylogenetic trees

were constructed using the 6,600 SNPs in MEGA 7 (Kumar et al.,

2016) based on the Maximum Likelihood tree method with specific

parameters as described previously (Shi et al., 2016, 2017).
Association analysis

GWAS were conducted following a two-step approach, as

described by Shi et al. (2022) for spinach. In the first step, the

BLINK (Bayesian-information and Linkage-disequilibrium

Iteratively Nested Keyway) method was applied to a panel of 354

common bean accessions using 0.7 million SNPs. GWAS was

performed separately for each chromosome, using phenotypic

data from three SCN Female Index (FI) values: HG 2.5.7, HG 7,

and HG1.3.6.7. BLINK identified 1,987 SNPs with a logarithm of

odds (LOD) score [Here, we defined LOD = -log(P-value)] greater
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than 4.0, which were associated with resistance to one or more

HG types.

In the second step, a set of 87,176 SNPs was used for GWAS,

comprising the 1,987 associated SNPs from the first step and 85,367

additional randomly selected SNPs for PCA and kinship analysis.

This step employed several models, including BLINK, fixed and

random model circulating probability unification (FarmCPU),

mixed linear model (MLM), and multiple-locus MLM (MLMM),

using GAPIT 3. A t-test was also performed for all 87,176 SNPs in

the panel of 354 accessions using Visual Basic in Microsoft

Excel 2020.

The 354 accessions were divided into two sub-populations, Q1

and Q2, based on SNP data from GAPIT 3 (87,176 SNPs) or

STRUCTURE 2 (6,600 SNPs). Q1 consisted of 202 accessions

associated with Mesoamerican domestication, while Q2

comprised 152 accessions linked to Andean domestication.

GWAS was then conducted separately for each sub-population

using the four models, with 71,972 SNPs used for Q1 and 55,933

SNPs for Q2 after additional filtering.

Multiple GAPIT models were utilized to identify robust and

consistent SNP markers associated with resistance to SCN HG Type

7, HG Type 2.5.7, and HG Type 1.3.6.7 in common bean. The

significance threshold for associations was determined using

Bonferroni correction of P-values with a = 0.05 (0.05/SNP

number). LOD values of 6.24, 6.16, and 6.05 were used as

significance thresholds for the full panel of 354 accessions, Q1,

and Q2, respectively.

PCA and genetic diversity were also assessed using GAPIT 3,

with PCA ranging from 2 to 10 components, and the neighbor-

joining (NJ) method used to construct phylogenetic trees. NJ trees

were generated for the entire panel of 354 accessions, Q1, and

Q2, respectively.
Candidate gene prediction

Candidate genes associated with SCN resistance were identified

within a 50 kb region flanking both sides of the significant SNPs,

following the methodology described by Zhang et al. (2016a). These

candidate genes were extracted from the reference annotation of the

common bean genome, using the Pvulgaris 442_v2.1 assembly,

which is available through the Phytozome website (https://genome.

jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?

organism=Pvulgaris).
Genomic prediction for genomic selection
of SCN resistance

In this study, ridge regression best linear unbiased prediction

(RR-BLUP) was employed to predict genomic estimated breeding

values (GEBV) in genomic prediction (GP). The analysis was

conducted using the rrBLUP package (Endelman, 2011) in R

software (Version 4.3.1, https://www.r-project.org/). RR-BLUP is

widely regarded as a robust and accurate prediction method, with
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successful applications across a variety of crops and traits (Heslot

et al., 2012; Jarquin et al., 2014; Zhang et al., 2016b). In addition, GP

was performed using Bayesian models such as Bayes A (BA), Bayes

B (BB), Bayes LASSO (BL), and Bayesian ridge regression (BRR), all

implemented in the BGLR package. GEBV prediction was also

carried out using genomic best linear unbiased prediction (gBLUP)

and composite best linear unbiased prediction (cBLUP) in the

GAPIT package. These approaches have been documented for

their effectiveness in genomic selection (GS) in prior studies.

GP for SCN resistance was conducted across multiple panels and

scenarios. Initially, GP was performed using 10 different randomly

selected SNP sets, ranging from 20 to 10,000 SNPs, and two GWAS-

derived SNP marker sets (20 and 71 markers, referred to as m20 and

m71) for resistance to SCN HG Type 7 across three panels: the full set

of 354 common bean accessions, Q1 (202 accessions), and Q2 (152

accessions). These predictions were evaluated using seven GP models

(BA, BB, BL, BRR, cBLUP, gBLUP, and rrBLUP).

Next, GP was performed across nine folds (2-fold through 10-

fold, with training and testing sets in different ratios) for resistance

to three SCN HG types in the three panels, utilizing the rrBLUP

model. GP was also conducted using nine SNP number sets (from

20 to 10,000 SNPs) in across-population prediction, comparing

predictions from Q1 to Q2 or vice versa for resistance to the three

SCN HG types.

Furthermore, GP was conducted with 11 combinations of

across- and cross-population scenarios using all 87,176 SNPs or

10,000 SNPs in across-population prediction for resistance in the

three panels (all 354 accessions, Q1, and Q2) across four GP models

(maBLUP, cBLUP, gBLUP, and sBLUP) in GAPIT 3. Additionally,

GP was carried out within the same SCN HG type or across

different types using various SNP sets (ranging from 500 to

87,176 SNPs) across the four GP models in GAPIT3.

The correlation coefficient (r-value) was estimated among

prediction values for SCN HG Types 7 (HG 7; race 6), 2.5.7 (HG

2.5.7; race 5), and 1.3.6.7 (HG 1.3.6.7; race 14) using different SNP

sets. Lastly, genomic heritability (GH) was calculated for SCN

resistance across the three panels using 10 randomly selected SNP

sets (ranging from 20 to 10,000 SNPs) and the two GWAS-derived

SNP sets (m20 and m71), estimated using rrBLUP.

The prediction accuracy of GS for SCN resistance was evaluated

using the average Pearson’s correlation coefficient (r) between the

GEBVs and the observed values in the validation sets. These sets

were randomly generated 100 times, with the r value calculated for

each iteration. The average r value across the iterations was then

used to determine prediction accuracy, where higher r values

indicated greater accuracy and efficiency in GS, reinforcing the

reliability of GP for SCN resistance.
Results

SCN resistance evaluation

The reactions of common bean indicator lines (differential

lines) to the soybean cyst nematode (SCN) populations are
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summarized in Supplementary Table S2. The susceptible control

Williams 82 consistently exhibited over 280 average SCN females

per plant across all experiments conducted for each of the three

SCN HG types, indicating sufficient SCN reproduction for the

study. Based on SCN HG type testing using the seven SCN

indicators and race testing with the four SCN indicators the three

populations were confirmed to be HG Type 7, HG Type 2.5.7, and

HG Type 1.3.6.7 (Supplementary Table S2).

The Female Index (FI) values for HG Type 7 exhibited a wide

range, from 1.1 for PI 417624 to 136.9 forW6 11340, with an average of

53.6, standard deviation (Std Dev) of 29.6, standard error (Std Err) of

1.6, and coefficient of variation (CV) of 52.2% (Supplementary Tables

S1, S3). The distribution of FI values showed a near-normal

distribution (Figure 1), suggesting significant variation in resistant

reactions to SCN HG Type 7. Notably, 33 accessions demonstrated

FI values < 10, indicating high resistance to HG Type 7. Among the top

nine most resistant to HG Type 7 were W6 12201, PI 583570, PI

313733, PI 325750, PI 417657, PI 417624, PI 313444, PI 313445, and PI

313524, with FI values ≤ 3, while the two most susceptible accessions

were W6 11340 with an FI of 136.9 and PI 198038 with an FI of 129.3

(Supplementary Table S1).

The FI for HG Type 2.5.7 displayed a substantial range, spanning

108.9 from 0.9 for PI 430206 to 109.8 for PI 661865 (Supplementary

Table S3; Figure 1), with an average of 36.6, Std Dev of 22.1, Std Err of

1.2, and CV of 60.6%. The distribution of FI values showed a near-

normal distribution (Figure 1), indicating significant variation in

resistant reactions to SCN HG Type 2.5.7. Notably, 57 accessions
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demonstrated FI values < 10, signifying their resistance to HG Type

2.5.7. Among these, eight accessions, namely PI 313709, PI 313733, PI

325750, PI 430206, PI 449410, PI 201354, PI 313444, and PI 313524,

exhibited FI values < 2, indicating high resistance to HG Type 2.5.7.

The two most susceptible accessions were PI 661865 with an FI of

109.8 and PI 661952 with an FI of 107.4 (Supplementary Table S1).

The FI forHGType 1.3.6.7 exhibited awide range (110.2) from1.1

forPI313524 to111.3 forPI 302537,with an averageof 29.1, StdDevof

22.7, Std Err of 1.3, and CV of 77.8% (Supplementary Tables S1, S3).

The distribution of FI values displayed a skew distribution (Figure 1),

indicating significant variance in resistant reactions to HG Type

1.3.6.7. A total of 72 accessions demonstrated FI values < 10.0,

signifying resistance to the HG Type 1.3.6.7. Among these, 11

accessions, namely PI 313709, PI 313733, PI 313328, PI 201354, PI

313445, PI 313470, PI 319684, PI 325614, PI 313524, and PI 608388

exhibited FI values ≤2, indicating high resistance to HG Type 1.3.6.7.

The twomost susceptible accessionswerePI302537withanFIof 111.3

and PI 324688 with an FI of 101.6 (Supplementary Table S1).

PI 355419.

The combined analysis of resistance to the three HG Types

revealed that the most consistent susceptible accession was PI

661952 with a high FI > 90 (93 – 107) for all three HG Types.

Conversely, eight accessions, namely PI 313733, PI 325750, PI

346960, PI 417657, PI 201354, PI313444, PI 313445, and PI

313524, displayed FI values < 5 for resistance to all three HG

Types, indicating these accessions possess high and broad

resistance across HG Types 0, 2.5.7, and 1.3.6.7 (Supplementary
FIGURE 1

Distribution of Female Index of SCN HG Type 7 (race 6) (A), HG Type 2.5.7 (race 5) (B), and HG Type 1.3.6.7 (race 14) (C) on 354 USDA common
bean accessions, where x-axis presents female index (FI) and y-axis presents number of accessions.
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Table S1). Moreover, 26 common bean accessions demonstrated SCN

resistance with FI values < 10.0 across all three HG Types (Table 1).

The correlation coefficients were 0.71 between HG Type 7 and HG

Type 2.5.7, 0.71 between HG Type 7 and HG Type 1.3.6.7, and 0.76

between HG Type 2.5.7 and HG Type 1.3.6.7 in the association panel

of the 354 common bean accessions; indicating their common

resistance to the three SCN HG Types (Supplementary Table S4).

