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Study on the extraction method
of Glycyrrhiza uralensis Fisch.
distribution area based on
Gaofen-1 remote sensing
imagery: a case study of
Dengkou county
Xinxin Wei1,2, Zeyuan Zhao3, Taiyang Chen1, Xiaobo Zhang2,
Shuying Sun1*, Minhui Li3* and Tingting Shi2*

1School of Life Sciences, Inner Mongolia University, Hohhot, China, 2State Key Laboratory Breeding
Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of
Chinese Medical Sciences, Beijing, China, 3Inner Mongolia Traditional Chinese & Mongolian Medical
Research Institute, Hohhot, China
Glycyrrhiza uralensis Fisch., a perennial medicinal plant with a robust root system,

plays a significant role in mitigating land desertification when cultivated

extensively. This study investigates Dengkou County, a semi-arid region, as the

research area. First, the reflectance differences of feature types, and the

importance of bands were evaluated by using the random forest (RF)

algorithm. Second, after constructing the G. uralensis vegetation index (GUVI),

the recognition accuracy of G. uralensis was compared between the RF

classification model constructed based on the January-December GUVI and

common vegetation indices feature set and the support vector machine (SVM)

classification model constructed on the GUVI feature set. Finally, the spectral

characteristics of G. uralensis and other feature types under the 2022 GUVI

feature set were analyzed, and the historical distribution of G. uralensis was

identified and mapped. The results demonstrated that the blue and near-infrared

bands are particularly significant for distinguishing G. uralensis. Incorporating

year-round (January-December) data significantly improved identification

accuracy, achieving a producer’s accuracy of 97.26%, an overall accuracy of

93.00%, a Kappa coefficient of 91.38%, and a user’s accuracy of 97.32%. Spectral

analysis revealed distinct differences with G. uralensis of different years and other

feature types. From 2014 to 2022, the distribution of G. uralensis expanded from

the northeast of Dengkou County to the central and southwestern regions,

transitioning from small, scattered patches to larger, concentrated areas. This

study highlights the effectiveness of GUVI and RF classification models in

identifying G. uralensis, demonstrating superior performance compared to

models using alternative feature sets or algorithms. However, the

generalizability of the RF model based on the GUVI feature set may be limited

due to the influence of natural and anthropogenic factors on G. uralensis.
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Therefore, regional adjustments and optimization of model parameters may be

necessary. This research provides a valuable reference for employing remote

sensing technology to accurately map the current and historical distribution ofG.

uralensis in regions with similar environmental conditions.
KEYWORDS

Glycyrrhiza uralensis Fisch., remote sensing image classification, GaoFen-1, random
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1 Introduction

Medicinal plants play a pivotal role in traditional medicine and

modern medicine. They form the cornerstone of Traditional Chinese

Medicine (TCM) and are integral tomedicinal systems globally (Filho

et al., 2020; Gupta et al., 2024; Huang et al., 2024; Pandey et al., 2024).

Due to their natural compounds, medicinal plants exhibit diverse

pharmacological properties, such as antibacterial, anti-inflammatory,

and analgesic effects, and are widely used in herbal preparations,

healthcare products, and cosmetics. Medicinal plants are one of the

pillar industries in some countries and an important part of the

ecological environment (Gautam et al., 2024; He, 2024). However,

their resources are under severe threat due to climate change,

overexploitation, and environmental degradation. Thus, research

on the conservation and sustainable development of medicinal

plants is of paramount importance (Liu et al., 2024; Martins et al.,

2024; Mbelebele et al., 2024; Shembo et al., 2024; Sudhakaran, 2024).