Additionally, the broad sense heritability was estimated to be 63.7%,

72.6%, and 84.4% forHGType 7,HGType2.5.7, andHGType 1.3.6.7,

respectively (Supplementary Table S5), suggesting that the resistance

to each of the three SCN HG Types is highly inheritable. ANOVA

revealed significant variations among PI accessions for resistance to

each of the three SCN HG types (P < 0.0001) (Supplementary Table

S5), indicating variation among these common bean accessions.
Genetic diversity and population
structure analysis

Two main population clusters, Q1 and Q2, were observed among

the 354 accessions based on STRUCTURE 2.3.4 (Figures 2A–C;

Supplementary Table S1). Q1 and Q2 consisted of 202 (57.1%) and

152 (42.9%) accessions, respectively (Supplementary Table S1). The

phylogenetic trees also showed two main clusters or populations,

consistent with the STRUCTURE results, indicating at least two

distinct genetic populations within the panel. The GAPIT 3 tool

confirmed the presence of two sub-populations (clusters) as the best

fit (Supplementary Figures S3-2-S3-4 showing PCA = 2, 3, 4, and 5).

Further analysis of the Q1 sub-population (202 accessions)

revealed three clusters (sub-populations) based on PCA and
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phylogenetic analysis when PCA = 2 to 10 in GAPIT 3, using

71,972 SNPs (Supplementary Figure S4). The Q2 sub-population

(152 accessions) was divided into two clusters using 55,933 SNPs

(Supplementary Figure S5).
Association analysis

In this study, fourGWASmodels, Blink, FarmCPU,MLMM, and

MLM in GAPIT 3 along with a t-test for each SNP were used to

conduct GWAS for resistance to three HG Types (0, 2.5.7, and

1.3.6.7) across three common bean panels: all (354 accessions), Q1

(202 accessions), andQ2 (152 accessions). SNPs with a LOD (–log10

(p)) value greater than 6.24 for the all panel, 6.16 for Q1, and 6.05 for

Q2 from at least one of the four models for resistance to one of the

three HG Types were initially listed in Supplementary Tables S6-S8,

respectively, as associated SNP markers for SCN resistance.

Subsequently, we selected SNPs as reliable and feasible markers if

either two ormoremodels hadLODvalues greater than the threshold

value (6.24 in all; 6.16 in Q1; and 6.05 in Q2), or if one model had a

higher LODvalue or severalmodels had LODvalues close to 5. These

selected SNPs were then listed in Tables 1–3 for resistance to SCN

HG Type 2.5.7, 7, and 1.3.6.7 (race 14), respectively. Additionally,

SNP markers associated with resistance to either HG Type 7, 2.5.7,

or 1.3.6.7 in two common bean panels (all plus Q1 or Q2) were

compiled in Table 4. The multiple or single Manhattan plot and QQ

plot for MLM, MLMM, FarmCPU, and BLINK models in GAPIT3

for resistance to the three SCN HG Types were visually represented

in Figures 3–5 for the all panel; Supplementary Figures S6-S8 for

Q1; and Supplementary Figures S9-S11 for Q2.
FIGURE 2

Population structure analysis of an association panel consisting of 354 USDA GRIN common bean germplasm accessions: (A) Delta K values for
varying numbers of populations (K) inferred through analysis conducted using STRUCTURE software. (B) Classification of the 354 common bean
accessions into two populations using STRUCTURE Version 2.3.4. (C) Maximum Likelihood (ML) tree depicting the genetic relationships among the
354 common bean accessions, visualized using MEGA 7.
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GWAS for SCN HG Type 2.5.7
(race 5) resistance

Based on the analysis using the four models (MLM, MLMM,

FarmCPU, andBLINK) inGAPIT3, themultipleQQplot distribution

showed significant deviation from the expected distribution,

indicating the presence of SNPs associated with resistance to the

HG Type 2.5.7 in the “all” association panel (Figure 3 right). The

multiple Manhattan plot, covering all tested 87,176 SNPs, revealed

several dots (SNPs) with LOD values greater than 6.24, primarily

located on Chrs 6, 9, and 11, suggesting the presence of SNPs

associated with HG Type 2.5.7 resistance in the panel (Figure 3 left).

Eleven SNPs were observed with LODvalues >6.24 (threshold) in one

ormoremodels for resistance toHGType 2.5.7 in the ‘all’ panel of 354

accessions, distributed across Chrs 3, 6, 7, 9, and 11 (Supplementary

Table S6). Among these 11 SNPs, Chr06_30044825 and

Chr06_30072683, located around 30 Mb on Chr 6 spanning a

length of 28 Kb, exhibited LOD values >6.24 in two and three

models , respect ively . S imilar ly , Chr09_29866343 and
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Chr09_29870288, located around 29.87 Mb region on Chr 9

spanning only 4 kb, showed LOD values >6.24 in three and two

models, respectively, with particularly high LOD values of around 34

in the t-test. Furthermore,Chr11_1206371, positioned at 1,206,371 bp

on Chr 11, demonstrated LOD values >6.24 in FarmCPU and

MLMM, and approximately 6.0 in BLINK and MLM (Table 1).

These results suggests the existence of three QTLs in the SNP

regions on Chrs 6, 9, and 11 for resistance to the Type 2.5.7 in the

all panel of 354 accessions.

For the Q1 panel, the QQ plots displayed a notable deviation

from the expected distributions (Supplementary Figure S6 right),

indicating the presence of SNPs associated with resistance to HG

Type 2.5.7. The Manhattan plots revealed multiple dots (SNPs) on

Chrs 2 and 5 with LOD values exceeding 6.16 (threshold) in two or

more models (Supplementary Figure S6 left), signifying the

existence of SNPs associated with the resistance to HG Type

2.5.7. Eight SNPs were identified with LOD values >6.16 in one

or more models for resistance to HG Type 2.5.7 in the Q1 panel

comprising 202 accessions, distributed across Chrs 1, 2, 3, 5, and 9
TABLE 2 List of the SNP markers associated with the resistance to HG Type 7 (race 6) based on Blink, FarmCPU, MLMM, and MLM in GAPIT 3 and a
t-test.

SNP Chr Pos MAF %
LOD (-log(P)) Beneficial

_allele
Unbeneficial

_allele
Set

BLINK FarmCPU MLMM MLM t-test

Chr02_47299285 2 47299285 46.9 6.59 8.27 3.94 3.72 17.75 A G all

Chr03_1949907 3 1949907 15.4 5.40 10.01 6.85 6.31 17.91 A G all

Chr06_18305803 6 18305803 8.3 6.15 7.32 5.15 4.80 33.76 A T all

Chr10_5036799 10 5036799 21.1 14.99 1.23 2.86 2.47 48.32 A G all

Chr02_47299285 2 47299285 24.7 0.32 0.62 6.64 4.37 8.22 A G Q1

Chr02_47306325 2 47306325 24.2 11.44 8.97 0.29 4.28 9.14 G C Q1

Chr10_5036799 10 5036799 35.1 7.87 7.35 6.09 4.06 41.90 A G Q1

Chr03_1949907 3 1949907 34.6 4.89 6.22 4.89 4.39 7.48 G A Q2

Chr06_18293932 6 18293932 15.1 1.81 9.28 4.32 3.94 18.40 A C Q2
frontiers
TABLE 1 List of the SNP markers associated with the resistance to HG Type 2.5.7 (race 5) based on Blink, FarmCPU, MLMM, and MLM, and a t-test.

SNP Chr Pos MAF %
LOD (-log(P)) Beneficial

_allele
Unbeneficial

_allele
Set

BLINK FarmCPU MLMM MLM t-test

Chr06_30044825 6 30044825 7.0 0.65 11.77 0.55 8.01 9.60 A G all

Chr06_30072683 6 30072683 6.8 9.15 1.86 11.42 8.60 9.16 C T all

Chr09_29866343 9 29866343 37.4 1.27 14.49 8.94 6.73 34.89 A G all

Chr09_29870288 9 29870288 37.9 9.45 0.15 0.17 6.50 35.23 C T all

Chr11_1206371 11 1206371 9.0 5.93 10.81 8.86 6.01 18.25 T C all

Chr02_26871668 2 26871668 3.0 15.16 8.93 7.85 6.15 3.07 T A Q1

Chr09_28924508 9 28924508 9.6 5.50 9.13 3.27 2.97 3.34 T C Q1

Chr06_30044825 6 30044825 14.4 10.14 7.20 6.63 5.68 6.04 A G Q2

Chr11_1206371 11 1206371 21.2 4.20 7.48 4.69 3.49 7.46 T C Q2
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(Supplementary Table S7). Among these 8 SNPs, Chr02_26871668,

positioned at 26,871,668 bp on Chr 2, exhibited LOD values >6.16

in BLINK, FarmCPU, and MLMM, and 6.15 in MLM; while

Chr09_28924508, located at 28,924,508 bp on Chr 9, displayed

LOD values >6.16 in FarmCPU and 5.50 in BLINK (Table 1),

suggesting the presence of two QTLs on Chrs 2 and 9 in the regions

of these two SNPs for resistance to Type 2.5.7 in the Q1 panel of

202 accessions.

For the Q2 panel, the QQ plots exhibited a noticeable

deviation from the expected distributions (Supplementary

Figure S9 right half), indicating the presence of SNPs associated

with resistance to HG Type 2.5.7. The Manhattan plots

revealed several dots (SNPs) with LOD values exceeding 6.05

(Supplementary Figure S9 left), indicating the existence of SNPs

associated with resistance to HG Type 2.5.7. Specifically, multiple

SNPs on Chr 6 displayed LOD values >6.05 in two or more models

(Supplementary Figure S9 left), suggesting the presence of stable

SNP markers and QTLs for resistance to HG Type 2.5.7 on Chr 6.

Five SNPs were identified with LOD values >6.05 (threshold) in

one or more models for resistance to HG Type 2.5.7 in the Q2

panel distributed across Chrs 6, 9, and 11 (Supplementary Table

S8). Among these five SNPs, Chr06_30044825, located at

30,044,825 bp on Chr 6, exhibited LOD values >6.05 in BLINK,

FarmCPU, and MLMM, and 5.68 in MLM; while Chr11_1206371,

located at 1,206,371 bp on Chr 11, displayed LOD values in

FarmCPU and approximately 4 in the other three models

(Table 1), suggesting the presence of a QTL on Chr 6 and 11 for

resistance to HG Type 2.5.7 in the Q2 panel of 152 accessions.

The two SNP markers, Chr06_30044825 and Chr11_1206371,

were identified as potential molecular markers associated with

resistance to SCN HG Type 2.5.7 in both the all panel of 354

accessions and the Q2 panel of 152 accessions (Table 4). This

confirmation suggests the presence of QTLs related to HG Type

2.5.7 resistance in the genomic regions on Chrs 6 and 11. These

markers could serve as tools for marker-assisted selection in

breeding programs aimed at improving resistance to HG Type

2.5.7 in common bean.
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GWAS for SCN HG Type 7
(race 6) resistance

Based on the analysis using the MLM, MLMM, FarmCPU, and

BLINK models in GAPIT3, the QQ plot distributions indicated a

significant deviation from the expected distribution (Figure 4 right),

suggesting the presence of SNPs associated with resistance to SCN

HG Type 7 in the “all” association panel of 354 accessions. The

multiple Manhattan plot displayed several dots (SNPs) with LOD

values greater than 6.24 (Figure 4 left), predominantly located on

Chr 2, indicating the presence of SNPs associated with HG Type 7

resistance in the panel.