Recent advancements in remote sensing technology,

diversification of data sources, and algorithmic progress (Li et al.,

2023a, 2024b) have significantly improved the accuracy and

efficiency of crop image recognition and classification. Accurate

crop image recognition and classification are of great value to

agricultural monitoring and management (Chen et al., 2024). The

Gaofen-1 satellite (GF-1), China’s first high-resolution Earth

observation satellite, launched in April 2013, has been

instrumental in agricultural production due to its timeliness and

capacity for large-area synchronous observations. Its applications

include plant resource assessment, growth monitoring, ecological

evaluation, and precision agriculture (Akanbi et al., 2024; Kartal

et al., 2024; Tilahun et al., 2024). For instance, Liang et al. (2023)

employed GF-1 data in Menghai Town, Yunnan Province, to map

tea plantation areas using Object-Oriented Image Analysis and

Support Vector Machine (SVM) algorithms, observing significant

growth from 2014 to 2017. Similarly, Wang and Lei (2021) used GF-

1 data to analyze crop spectra in the Manas River Basin,

demonstrating the utility of supervised and unsupervised

classification methods for cotton area extraction. Xie et al. (2023)

explored the county-level agricultural remote sensing mapping

capabilities of Gaofen-1 satellite data, indicating that GF-1

satellite data has high remote sensing interpretation accuracy and

good applicability in areas with a single crop growing structure. In
02
the area with complex crop planting structure, due to the limitation

of image resolution and spectral setting, the mixed pixels increase

significantly and the extraction accuracy decreases, but the overall

accuracy can reach 90%. It can be seen that GF-1 remote sensing

images have been widely used and are highly recognized in the

identification and extraction of plant distribution areas due to their

excellent technical performance and data processing ability.

However, GF-1 data have been less frequently applied to the

identification and extraction of medicinal plants, forming the

basis of this study.

The choice of classification algorithm significantly impacts

results. With the development of science and technology, a

variety of classification algorithms have emerged, but the most

popular methods are machine learning and DL. In remote sensing

image crop classification, they can effectively analyze and process

large amounts of image data to achieve high-precision crop

identification (Zhang and Dai, 2022; Wang et al., 2024; Zhang

et al., 2024c). Xu et al. (2024) used a combination of the feature

band and vegetation index combined with machine learning

methods to quantitatively analyze the chlorophyll content of

Glycyrrhiza at different growth stages. Yaolei et al. (2024)

explored the effects of different feature types and classification

algorithms on the extraction accuracy of macadamia forests

showing that a combination scheme of terrain + texture +

geometry + topography combined with RF algorithm after feature

optimization can effectively identify the distribution of macadamia

forests. When compared to traditional machine learning methods,

DL has a more powerful feature extraction capability. Zheng et al.

(2023) proposed an accurate and real-time coconut tree detection

method based on a Faster R-CNN, which successfully detected

coconuts from satellite images using a DL method. Bai et al. (2023)

showed that the classification accuracy of the improved UPerNet

model reached 97.78% on the data set that combines spectral

features and vegetation indices. Overall, machine learning and DL

play important roles in crop classification using remote sensing

images. However, both traditional machine learning and DL have

advantages and disadvantages. Traditional machine learning

methods are relatively low in data size requirements, and DL

models usually require a large amount of data to learn complex

patterns. Otherwise, it is difficult to exert its advantages and may

lead to overfitting. Second, the DL models can be more affected by
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problems such as noise, missing values, and inaccurate labeling of

data. Traditional methods tend to be relatively more flexible in

terms of data quality requirements and have mature preprocessing

techniques to work with them that can better cope with data quality

issues. Finally, traditional methods have a long history of

development and mature theoretical foundations. DL methods, on

the other hand, are still developing and evolving, although they have

made significant progress in recent years, which means that their

stability may be relatively poor (Zhang et al., 2024a). Therefore, it is

necessary to reasonably select classification method according to the

data characteristics, classification purpose, application scenarios

and available resources (Chen, 2024; Rengma and Yadav, 2024;

Zhang et al., 2024b; Zhen et al., 2024).