Six SNPs were identified to have LOD scores greater than 6.24

in one or more models for resistance to HG Type 7 in the all panel

of 354 accessions (Supplementary Table S6), distributed across Chrs

2, 3, 6, and 10. Notably, Chr02_47299285, located at 47,299,285 bp

on Chr 2, exhibited LOD scores exceeding 6.24 in Blink and

FarmCPU models. Chr03_1949907, located at 1,949,907 bp on

Chr 3, displayed LOD scores exceeding 6.24 in FarmCPU,

MLMM, and MLM. Chr06_18305803, positioned at 18,305,803

bp on Chr 6, showed LOD scores greater than 6.24 in FarmCPU

and over 4.5 in Blink, MLMM, and MLM. Furthermore,

Chr10_5036799, located at 5,036,799 bp on Chr 10, exhibited

notably high LOD scores of 14.99 in Blink and 48.32 in the t-test

(Table 2). These SNPs were selected as markers strongly associated

with resistance to HG Type 7, indicating the presence of four

potential QTLs in the respective SNP regions for resistance to HG

Type 7 in the all panel of 354 accessions.

For the Q1 panel, the QQ plot distributions indicated a

s ignificant deviat ion from the expected dis tr ibut ion

(Supplementary Figure S7 right), suggesting the presence of SNPs

associated with resistance to SCN HG Type 7. The multiple

Manhattan plot displayed several dots (SNPs) with LOD values

greater than 6.16 (threshold) (Supplementary Figure S7 left),

indicating the presence of SNPs associated with SCN race 6

resistance. Notably, SNPs on Chrs 2 and 10 exhibited LOD scores

greater than 6.16 in two or more models (Supplementary Figure S7
TABLE 3 List of the SNP markers associated with the resistance to HG Type 1.3.6.7 (race14) based on Blink, FarmCPU, MLMM, and MLM, and a t-test.

SNP Chr Pos MAF %
LOD (-log(P)) Beneficial

_allele
Unbeneficial

_allele
Set

BLINK FarmCPU MLMM MLM t-test

Chr02_23518869 2 23518869 6.4 10.25 13.29 3.67 5.62 7.96 T A all

Chr06_30148782 6 30148782 9.0 0 6.84 0.05 10.37 20.04 T C all

Chr06_30220067 6 30220067 9.3 1.64 0 15.86 10.37 20.53 G T all

Chr10_39751933 10 39751933 33.9 6.96 0.40 0.09 3.64 21.61 A T all

Chr10_39764207 10 39764207 33.7 0.91 7.14 0.33 3.83 21.53 T A all

Chr02_30212013 2 30212013 37.6 6.27 15.17 9.07 7.27 2.55 G A Q1

Chr10_38987657 10 38987657 19.7 7.01 8.11 2.67 3.09 11.10 A G Q1

Chr06_30148782 6 30148782 21.2 5.73 0.09 0.29 5.24 7.81 T C Q2

Chr06_30220067 6 30220067 21.9 0 0.09 6.26 5.24 7.96 G T Q2
frontiers
The bold signifies the significant LOD (-log(P)) value based on Bonferroni correction value of 6.24 in set:all; 6.16 in Q1; and 6.05 in Q2.
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TABLE 4 List of seven SNP markers associated with the resistance to either HG Type 7 (race 6), 2.5.7 (race 5), or 1.3.6.7 (race14) in two common bean panels (all plus Q1 or Q2) based on Blink, FarmCPU,
MLMM, and MLM, and a t-test.

LOD (-log(P)) Beneficial
_allele

Unbeneficial
_allele

Set Race
FarmCPU MLMM MLM t-test

11.77 0.55 8.01 9.60 A G all

5
7.20 6.63 5.68 6.04 A G Q2

10.81 8.86 6.01 18.25 T C all

7.48 4.69 3.49 7.46 T C Q2

8.27 3.94 3.72 17.75 A G all

6

0.62 6.64 4.37 8.22 A G Q1

10.01 6.85 6.31 17.91 A G all

6.22 4.89 4.39 7.48 G A Q2

1.23 2.86 2.47 48.32 A G all

7.35 6.09 4.06 41.90 A G Q1

6.84 0.05 10.37 20.04 T C all

14
0.09 0.29 5.24 7.81 T C Q2

0 15.86 10.37 20.53 G T all

0.09 6.26 5.24 7.96 G T Q2
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SNP Chr Pos MAF %
BLINK

Chr06_30044825 6 30044825
7.0 0.65

14.4 10.14

Chr11_1206371 11 1206371
9.0 5.93

21.2 4.20

Chr02_47299285 2 47299285
46.9 6.59

24.7 0.32

Chr03_1949907 3 1949907
15.4 5.40

34.6 4.89

Chr10_5036799 10 5036799
21.1 14.99

35.1 7.87

Chr06_30148782 6 30148782
9.0 0

21.2 5.73

Chr06_30220067 6 30220067
9.3 1.64

21.9 0
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left), suggesting the presence of stable SNP markers and QTL for

resistance to SCN HG Type 7 on Chrs 2 and 10.

Six SNPs were identified to have LOD scores greater than 6.16

in one or more models for resistance to SCN HG Type 7 in the Q1

panel of 202 accessions (Supplementary Table S7), distributed

acros s Chrs 2 , 4 , 10 , and 11 . Among these SNPs ,

Chr02_47299285, located at 47,299,285 bp on Chr 2, exhibited

LOD scores exceeding 6.16 in MLMM in Q1 and was also selected
Frontiers in Plant Science 11
as a marker in the all panel. Chr02_47306325, located at 47,306,325

bp on Chr 2, displayed LOD scores greater than 6.16 in Blink and

FarmCPU models. Chr10_5036799, positioned at 5,036,799 bp on

Chr 10, exhibited LOD scores exceeding 6.16 in Blink and

FarmCPU and over 4.0 in MLMM and MLM. Furthermore,

Chr10_5036799 had a notably high LOD value of 41.90 in the t-

test. These findings suggest the presence of a QTL on Chr 2 in the

region of two SNPs (Chr02_47299285 and Chr02_47306325)
FIGURE 3

Multiple Manhattan plot (Left) and QQ plot (Right) comparing Symphysic MLM, MLMM, FarmCPU, and BLINK models in GAPIT3 for resistance to SCN
HG Type 2.5.7 (Race 5) in an association panel consisting of 354 accessions: The Manhattan plot (left) illustrates common bean 11 chromosomes on
the x-axis and LOD (-log(P-value)) values on the y-axis. The QQ plot (right) displays expected LOD (-log(P-value)) values on the x-axis and observed
LOD (-log(P-value)) values on the y-axis.
FIGURE 4

Multiple Manhattan plot (Left) and QQ plot (Right) comparing Symphysic MLM, MLMM, FarmCPU, and BLINK models in GAPIT3 for resistance to SCN
HG Type 7 (Race 6) in an association panel consisting of 354 accessions: The Manhattan plot (left) displays common bean 11 chromosomes on the
x-axis and LOD (-log(P-value)) values on the y-axis. The QQ plot (right) illustrates expected LOD (-log(P-value)) values on the x-axis and observed
LOD (-log(P-value)) values on the y-axis.
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extending 7 Kb and another QTL in the 5 Mb region on Chr 10 for

resistance to HG Type 7 in the Q1 panel of 202 accessions (Table 2).

For the Q2 panel, the QQ plot distributions showed a significant

deviation from the expected distribution (Supplementary Figure S10

right), indicating the presence of SNPs associated with resistance to

SCN HG Type 7. The multiple Manhattan plot displayed two dots

(SNPs) with LOD values greater than 6.05 on Chrs 3 and 6

(Supplementary Figure S10 left), indicating the association of these

SNPswithHGType 7 resistance. Additionally, several SNPs onChr 6

exhibited LOD scores greater than 6.05 in two or more models

(Supplementary Figure S10 right), suggesting the presence of stable

SNP markers and QTL for resistance to HG Type 2.5.7 on Chr 6.

Two SNPs were identified to have LOD scores greater than 6.05 in

one ormoremodel for resistance to SCNHGType 7 in theQ2panel of

152 accessions, located on Chrs 3 and 6 (Supplementary Table S8).

Chr03_1949907, positioned at 1,949,907 bp on Chr 3, exhibited LOD

scores exceeding 6.05 in FarmCPU and over 4.3 in the four models.

Chr06_18293932, located at 18,293,932 bp on Chr 6, displayed LOD

scores greater than 6.05 in FarmCPU and had a notably high LOD

value of 18.40 in the t-test (Table 2). These findings suggest the

presence of a QTL on Chrs 3 and 6 for resistance to HG Type 7 in

the Q2 panel of 152 accessions.

The three SNPs, Chr02_47299285, Chr03_1949907, and

Chr10_5036799, were identified as markers for two sets: ‘all and

Q1’ or ‘all and Q2’ (Table 4), indicating the presence of QTL in the

SNP regions on Chrs 2, 3, and 10 for resistance to race 6. This

suggests that these SNPs could potentially serve as reliable markers

for screening SCN resistance in both the entire panel and the Q1 or

Q2 subpopulations.
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GWAS for resistance to SCN HG Type
1.3.6.7 (race 14)

Based on the four models (MLM, MLMM, FarmCPU, and

BLINK) in GAPIT3, the QQ plot distribution in these models

between the observed vs expected LOD (-log10(p)) showed a large

deviation from the expected distribution (Figure 5, MLMM and

MLM models), indicating the presence of SNPs associated with

resistance to SCN HG Type 1.3.6.7 in the “all” association panel

consisting of 354 accessions. The Manhattan plots with all tested

87,176 SNPs revealed seven SNPs with LOD values greater than

6.24 (Figure 5), primarily located on Chrs 2, 6, and 10, indicating

association with SCN resistance to the HG Type 1.3.6.7.

A total of 18 SNPs were observed to have LOD values exceeding

6.24 in one or more models for resistance to SCN HG Type 1.3.6.7 in

the all panel of 354 accessions (Supplementary Table S6), distributed

across Chrs 1, 2, 5, 6, 8, 9, and 10. Among these SNPs, Chr02_23518869

on Chr 2 exhibited LOD >6.24 in Blink and FarmCPU; one or both

Chr06_30148782 and Chr06_30220067 SNPs, located on Chr 6 within

an approximately 71 kb region, showed LOD >6.24 in FarmCPU,

MLMM and MLM, with high LOD >20.0 in t-test; Chr10_39751933

and Chr10_39764207, situated around the 39.9 Mbp region on Chr 10,

demonstrated LOD >6.24 in Blink and FarmCPU, respectively, with

both showing high LOD >21.5 in t-test (Table 3). These SNPs were

identified as markers strongly associated with resistance to HG Type

1.3.6.7, suggesting the presence of four QTLs in the SNP regions for

resistance to HG Type 1.3.6.7 in the entire panel of 354 accessions.

For theQ1panel, theQQplot distributions between the observed

and expected LOD values showed a significant deviation from the
FIGURE 5

Distribution of Manhattan plots (left) and QQ-plots (right) of GWAS for resistance to SCN HG Type 1.3.6.7 (race 14) in the association panel consisted
of 354 accessions based on MLMM and MLM in GAPIT3. For the Manhattan plot (Left), the x-axis presents the common bean 11 chromosomes and
the y-axis for LOD (-log(P-value)) value. For the QQ-plot (right), the x-axis presents expected LOD (-log(P-value)) value and y-axis for observed LOD
(-log(P-value)) value.
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expected distribution (Supplementary Figure S8 right), indicating

the presence of SNPs associated with resistance to SCN HG Type

1.3.6.7. In the multiple Manhattan plot, numerous dots (SNPs)

exhibited LOD values exceeding 6.16 (threshold) (Supplementary

Figure S8 left), indicating associationswith resistance to theHGType

1.3.6.7. Notably, SNPs located on Chrs 2 and 10 showed LOD values

greater than 6.16 in two or more models (Supplementary Figure S8

left), suggesting stable SNP markers and QTL for resistance to SCN

HG Type 1.3.6.7 on these chromosomes.

A total of nine SNPs were observed to have LOD values

exceeding 6.16 in one or more models for resistance to SCN HG

Type 1.3.6.7 in the Q1 panel of 202 accessions (Supplementary

Table S7), distributed across Chrs 1, 2, 6, 9, and 10. Among these

SNPs, Chr02_30212013, located at 30,212,013 bp on Chr 2,

exhibited LOD values exceeding 6.16 in all four models,

indicating a strong association. Similarly, Chr10_38987657,

situated at 38,987,657 bp on Chr 10, showed LOD values

exceeding 6.16 in Blink and FarmCPU models (Table 3). These

results suggest the presence of QTL on Chrs 2 and 10 for resistance

to SCN HG Type 1.3.6.7 in the Q1 panel of 202 accessions.

For the Q2 panel, the QQ plot distributions between the

observed and expected LOD values showed a notable deviation

from the expected distribution (Supplementary Figure S11 right),

indicating the presence of SNPs associated with resistance to SCN

HG Type 1.3.6.7. In the multiple Manhattan plots, few dots (SNPs)

exhibited LOD values exceeding 6.05, mainly on Chr 6

(Supplementary Figure S11 left). However, several SNPs on Chr 6

showed LOD values exceeding 4.0 in the MLM model, indicating

associations with resistance to the HG Type 1.3.6.7.

A total of seven SNPs were observed to have LOD values

exceeding 6.05 in one or more models for resistance to HG Type

1.3.6.7 in the Q2 panel of 152 accessions (Supplementary Table S8),

distributed across Chrs 2, 4, 6, 7, 8, 9, and 10. Notably,

Chr06_30148782 and Chr06_30220067, located at 30,148,782 bp

and 30,220,067 bp, respectively, on Chr 6, exhibited LOD values

exceed ing 6 .24 in FarmCPU and MLM mode l s fo r

Chr06_30148782, as well as in MLMM and MLM models for

Chr06_30220067, with both SNPs showing high LOD values

exceeding 20.0 in t-tests (Table 3). These results suggest the

presence of a QTL on Chr 6 for resistance to HG Type 1.3.6.7 in

the Q2 panel, with both SNPs also selected as markers in the all set.

The selection of both SNPs, Chr06_30148782 and

Chr06_30220067, as markers for both the all and Q2 sets (Table 4)

further confirms the presence of QTL in the SNP region on Chr 6 for

resistance to SCN HG Type 1.3.6.7. This suggests the robustness and

reliability of these markers across different panels, emphasizing their

potential utility in marker-assisted breeding programs aiming to

enhance resistance to HG Type 1.3.6.7 in the common bean accessions.
Candidate gene(s) for SCN resistance

There were 138 genes (Supplementary Table S9) existed within

the 50 Kb distance on either side of significant 20 SNP markers in

Tables 1-3 based on the common bean genome reference Pvulgaris
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442_v2.1 at Phytozome. Among the 138 genes, five were identified

as disease resistance gene analogs (Supplementary Table S10).

Phvul.002G126600 and Phvul.002G276900, which belong to the

Leucine-rich repeat protein kinase family protein, were located on

Chr 2 at the regions associated with HG Type 7 resistance in the Q1

panel. Additionally, Phvul.006G207000, another member of the

Leucine-rich repeat protein kinase family protein, was situated on

Chr 6 and linked to SNPs Chr06_30148782 and Chr06_30220067,

associated with HG Type 1.3.6.7 in both the all and Q2 panels.

Phvul.011G015300, identified as a P-loop containing nucleoside

triphosphate hydrolases superfamily protein, was located near SNP

Chr11_1206371 on Chr 11, correlated with HG Type 2.5.7

resistance in both all and Q2 panels. Finally, Phvul.011G173801, a

NB-ARC domain-containing disease resistance protein on Chr 11,

was linked to SNP Chr11_48336427 and associated with HG Type 7

resistance in the Q1 panel based on GWAS results.

For resistance to HG Type 2.5.7, six genes were identified:

Phvul.002G126800, Phvul.006G205300, Phvul.006G205800,

Phvul.009G196500, Phvul.011G015200, and Phvul.011G015300.

These genes are located on Chrs 2, 6, 6, 9, 11, and 11,

respectively, each within a distance of less than 5 kb from the

a s soc i a t ed SNP marker s , name l y Chr02_26871668 ,

Chr06_30044825, Chr06_30072683, Chr09_29870288, and

Chr11_1206371, indicating their potential involvement in HG

Type 2.5.7 resistance (Table 5).

For resistance to SCN HG Type 7, four genes were identified:

Phvul.002G304700, Phvul.002G304800, Phvul.003G020400, and

Phvul.010G034600. These genes are located on Chrs 2, 2, 3, and

10, respectively, each within a distance of 5 kb from the associated

SNP markers, namely Chr02_47299285, Chr02_47306325,

Chr03_1949907, and Chr10_5036799, suggesting their potential

involvement in race 6 resistance (Table 5).

For resistance to HG Type 1.3.6.7 (race 14), eight genes were

i d en t ifi ed : Phvu l . 0 0 2G109600 , Phvu l . 0 0 2G149500 ,

Phvul.006G206700, Phvul.006G206800, Phvul.006G207500,

Phvul.006G207600, Phvul.010G113600, and Phvul.010G118300.

These genes are located on Chrs 2, 2, 6, 6, 6, 6, 10, and 10,

respectively, each within a distance of 5 kb from the associated

SNP markers, namely Chr02_23518869, Chr02_30212013,

Chr06_30148782, Chr06_30220067, Chr10_38987657, and

Chr10_39751933, indicating their potential involvement in race

14 resistance (Table 5).
Genomic prediction for SCN resistance

Genomic prediction in SNP sets with different
SNP numbers

GP was estimated with 12 SNP sets, including 10 different

randomly selected SNP number sets and two GWAS-derived SNP

marker sets, for resistance to the three HG Types across three

panels, estimated by seven GP models (Supplementary Tables S11-

S13, Supplementary Figures S12a, b, S13a, b, S14a, b).

For resistance to HG Type 2.5.7, the mean of GP estimated by 5

models ranged from 0.59 in r20 to 0.76 in r10000 among the 10
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TABLE 5 List of 18 disease resistance genes which are located at 5 Kb distances on upstream and dowmstream of the 15 of the 20 SNP markers in Tables 1–3 associated with the three SCN HG Types.

Gene_start Gene_end
Chr

Pos
(bp)

From.gene.
Start (bp)

From.gene.
Start (bP)

Distance
SCN
race

GWAS.
set

8 2 26871668 8305 -2250 on gene race5 Q1

5 6 30044825 1256 387 <1kb race5 all,Q2

3 6 30072683 -3389 -8083 <4kb race5 all

8 9 29870288 -3451 -7071 <4kb race5 all

1 11 1206371 4239 2044

<3Kb

race5 all,Q2
on gene

5 2 47299285 8465 4629 <5kb race6 all, Q1

5 2 47306325 6521 2676 <3Kb race6 Q1

7 3 1949907 2363 -2930 on gene race6 all, Q2

9 10 5036799 -905 -11294 <1kb race6 all,Q1

9 2 23518869 -2793 -3675 <3kb race14 all

3 2 30212013 -4633 -6150 <5kb race14 Q1

2 6 30148782
4175 -533 on gene race14 Q2

-4609 -9936 <5kb race14 all

7 6 30220067
5079 3191 <4kb race14 all

-4610 -5306 <5kb race14 Q2

7 10 38987657 2221 -3761 on gene race14 Q2

3 10 39751933 -639 -6338 <1kb race14 all
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Gene Chr
(bp) (bp)

Gene-Readable-Description SNP

Phvul.002G126800 2 26863363 26873918 RECQ helicase L2 Chr02_2687166

Phvul.006G205300 6 30043569 30044438 EXORDIUM like 2 Chr06_3004482

Phvul.006G205800 6 30076072 30080766 methyl-CPG-binding domain 8 Chr06_3007268

Phvul.009G196500 9 29873739 29877359 Co-chaperone GrpE family protein Chr09_2987028

Phvul.011G015200 11 1202132 1204327 tonoplast intrinsic protein 5;1

Chr11_120637
Phvul.011G015300 11 1205296 1211056

P-loop containing nucleoside triphosphate
hydrolases superfamily protein

Phvul.002G304700 2 47290820 47294656
Mitochondrial ATP synthase subunit
G protein

Chr02_4729928

Phvul.002G304800 2 47299804 47303649 N-MYC downregulated-like 1 Chr02_4730632

Phvul.003G020400 3 1947544 1952837 MMS ZWEI homologue 1 Chr03_194990

Phvul.010G034600 10 5037704 5048093 like heterochromatin protein (LHP1) Chr10_503679

Phvul.002G109600 2 23521662 23522544
SAUR-like auxin-responsive
protein family

Chr02_2351886

Phvul.002G149500 2 30216646 30218163 DORNROSCHEN-like Chr02_3021201

Phvul.006G206700 6 30144607 30149315 CD2-binding protein-related
Chr06_3014878

Phvul.006G206800 6 30153391 30158718 pumilio 7

Phvul.006G207500 6 30214988 30216876
Bifunctional inhibitor/lipid-transfer
protein/ seed storage 2S albumin
superfamily protein Chr06_3022006

Phvul.006G207600 6 30224677 30225373 DNAJ-like 20

Phvul.010G113600 10 38985436 38991418
UDP-Glycosyltransferase
superfamily protein

Chr10_3898765

Phvul.010G118300 10 39752572 39758271 CBL-interacting protein kinase 9 Chr10_3975193
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randomly selected SNP sets. The r-value increased when more SNP

numbers were used, and the two GWAS-derived SNP marker sets

(m20 and m71) exhibited very high mean r-values of 0.75 and 0.83,

respectively, in the all panel of 354 common bean accessions

(Supplementary Table S11, Figure 6, Supplementary Figures S12a, b),

suggesting that GP was high and resistance to HG Type 2.5.7 could

be effectively selected in common bean breeding through genomic

selection. Similar results were observed in the Q1 and Q2 panels,

although the mean r-values were slightly lower (Supplementary

Table S11, Supplementary Figures S12a, b).

For resistance to SCN HG Type 7, the mean of GP estimated by 5

models ranged from 0.59 in r20 to 0.74 in r1000, r2000, and r5000
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among the 10 randomly selected SNP sets. The r-value increased when

more SNP numbers were used from 20 to 1000 SNPs; with 1000 or

more SNPs, the r-value remained similar at 0.73-0.74. The two

GWAS-derived SNP marker sets (m20 and m71) exhibited very

high mean r-values of 0.68 and 0.80, respectively, in the all panel of

354 common bean accessions (Supplementary Table S12, Figure 7,

Supplementary Figures S13a, b), indicating that GP was high and

resistance to HG Type 2.5.7 could be effectively selected in common

bean breeding through genomic selection. Similar results were

observed in Q1 with slightly higher values, but Q2 panels had

slightly lower r-values (Supplementary Table S12, Supplementary

Figures S13a, b).
FIGURE 6

Genomic prediction (r-value) of 10 different randomly selected SNP number sets from 20 SNPs to 10,000 SNPs plus two GWAS-derived SNP marker
sets (20 and 71 markers - m20 and m71) in cross-prediction for the resistance to SCN HG Type 2.5.7 (race 5) in the “all” panel of the 354 common
bean accessions estimated by seven GP models (BA, BB, BL, BRR, cBLUP, gBLUP, and rrBLUP).
FIGURE 7

Genomic prediction (r-value) of 10 different randomly selected SNP number sets from 20 SNPs to 10,000 SNPs plus two GWAS-derived SNP marker
sets (20 and 71 markers - m20 and m71) in cross-prediction for the resistance to SCN HG Type 7 (race 6) in the ‘all’ panel of the 354 common bean
accessions estimated by seven GP models (BA, BB, BL, BRR, cBLUP, gBLUP, and rrBLUP).
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For resistance to SCN HG Type 1.3.6.7, the mean of genomic

prediction (GP) estimated by 5 models ranged from 0.68 in r20 to

0.81 in r10000 among the 10 SNP sets randomly selected. The r-

value increased as more SNP numbers were used, and the two

GWAS-derived SNP marker sets (m20 and m71) exhibited high

mean r-values of 0.78 and 0.90, respectively, in the all panel of 354

common bean accessions (Supplementary Table S13, Figure 8,

Supplementary Figures S14a, b). These findings suggest that GP

was high, and the resistance to HG Type 1.3.6.7 can be effectively

selected in common bean breeding through genomic selection.
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Similar results were observed in Q1 and Q2 panels, albeit with

slightly lower mean r-values (Supplementary Table S13,

Supplementary Figures S14a, b).
Genomic prediction with different folds
(training and testing panel ratio)

GP (r-value) was estimated in nine folds ranging from 2-fold

(training set: testing = 1:1) to 10-fold (training set: testing = 9:1) in
FIGURE 8

Genomic prediction (r-value) of 10 different randomly selected SNP number sets from 20 SNPso 10,000 SNPs plus two GWAS-derived SNP marker
sets (20 and 71 markers - m20 and m71) in cross-prediction for the resistance to SCN HG Type 1.3.6.7 (race 14) in the ‘all’ panel of the 354 common
bean accessions estimated by seven GP models (BA, BB, BL, BRR, cBLUP, gBLUP, and rrBLUP).
FIGURE 9

Genomic prediction (r-value) of nine different randomly selected SNP number sets from 20 SNPs to 10,000 SNPs in across-population prediction
from Q1 (202 accessions) to Q2 (152 accessions) or from Q2 to Q1 for the resistance to SCN HG Type 1.3.6.7 (race 14) estimated by rrBLUP as
an example.
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cross-prediction for the resistance to three HG Types: HG 7, HG

2.5.7, and HG 1.3.6.7 (race 14), across three panels: all 354

accessions, Q1 with 202 accessions, and Q2 with 152 accessions,

estimated by rrBLUP (Supplementary Table S14, Supplementary

Figure S15). The results indicated that (1) the r-value averaged 0.75

and ranged from 0.74 in 2-fold to 0.76 in 5-, 7-, 8-, and 9-fold in the

all-panel; (2) in Q1, the r-value averaged 0.76 and ranged from 0.74

in 2-fold to 0.78 in 6-fold; (3) in Q2, the r-value averaged 0.54 and

ranged from 0.51 in 2-fold to 0.56 in 7- and 8-fold; (4) the r-value

remained consistent across all folds from 2- to 10-fold; (5) the r-

value was similar across different HG Types, averaging 0.66, 0.67,

and 0.72; (6) 2-fold had the smallest r-value but also the smallest

standard error (SE) value; (7) as the fold increased, the SE also

increased; (8) both all and Q1 panels exhibited similar r-values

around 0.75, while Q2 had a lower r-value around 0.54

(Supplementary Table S14, Supplementary Figure S15), suggesting

that all nine folds can be utilized in genomic selection for SCN

resistance across the three HG Types in common bean.
Genomic prediction by across-population
among common bean panels

GP (r-value) was estimated by rrBLUP across nine different

randomly selected SNP number sets ranging from 20 SNPs to

10,000 SNPs in across-population prediction, either from Q1 (202

accessions) to Q2 (152 accessions) or from Q2 to Q1, for the

resistance to the three HG Types (Supplementary Table S15;

Figure 9). However, all GP values showed an r-value less than 0.4,

indicating a low level of genetic accuracy.

For resistance toHGType 2.5.7, all r-values in the 9 SNP sets were

≤0.11 for GP from Q1 to Q2; 8 r-values in the 9 SNP sets were ≤0.03

except for r = 0.33 in r200, and 7 were zero or below zero for GP from

Q2 to Q1 (Supplementary Table S15). These results indicate that

genomic selection will not be efficient for selecting HG Type 2.5.7

resistance through across-population prediction fromQ1 toQ2 or Q2

to Q1.

For resistance to HG Type 7, the r-values were 0.27, -0.06, 0.14,

0.11, 0.01, 0.23, 0.27, 0.28, and 0.26 in r20, r50, r100, r200, r500,

r1000, r2000, r5000, and r10000, respectively, showing r ≤ 0.28 in all

nine SNP sets for GP from Q1 to Q2. Similarly, the r-values were

0.17, -0.10, -0.13, 0.24, -0.09, 0.10, 0.15, 0.25, and 0.15 in r20, r50,

r100, r200, r500, r1000, r2000, r5000, and r10000, respectively,

showing r ≤ 0.25 in all nine SNP sets for GP either from Q2 to Q1 or

from Q2 to Q1 (Supplementary Table S15). These results indicate

that genomic selection will not be highly efficient for selecting HG

Type 7 resistance through across-population prediction from Q1 to

Q2 or Q2 to Q1.

For resistance to HG Type 1.3.6.7, the r-values were 0.31, -0.03,

0.33, 0.08, 0.14, 0.26, 0.30, and 0.29 in r20, r50, r100, r200, r500,

r1000, r2000, r5000, and r10000, respectively, showing r ≤ 0.28 in all

nine SNP sets for GP fromQ1 toQ2. Similarly, the r-values were 0.20,

0.05, 0.05, 0.24, 0.23, 0.08, 0.34, 0.32, and 0.38 in r20, r50, r100, r200,

r500, r1000, r2000, r5000, and r10000, respectively, showing r ≤ 0.38

in all nine SNP sets for GP either from Q2 to Q1 or from Q2 to Q1
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(Supplementary Table S15, Figure 9). These findings indicate that

genomic selection will not be highly efficient for selecting HG Type

1.3.6.7 resistance through across-population prediction from Q1 to

Q2 or Q2 to Q1. However, r ≥ 0.29 up to 0.38 were observed in r2000,

r5000, and r10000 when 2000 SNPs were used, suggesting there are

alleles for HGType1.3.6.7 resistance in both sub-populations (Q1 and

Q2) of the two domestic germplasm sets: Mesoamerican and Andean,

and genomic selection will be less effective by across-prediction

between the two sets.
Genomic prediction by across- and cross-
population among common bean panels

The GP (r-value) of 11 GP pairs (combinations) of across- and

cross-population were estimated using all 87,176 SNPs and 10,000

SNPs as SNP sets in across-population prediction in all panel, Q1,

and Q2 for the resistance to the three HG Types estimated by four

GP models, maBLUP, cBLUP, gBLUP, and sBLUP in GAPIT 3

(Supplementary Table S16; Figure 10), where (1) all:all = the all 354

common bean accessions as both training and testing sets; (2) Q1:

Q1 = the 202 accessions of Q1 as both training and testing sets; (3)

Q2:Q2 = the 152 accessions of Q2 as both training and testing sets;

(4) r:r = randomly selected 50% accessions from all 354 accessions

both training and testing sets; (5) all:Q1 = the all accessions as the

training set and Q1 as the testing sets; (6) all:Q2 = the all accessions

as the training set and Q2 as the testing sets; (7) All_r(1:1) =

randomly selected 50% accessions from all 354 accessions as the

training set and the left 50% of 177 accessions as the testing sets; (8)

Q1_r(1:1) randomly selected 50% accessions from the 202

accessions of Q1 as the training set and the left 50% of 101

accessions as the testing sets; (9) Q2_r(1:1) = randomly selected

50% accessions from 152 accessions of Q2 as the training set and the

left 50% of 76 accessions as the testing sets; (10) Q1:Q2 = the Q1 as

the training set and Q2 as the testing sets; and (11) Q2:Q1 = the Q2

as the training set and Q1 as the testing sets. The cross-population

predictions within the same population include above (1) all:all, (2)

Q1:Q1, (3) Q2:Q2, and (4) r:r; the cross-population predictions

from a large population to a sub-population within the large

population include above (5) all:Q1 and (6) all:Q2; the cross-

population predictions from half sub-population to another half

within the population include (7) All_r(1:1), (8) Q1_r(1:1), and (9)

Q2_r(1:1); and the across-population predictions from one

population to another include (10) Q1:Q2 and (11) Q2:Q1.

All cross-predictions showed high r values in both SNP sets

(all_87176SNP and r1000) in each of the four GP models (maBLUP,

cBLUP, gBLUP, and sBLUP) (Supplementary Table S16; Figure 10 as

an example for maBLUP). The mean r-value of the nine sets of

training:testing, all:all, Q1:Q1, Q2:Q2, r:r, all:Q1, all:Q2, All_r(1:1),

Q1_r(1:1), and Q2_r(1:1) were 0.80, 0.83, 0.82, 0.74, 0.76, 0.67, 0.72,

0.71, and 0.57, respectively, in the all_87176SNP SNP set; 0.79, 0.83,

0.74, 0.72, 0.74, 0.65, 0.71, 0.67, and 0.58, respectively, in the r1000 SNP

set; and 0.79, 0.83, 0.78, 0.73, 0.75, 0.66, 0.71, 0.69, and 0.57,

respectively, in the combined two SNP sets (Supplementary Table

S16; Figure 10). These results indicate that the r-value was high, ≥0.67,
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even >0.90 in many cases, except in Q2_r(1:1) where r=0.57

averaged, suggesting that genomic selection will be efficient

through cross-prediction when selection is performed within the

same population (all:all, Q1:Q1, Q2:Q2, r:r), from a large population

to a sub-population within the large population (all:Q1 and all:Q2),

and from one half sub-population to another half within the

population [All_r(1:1), Q1_r(1:1), and Q2_r(1:1)] for SCN

resistance in common bean.

The mean in all cross-prediction combined was 0.75, 0.76, and

0.70 for HG 7, HG 2.5.7, and HG 1.3.6.7, respectively, in the

all_87176 SNP set; and 0.78, 0.68, and 0.69 for HG 7, HG 2.5.7,

and HG 1.3.6.7, respectively, in the r1000 SNP set (Supplementary

Table S16). The r-value was high, ≥0.68, for each of the three HG

Types in both SNP sets, indicating that genomic selection will be

efficient to select the resistance to each of the three HG Types by

cross-prediction in common bean.

The mean r-value of the two sets of training:testing, Q1:Q2 and

Q2:Q1, were 0.21 and 0.15 in the all_87176 SNP set; 0.26 and 0.20 in

the r1000 SNP set; and 0.24 and 0.18 in the combined two SNP sets

(Supplementary Table S16). These values indicate that the r-value

was low, ≤0.26, and even zero or below zero were observed, such as

for HG 2.5.7 in the all_87176 SNP set, where r = -0.32 and -0.36 in

Q2:Q1 by cBLUP and gBLUP, respectively. This suggests that

genomic selection will not be efficient through across-prediction

between the two common bean populations, Q1 to Q2 or Q2 to Q1,

for SCN resistance.

The mean r-value of the two across-prediction combined was

0.38, 0.04, and 0.13 for HG 7, HG 2.5.7, and HG 1.3.6.7,

respectively, in the all_87176 SNP set; and 0.26, 0.21, and 0.23 for

HG 7, HG 2.5.7, and HG 1.3.6.7, respectively, in the r1000 SNP set

(Supplementary Table S16). These values indicate that the r-value

was low, ≥0.26, for each of the three HG Types in both SNP sets,

suggesting that genomic selection will have low efficiency in

selecting the resistance to each of the three HG Types through

across-prediction in common bean.

The mean r-values of the four GP models were 0.70, 0.48,

0.76, and 0.65 in the all_87176 SNP set; 0.69, 0.46, 0.77, and 0.59
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in the r1000 SNP set; and 0.70, 0.47, 0.76, and 0.62 in the

combined two SNP sets (Supplementary Table S16). These

results indicate that the r-values were high, ≥0.59, for each of

the three HG Types in maGLUP, gBLUP, and sBLUP, but the r-

value was 0.47 in cBLUP. This suggests that genomic selection

will be efficient in selecting the resistance to each of the three HG

Types using each of the four GP models in common bean, with

gBLUP exhibiting the highest efficiency, followed by maBLUP,

sBLUP, and then cBLUP.
Genomic prediction for SCN resistance
through different HG types

The genomic prediction (GP) was estimated for the SCN

resistance to one HG Type, either HG 7, HG 2.5.7, or HG 1.3.6.7,

from another HG Type FI data using five SNP sets (all_87176, r500,

r1000, r5000, and r10000) and four GP models (maBLUP, gBLUP,

cBLUP, and sBLUP) (Supplementary Table S17; Figure 11,

maBLUP as an example).

The mean r-values were 0.77, 0.76, and 0.75 in the maBLUP

model; 0.57, 0.66, and 0.47 in the cBLUP model; 0.82, 0.81, and 0.80

in the gBLUP model; and 0.78, 0.76, and 0.67 in the sBLUP model

for resistance to HG 2.5.7, HG 7, and HG 1.3.6.7, respectively

(Supplementary Table S17). These results indicate that the r-values

were high for each of the three HG Types in three models, with r-

values greater than or equal to 0.67, except for cBLUP, which had r-

values greater than or equal to 0.47.

The mean r-values were 0.74, 0.71, 0.72, 0.76, and 0.73 for HG

2.5.7; 0.75, 0.73, 0.75, 0.76, and 0.75 for HG 7; 0.66, 0.65, 0.66, 0.71,

and 0.68 for HG 1.3.6.7; and 0.72, 0.70, 0.71, 0.74, and 0.72 for the

combined set in all.87176, r500, r1000, r5000, and r10000,

respectively (Supplementary Table S17). These results indicate that

high r-values were observed, with r-values greater than or equal to

0.65. This suggests that all SNP sets had high r-values and that a set

with more SNPs had slightly higher r-values, although the difference

was less than 5%.Therefore, it indicates that 500 ormore SNPs can be
FIGURE 10

Genomic prediction (r-value) of 11 GP pairs (combinations) of across- and cross-population using 10,000 SNPs in across-population prediction all
panel (354 accessions), Q1 (202 accessions), and Q2 (152 accessions) for the resistance to three SCN HG Types GH256 (race 5), GH7 (race 6), and
HG 1.3.6.7 (race 14) estimated by maBLUP in GAPIT 3 as an example.
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used as a SNP set in genomic selection to select SCN resistance based

on phenotypic data from one HG Type to another HG Type.

The mean r-values were 0.76, 0.73, 0.76, 0.78, and 0.77 for

maBLUP; 0.57, 0.55, 0.56, 0.60, and 0.56 for cBLUP; 0.82, 0.79, 0.80,

0.81, and 0.82 for gBLUP; and 0.71, 0.71, 0.73, 0.78, and 0.75 for

sBLUP in all.87176, r500, r1000, r5000, and r10000 SNP sets,

respectively. The averaged r-values were 0.76, 0.57, 0.81, and 0.73

for maBLUP, cBLUP, gBLUP, and sBLUP, respectively

(Supplementary Table S17). These results show that maBLUP,

gBLUP, and sBLUP had high r-values with r ≥ 0.71, except for

cBLUP with r ≥ 0.55. This indicates that all four models, except

cBLUP, can be used for prediction to select SCN resistance based on

phenotypic data from one HG Type to another one.

The correlation among the prediction values from the three HG

Types, 2.5.7, 7, and 1.3.6.7, showed high r-values (Supplementary

Table S18). In the maBLUP model, the lowest correlation was r =

0.69 between HG 7.prediction and HG 1.3.6.7.prediction in

all.87176 SNP set, while the highest was r = 0.88 between HG

2.5.7.prediction and HG 7.prediction in r500 SNP set. In the cBLUP

model, the lowest correlation was r = 0.55 between HG 7.prediction

and HG 1.3.6.7.prediction in all.87176SNP SNP set, and the highest

was r = 0.92 between HG 2.5.7.prediction and HG 1.3.6.7.prediction

in r5000 SNP set. In the gBLUP model, all correlations were very

high with r ≥ 0.81 between each pair in all five SNP sets. In the

sBLUP model, the correlation was r = 0.69 between HG 7 and HG

1.3.6.7 in all five SNP sets, and r = 0.83 between HG 2.5.7 and HG 7,

and between HG 2.5.7 and HG 1.3.6.7 (Supplementary Table S18),

indicating that resistant FI to one HG Type can be predicted using

the FI value in another HG Type through GS.
GWAS-derived SNP marker

The two GWAS-derived SNP marker sets, either m20 or m71,

exhibited highest r-values (Supplementary Tables S11-S13;

Supplementary Figures 12a, b, 13a, b, 14a, b; Figures 6-8). For HG

Type 2.5.7 resistance, m20 showed r-values ≥ 0.77 in BA, BB, BRR, BL,
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andgBLUPmodels, except for r = 0.64 in rrBLUPand0.66 in cBLUP in

all.panel; ≥ 0.76 in all models except r = 0.51 in rrBLUP in Q1; and ≥

0.72 in all models except r = 0.45 in rrBLUP inQ2.M71 exhibited high

r-values across all seven GP models with r ≥ 0.71 in all, Q1, and Q2,

even ≥ 0.85 in BA, BB, BRR, BL, and gBLUP models in all and Q1

panels (Supplementary Table S11, Supplementary Figures 12a, b).

Similar r-values were observed for resistance toHGType 7 and 1.3.6.7,

with even higher r-values with r ≥ 0.91 for resistance to HG Type

1.3.6.7, exceeding 0.90 in BA, BB, BRR, BL, and gBLUP in all panel

(SupplementaryTables S12, S13, SupplementaryFigures 13a, b, 14a, b).

These results indicate that GWAS-derived SNP markers can be

effectively used to select resistance to either HG Type 7, 2.5.7, or

1.3.6.7 in common bean breeding through GS.
Genetic prediction using difference
genomic models

SevenGPmodels (BA, BB,BRR,BL, rrBLUP, cBLUP, and gBLUP)

were employed to estimate GP (r-values) for cross-population

prediction (Supplementary Tables S11-S13, Supplementary

Figures 12a, b, 13a, b, 14a, b; Figures 6-8); four models (maBLUP,

cBLUP, gBLUP, and sBLUP) for both across- and cross-population

prediction (SupplementaryTables S16, S17; Figure 12).Across all three

panels (all, Q1, and Q2), all seven models demonstrated high r-values

in each SNP set. BA, BB, BRR, BL, and gBLUP exhibited similar r-

values, while rrBLUP and cBLUP showed slightly lower r-values

(Supplementary Tables S11-S13). This suggests that the Bayesian

models (BA, BB, BRR, or BL) and gBLUP are preferable for selecting

SCN resistance in common bean through GS.
Genomic heritability

In this study, genomic heritability (GH) was estimated using the

rrBLUPmodel for resistance to the three SCNHGTypes: 7, 2.5.7, and

1.3.6.7, across 10 different randomly selected SNPnumber sets ranging
FIGURE 11

Genomic prediction (r-value) based the SCN FI in one SCN HG Type as training set to predict itself and other HG Types among the all panel (354
common bean accessions) estimated by maBLUP using all 87,176 SNPs an example for this figure.
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from 20 SNPs to 10,000 SNPs, in addition to two GWAS-derived SNP

marker sets (20 and 71 markers - m20 and m71). This estimation was

conducted through cross-prediction in three panels: all 354 common

bean accessions, Q1 with 202 accessions, and Q2 with 152 accessions

(Supplementary Table S19, Supplementary Figure S16).

The mean genomic heritability (GH) was 36.5%, 39.7%, and 41.4%

in the all panel (354 accessions); 53.3%, 51.2%, and 59.8% in Q1 (202

accessions); and 48.7%, 51.0%, and 59.5% in Q2 (152 accessions) for

resistance to HG Types 2.5.7, 7, and 1.3.6.7, respectively, averaged from

the 12 different SNP number sets in cross-prediction. The results

indicated that GH was highest for resistance to HG Type 1.3.6.7 in all

three panels, second for HGType 7 in all and Q2 panels, but second for

HG Type 2.5.7 only in Q1 (Supplementary Table S19). This suggests

that GH was highest for HG Type 1.3.6.7, followed by HG Type 7, and

lowest for HG Type 2.5.7.

In most cases, as more SNPs were selected as a set, higher

genomic heritability (GH) was observed for resistance to each HG

Type in each panel (Supplementary Table S19). After reaching 500

SNPs, GH was consistently over 50% in most cases, suggesting that

using 500 or more SNPs as a set for genomic selection for SCN

resistance in common bean is feasible. The GH observed in the

GWAS-derived marker sets, either m20 or m71, was slightly higher

than that of the same SNP number sets, either r20 or r71, but lower

than those sets in most cases when 500 SNPs or more were

randomly selected (Supplementary Table S19).
Genetic diversity and utilization of the SCN
resistant germplasm accessions

Among the 78 resistant accessions with a cyst nematode index

(FI) of less than 10.0 for one or more of the three HG Types (7, 2.5.7,
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and 1.3.6.7) (Supplementary Table S20, Supplementary Figure S17),

26 accessions exhibited FI values below 10.0 for resistance to all three

HG Types (Table 6, Figure 13). The remaining 52 accessions either

had FI values above 10.0 for resistance to one of the three HG Types

or had missing SCN phenotypic data (Supplementary Table S20).

Among the 26 accessions exhibiting an FI < 10 for all three SCN

HG Types, 25 of them are present in Q1, with only PI 415936 from

Ecuador appearing in Q2 (Table 6, Figure 13). Within Q1, 24

accessions originated from Mexico, while one accession from the

United States. This suggests that the primary source of resistance to

multiple HG Types is predominantly found in Mexico.

The 78 accessions were sourced from 15 countries, with the

majority comprising 50 accessions from Mexico. Additionally, there

were 6 accessions from Ecuador and 4 from Peru, with 2 accessions

each from Bolivia, Colombia, Costa Rica, Guatemala, India, and the

United States. Furthermore, therewas 1 accession each fromBulgaria,

Canada, China, El Salvador, Japan, andTurkey (SupplementaryTable

S20). This distribution indicates that the majority of SCN-resistant

lines originate from Mexico (64.1%), followed by the Ecuador-Peru

region (12.8%), with the remaining countries contributing to the

remainder (23.1%, with each country accounting for 0.6% or 1.3%).

Analyzing the phylogenetic tree (Supplementary Table S20,

Supplementary Figure S17), two main clusters are apparent.

Specifically, 47 out of the 50 accessions from Mexico are grouped

within cluster Q1. Meanwhile, the 6 accessions from Ecuador, 4 from

Peru, 2 from Bolivia and Guatemala, and 1 from India, Bulgaria, and

Mexico each form part of cluster Q2. Notably, two accessions, PI

417622 and PI 417624 from Mexico, appear as outliers. In Q2, four

accessions—PI 201018 and PI 343950 from Guatemala, PI 535395

fromMexico, and PI 361321 from India—are somewhat distant from

the main cluster. Consequently, they are identified as outliers

within Q2.
FIGURE 12

Genomic prediction (r-value) among four GP models, maBLUP, cBLUP, gBLUP, and sBLUP cross three SCN HG Types, HG 7 (race 6), HG 2.5.7 (race
5) and HG1.3.6.7 (race 14) using GAPIT 3 tool using randomly selected 10,000 SNPs comparisons, averaged r-value from the 11 GP pairs
(combinations) of across- and cross-population.
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Discussion

Genome-wide association study and SNP
marker identification for SCN resistance

In this study, a total of 40 SNPs were identified to be associated

with SCN resistance (Supplementary Table S6) in the all-panel of

354 common bean accessions using 87,176 SNPs distributed across

11 chromosomes (Supplementary Figure S2). These 40 SNP

markers exhibited a LOD (-log(P-value)) greater than 6.24, which

is the Bonferroni threshold value for the all-panel, as determined by

at least one of the five models used, alongside a t-test for resistance

to one of the three SCN HG Types (Supplementary Table S6).

Furthermore, 24 SNPs were identified in the Q1 panel of 202

accessions using 71,972 SNPs, with a LOD greater than 6.16, the
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Bonferroni threshold value for theQ1panel, detectedby at least oneof

the fivemodels, alongside a t-test for resistance to one of the three HG

Types (Supplementary Table S7). Similarly, 15 SNPs were identified

in the Q2 panel of 152 accessions using 55,933 SNPs, with a LOD

greater than 6.05, the Bonferroni threshold value for the Q2 panel,

detected by at least one of the five models, alongside a t-test for

resistance to one of the three HG Types (Supplementary Table S8).

Combining all SNP markers from the three panels for resistance

to the three SCN HG Types, specific SNPs were selected as

molecular markers for resistance to each SCN HG Type in each

of the three panels based on their high LOD values across GWAS

models. A total of 71 SNPs were reported, with 20 of them selected

as markers associated with resistance to one or more SCN HG

Types across different common bean panels. This led to the

identification of nine QTL regions located on Chrs 2, 2, 3, 6, 6, 9,
TABLE 6 Top 26 common bean accessions with SCN resistance FI <10.0 in three HG Types: HG Type 7 (race 6), HG Type 2.5.7 (race 5), and HG Type
1.3.6.7 (race 14).

Line_ID1 PI Country Q1 Q2 2Cluster Race5 FI Race6 FI Race14 FI

PI313709_Mexico_Q1 PI313709 Mexico 1 0 Q1 1.8 7.1 1.2

PI313733_Mexico_Q1 PI313733 Mexico 1 0 Q1 1.1 2 1.5

PI313749_Mexico_Q1 PI313749 Mexico 1 0 Q1 3.3 9.9 2.1

PI313820_Mexico_Q1 PI313820 Mexico 0.998 0.002 Q1 2.4 5.5 2.1

PI325750_Mexico_Q1 PI325750 Mexico 1 0 Q1 1.8 2.9 3.5

PI346960_Mexico_Q1 PI346960 Mexico 1 0 Q1 3.7 3.5 3.5

PI430204_Mexico_Q1 PI430204 Mexico 1 0 Q1 4.9 5.5 2.1

PI430206_Mexico_Q1 PI430206 Mexico 0.998 0.002 Q1 0.9 9.4 3.9

PI319618_Mexico,Aguascalientes_Q1 PI319618 Mexico, Aguascalientes 0.999 0.001 Q1 4.6 7 3.3

PI312083_Mexico,FederalDistrict_Q1 PI312083
Mexico,
FederalDistrict

1 0 Q1 4.4 7.7 7.7

PI313328_Mexico,Guanajuato_Q1 PI313328 Mexico,Guanajuato 1 0 Q1 3.3 7.5 1.6

PI417657_Mexico,Guanajuato_Q1 PI417657 Mexico,Guanajuato 1 0 Q1 4 3 2.8

PI201354_Mexico,Hidalgo_Q1 PI201354 Mexico,Hidalgo 1 0 Q1 1.6 4.7 2

PI313440_Mexico,Mexico_Q1 PI313440 Mexico,Mexico 1 0 Q1 2.5 6.6 4.1

PI313444_Mexico,Mexico_Q1 PI313444 Mexico,Mexico 1 0 Q1 1 2.7 2.3

PI313445_Mexico,Mexico_Q1 PI313445 Mexico,Mexico 1 0 Q1 2 2.1 2

PI319684_Mexico,Michoacan_Q1 PI319684 Mexico,Michoacan 0.974 0.026 Q1 5.8 5.3 1.6

PI417616_Mexico,Michoacan_Q1 PI417616 Mexico,Michoacan 1 0 Q1 5 6.3 2.2

PI313473_Mexico,Morelos_Q1 PI313473 Mexico,Morelos 1 0 Q1 3.8 8 2.8

PI313490_Mexico,Puebla_Q1 PI313490 Mexico,Puebla 1 0 Q1 3.1 5.1 2.4

PI313512_Mexico,Puebla_Q1 PI313512 Mexico,Puebla 1 0 Q1 9.1 3.5 4.6

PI325614_Mexico,Puebla_Q1 PI325614 Mexico,Puebla 1 0 Q1 4.1 9.1 1.5

PI417725_Mexico,Puebla_Q1 PI417725 Mexico,Puebla 0.922 0.078 Q1 9.9 4.7 3

PI313524_Mexico,Veracruz_Q1 PI313524 Mexico,Veracruz 1 0 Q1 1.5 2.6 1.1

PI608388_UnitedStates,Nebraska_Q1 PI608388 UnitedStates, Nebraska 0.999 0.001 Q1 2.4 5.8 1.7

PI415936_Ecuador,Imbabura_Q2 PI415936 Ecuador,Imbabura 0.002 0.998 Q2 4.3 5 2.1
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10, 10, and 11, respectively (Supplementary Tables S21a, b).

Notably, differences were observed based on domestication, with

certain QTLs being identified predominantly in specific sub-

populations. Furthermore, the QTLs exhibited varying resistance

to different HG Types (races), highlighting the complexity of SCN

resistance in common bean across different genetic backgrounds

(Supplementary Table S21).

The 71 SNPs reported in this study represent a novel

contribution to understanding SCN resistance in common bean.

However, several SNP regions have been previously identified by

studies including Jain et al. (2019); Shi et al. (2021), and Wen et al.

(2019). Supplementary Table S22 lists a total of 153 SNP markers,

including the 71 from current study. Within this dataset, 17 SNP

regions are found to have SNP markers reported within a <3 Mbp

distance in previous studies . For instance , the SNP

Chr02_30212013 identified for resistance to HG 1.3.6.7 in this

study corresponds to SNP ss715639664_Chr02_30457681

reported by Jain et al. (2019) for resistance to HG Type 0, with a

distance of 245,668 bp. This highlights the potential overlap and

consistency in identifying genomic regions associated with SCN

resistance across different studies using different SCN populations

and HG Types.
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Genomic prediction for genomic selection
of SCN resistance

Genomic selection (GS) has been extensively explored across

numerous crops, including maize, rice, soybean, and wheat, for

diverse agronomic traits and stress tolerances (Albrecht et al., 2011;

Battenfield et al., 2016; Bernardo, 1996; Duhnen et al., 2017; Heffner

et al., 2011; Jarquin et al., 2016; Onogi et al., 2016; Piepho, 2009;

Poland et al., 2012; Rutkoski et al., 2011; Shikha et al., 2017; Spindel

et al., 2015; Technow et al., 2013; Xavier et al., 2016; Zhang et al.,

2017). The estimation of genomic breeding values is pivotal in GS,

with various approaches proposed, including BLUP methods

(rrBLUP, maBLUP, cBLUP, gBLUP, sBLUP), and Bayesian

methods (Bayes A, Bayes B, Bayes LASSO (BL), and Bayes ridge

regression (BRR)). Assessment of selection prediction accuracy is

commonly performed using Pearson’s correlation coefficient (r)

between the genomic estimated breeding values (GEBV) and

observed values for each trait in the validation (testing) set across

different models.

In this study, genomic prediction (GP) was conducted across

three common bean panels: the all.panel comprising 354 accessions,

the Q1 (Mesoamerican) panel with 202 accessions, and the Q2
FIGURE 13

The phylogenetic tree created by the Maximum Likelihood (ML) method from MEGA 7 in 26 common bean germplasm accessions that were
resistant to all three SCN HG Types 7, 2.5.7 and 1.3.6.7 with FI <10.
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(Andean) panel comprising 152 accessions. Seven GP models (BA,

BB, BRR, BL, rrBLUP, cBLUP, and gBLUP) were employed for

cross-population prediction, while five models (maBLUP, cBLUP,

gBLUP, sBLUP, and rrBLUP) were utilized for both across- and

cross-population predictions. GP performance, measured by the r-

value, was assessed across various SNP sets and training/testing

ratios (fold) in cross-prediction. Additionally, GP was evaluated in

across-prediction scenarios among the three panels (all, Q1,

and Q2).
Fron
GP estimation by different SNP set: The genomic prediction

(GP) analysis was conducted using 12 SNP sets, comprising

10 different randomly selected SNP number sets and two

sets derived from genome-wide association studies

(GWAS) for resistance to the three SCN HG Types across

three panels, employing seven GP models. Our findings

revealed several key findings: Firstly, the correlation

coefficient (r-value) increased with the inclusion of more

SNPs in the SNP set, however, it had similar r-value when a

SNP set had 500 or more SNPs, indicating a positive

relationship between SNP number and prediction

accuracy. Secondly, the r-value exhibited a similar trend

across the three SCN HG Types, albeit with minor

differences, suggesting consistent prediction accuracy

regardless of HG Type. Thirdly, the r-value was

consistently lower in Q2 compared to the all.panel and

Q1, indicating potentially reduced prediction accuracy in

this sub-population. Lastly, the r-value was notably lower

when only 20 SNPs were randomly selected as a set (r20),

indicating decreased prediction accuracy with a smaller

number of SNPs. These findings align with previous

studies by Shi et al. (2021) and Wen et al. (2019) on the

similar trait of SCN resistance in common beans, as well as

with other trait prediction analyses reported in the

literature (Bhattarai et al., 2022, 2023; Ravelombola et al.,

2021, 2019, 2020; Shi et al., 2021). Overall, our results

contribute to understanding the factors influencing

prediction accuracy in genomic selection and highlight

the importance of SNP selection in enhancing

prediction performance.

Training/testing ratio (fold): Training/testing ratio (fold): GP

(r-value) was estimated in nine folds from 2-fold (training

set: testing = 1: 1) in cross-prediction for the resistance to

three SCN HG Types, 7 (HG 7; race 6), 2,5,7 (HG 2.5.7; race

5), and 1.3.6.7 (HG 1.3.6.7; race 14) in three panels: all 354

common bean accessions, Q1 - 202 accessions, and Q2 -

152 accessions estimated by rrBLUP (Supplementary Table

S14, Supplementary Figure S15). All folds from 2 to 10 had

similar r-value in each of three common bean panels, all,

Q1, or Q2, but Q2 had smaller r-value than other two due

less size of the Q2 panel, showing either the size of training

set or testing set would affect the GA. These findings also

align with previous studies (Bhattarai et al., 2022, 2023;

Ravelombola et al., 2021, 2019, 2020; Shi et al., 2022, 2021;

Wen et al., 2019).
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Across population prediction: In this study, genomic

prediction (GP) accuracy (r-value) was estimated using

rrBLUP across different SNP number sets ranging from

20 to 10,000 SNPs. The prediction focused on across-

population scenarios, either from the Mesoamerican (Q1;

202 accessions) to Andean (Q2; 152 accessions) common

bean accessions, or vice versa, for resistance to three SCN

HG Types: 2.5.7, 7, and 1.3.6.7 (Supplementary Table S15,

Figure 9). The results revealed relatively low prediction

accuracy in across-population prediction between the two

subpopulations, suggesting distinct genetic backgrounds

influencing SCN resistance. However, leveraging a mixed

population as a training set demonstrated high prediction

accuracy for either subpopulation, implying the potential of

genomic selection (GS) for enhancing SCN resistance in

common bean across diverse genetic backgrounds. In this

study, negative PA was observed in some cases during

across-population predictions from Q1 to Q2 or Q2 to

Q1 (Supplementary Table S15), indicating challenges in

accurately predicting SCN phenotypes. These results may

underscore the need to refine models, incorporate

additional markers, or account for environmental

interactions to improve prediction accuracy. Despite the

occurrence of negative PA, the GS framework remains

valuable for identifying useful patterns to improve

SCN tolerance.

GWAS-derived SNP markers as the SNP set: In this study, we

also evaluated genomic prediction (GP) using 20 (m20) and

71 SNP markers (m71) derived from genome-wide

association studies (GWAS). Both sets of markers showed

higher prediction accuracy (r-values) for resistance to all

three SCN HG Types compared to other SNP sets.

However, the m71 GWAS-derived SNP markers exhibited

the highest GP accuracy, indicating the presence of multiple

alleles with minor effects contributing to SCN resistance in

common bean. This approach, combining marker-assisted

selection (MAS) and genomic selection (GS), can be

valuable in real-world breeding programs, despite

potential biases in predictive ability when using SNP

markers from the same GWAS panel (Shi et al., 2021).

Similar approaches have been successfully applied in

predicting genetic architecture for various traits in

different crops, including wheat, soybean, and others (Ali

et al., 2020; Qin et al., 2019; Ravelombola et al., 2021, 2019,

2020; Spindel et al., 2016; Zhang et al., 2016b). Therefore,

employing MAS and GS through genomic estimated

breeding values (GEBVs) using associated SNP markers

holds promise for molecular breeding aimed at enhancing

SCN resistance in common bean, as well as for improving

other quantitative traits in diverse plant species.

GP for different HG types: The genomic prediction (GP)

analysis for SCN resistance across different HG Types

(races) revealed several key findings. Despite variations in

HGTypes, the host common bean accessions did not exhibit

distinct patterns that could distinguish between them,
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indicating a lack or little of differential host response to

different SCN HG Types (races). High correlations were

observed among the three races based on both phenotypic

data and predicted genomic estimated breeding values

(GEBV), suggesting a shared genetic basis for resistance

across HG Types. Furthermore, the high genomic accuracy

(GA) in predicting GEBV from one HG Type to another

indicates the robustness of the resistance mechanisms

against SCN evolution. Analysis of 78 resistant accessions

(Supplementary Table S20) demonstrated that resistance to

one HG Type often conferred resistance to others, with few

instances of intermediate susceptibility. This supports the

notion that SCN resistance may predate SCN pathogen

stress and that gene-for-gene co-evolution may not be

necessary for SCN resistance in common beans. Consistent

with previous studies, accessions displayed varying degrees

of resistance to different HG Types, with more robust

resistance observed against HG123567 compared to HG

2.5.7. However, the correlation between HG 2.5.7 and

HG123567 resistance, as reported by Wen et al. (2019),

was relatively low (r=0.34), suggesting challenges in

predicting GEBV between races based solely on SCN

phenotypic data. These findings underscore the complexity

of SCN resistance in common beans and highlight the need

for further research to elucidate the underlying genetic

mechanisms and optimize breeding strategies.
Genetic diversity, domestication, utilization
of SCN resistant resources

Based on principal component analysis (PCA) and phylogenetic

analysis, the 354 accessions were categorized into two clusters:

Q1 representing Mesoamerican and Q2 representing Andean

domestication. Within Q1, further subdivision resulted in three

groups (g1, g2, and g3), while Q2 split into two groups (p1 and

p2), resulting in a total of five sub-populations: Q1g1, Q1g2, Q1g3,

Q2p1, and Q2p2 (Supplementary Table S1). Among the 78

accessions that were resistant to one or more HG Types, 52

accessions were in Q1g1 predominantly from Mexico, with minor

representation from Guatemala, Colombia, and the United States;

eight accessions in Q1g2, evenly distributed between Costa Rica and

Mexico, with additional accessions from Canada, Colombia, El

Salvador, and the United States; five accessions in Q1g3 with two

originating from India and one each from China, Japan, and Turkey;

and 13 accessions in Q2p1 with the majority from Ecuador,

followed by representation from Peru, Bolivia, and Bulgaria

(Supplementary Table S20). Notably, Q2p2 did not contain any

accessions displaying SCN resistance with FI < 20, except for PI

165617, which exhibited a FI of 19.4, indicating resistance to HG

1.3.6.7. However, PI 165617 showed higher FIs of 48.6 for HG 7 and

30.7 for HG 2.5.7 resistance (Supplementary Table S1).

The phylogenetic analysis of 354 common bean germplasm

accessions revealed two distinct sub-populations, Q1 and Q2,
tiers in Plant Science 24
delineated by domestication into Mesoamerican and Andean

origins, respectively. This differentiation was evident when

analyzing both 6,600 randomly selected SNPs (Supplementary

Figure S3-1) and 20 SNP markers associated with resistance to

SCN HG Types 7, 2.5.7, or 1.3.6.7 (Supplementary Figure S18).

Notably, within each sub-population, resistant accessions tended to

cluster together, highlighting the presence of two distinct types of

SCN-resistant resources (Supplementary Table S20). Further

analysis of the most highly associated 13 SNP markers within

QTL regions among the 78 SCN-resistant accessions reaffirmed

this pattern, illustrating the existence of two distinct SCN-resistant

resource pools based on Mesoamerican Q1 and Andean Q2

domestications (Supplementary Figure S19). Evidences have been

shown that common bean originated in the Mesoamerica, and

Andean gene pool originated through different migration events

from the Mesoamerican populations (Bitocchi et al., 2012). It is

likely that SCN originated along with the major host soybean in

northern China, and the nematode was introduced to America in

19th and/or 20th century (Riggs, 2004). These findings suggest that

SCN resistance may predate SCN pathogen stress in common beans

and that resistance can evolve either in wild ancestry or in

domestication without the necessity of a gene-for-gene interaction

between the plant host and pathogen (PagÃ¡n and GarcÃa-Arenal,

2018). The reason for why there were more SCN-resistant

accessions in Mesoamerican gene pool than in Andean gene pool

is unclear, but it is possible that the resistance evolved through the

different domestication processes between the two regions. The

identification of these two SCN-resistant resource pools offers

valuable insights for breeders seeking to enhance SCN resistance

in common bean breeding programs, providing guidance on parent

selection strategies.
Conclusion

In this study, we evaluated 354 USDA common bean

germplasm accessions for resistance to SCN HG Types 7, 2.5.7,

and 1.3.6.7 under controlled greenhouse conditions. Notably, 26

lines exhibited resistance to all three populations of different HG

types, while 78 lines showed resistance to at least one HG type. We

identified four QTL regions associated with resistance to each HG

type, highlighting potential genetic targets for breeding programs.

Our comprehensive genomic prediction (GP) analysis

demonstrated the superior performance of Bayesian models (BA,

BB, BRR, BL) and gBLUP in predicting SCN resistance. Despite

observing low prediction accuracy (PA) across populations between

Mesoamerican and Andean common bean accessions, using a

mixed population as a training set showed high PA for predicting

either sub-population. These findings underscore the potential of

SNP markers for marker-assisted selection and genomic selection in

common bean breeding programs, facilitating the identification of

SCN-resistant lines and plants. Furthermore, we observed robust

resistance mechanisms across the three HG types, with variations in

highly associated SNP markers and QTL between domestications
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(Mesoamerican and Andean), suggesting pre-existing resistance to

SCN. Our investigation into genomic heritability (GH) highlights

the potential of larger SNP sets for reliable genomic selection in

SCN resistance breeding programs. Additionally, genome-wide

association study results identified specific SNP markers

associated with SCN resistance across different bean panels and

HG Types, offering valuable targets for marker-assisted selection

and further genetic studies. Overall, our study significantly advances

genomic selection strategies for enhancing SCN resistance in

common bean, providing a promising approach to accelerate

breeding efforts against this detrimental pest.
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