Glycyrrhiza uralensis Fisch. comes from Leguminosae. The

roots and rhizomes of G. uralensis have been used as medicinal

herbs for analgesic (Bell et al., 2021; Long et al., 2023; Sha et al.,

2024), antitussive (Ren et al., 2024; Shuangshuang et al., 2024), anti-

inflammatory (Leite et al., 2022; Kim et al., 2024), and anti - ulcer

(Liu et al., 2021) effects. G. uralensis is one of the oldest and most

widely used herbs in the world (Ding et al., 2022). G. uralensis has

been used in traditional Chinese medicine for more than 2000 years

ago (Shibata, 2000). Approximately 29 species of Glycyrrhiza exist

globally, of which 15 have medicinal value and are distributed

across all continents except Antarctica and in approximately 41

countries (Yan et al., 2023). G. uralensis has been widely used for

thousands of years in the treatment of a variety of diseases, and is

currently used in applied across diverse fields in medicine, food, and

cosmetics (Kim et al., 2016; Yang and Zhao, 2022; Chen and Zhang,

2023; Xia et al., 2023; Park et al., 2024). As a perennial plant with a

well-developed root system, light-loving, drought tolerance, and

strong stress resistance, G. uralensis plays an important role in arid

and semi-arid regions, such as ecological protection, windbreaks,

and sand fixation. It is also a key wild sand-fixing plant that is

protected and managed in China (Li, 2017). In recent years, with the

in-depth research of G. uralensis and a deepening understanding of

its medicinal value, the market demand for G. uralensis continues to

rise. However, this sharp increase in demand has had negative

impacts, especially the intensification of predatory harvesting

practices, posing a significant risk of G. uralensis resource

depletion. In addition, due to the comprehensive consideration of

local agricultural development by some local governments, as well

as economic growth and agriculture modernization, farmers are

more willing to choose crops with higher economic benefits,

resulting in significant fluctuations in the planting area of G.

uralensis, which poses a challenge to the sustainable development

of the G. uralensis industry. The use of modern information

technology to accurately identify and monitor G. uralensis has

become a necessary measure to promote the sustainable

development of G. uralensis planting and formulate local

agricultural development plans (Leite et al., 2022).

In recent years, fluctuations in G. uralensis cultivation areas

have become more obvious for various reasons, such as the increase

in market demand for G. uralensis, predatory digging by people,

and local agricultural development, which makes it particularly

important to use modern information technology to accurately

identify and monitor G. uralensis. Currently, among the many
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remote sensing identification methods for crops, methods based on

feature indices have the widest range of applications. From existing

research reports, there are currently few studies on the spectral

feature index for remote sensing identification of G. uralensis.

According to our investigation in Dengkou County, it is

preliminarily judged that there is a large difference between the

spectral characteristics of G. uralensis and the crops sown

simultaneously. Therefore, this difference can be enhanced by

constructing a feature index to achieve rapid and accurate

identification and extraction of G. uralensis planting areas. To

achieve high-precision extraction of G. uralensis at the county

scale and develop a reliable method for monitoring regional

crops, this study focused on G. uralensis in Dengkou County, a

region with a long history of cultivation, extensive planting

experience, and a location in a (semi-)arid zone. First, based on

the spectral characteristics of the main feature types in Dengkou

County under the different bands and months of Gaofen-1 Satellite

Wide Field of View (GF-1 WFV) images and band importance

analysis, we constructed the G. uralensis vegetation index (GUVI).

Secondly, the classification accuracies of the G. uralensis

identification models constructed with GUVI and common

vegetation indices were compared to find the optimal G. uralensis

identification model. Finally, by analyzing the differences in spectral

features between G. uralensis and other feature types under the

optimal feature set for G. uralensis identification in 2022, the

spatial-temporal evolution characteristics of the G. uralensis

distribution area in Dengkou County from 2014 to 2021 were

extracted and analyzed. The main innovations and contributions

of this study are as follows. Based on the spectral characteristics of

the main feature types in Dengkou County under different bands

and months of the GF-1 WFV image, the differences between the

spectral features of G. uralensis and other feature types were

clarified. Second, the band importance contribution rate was used

to understand whether combining January–December data to

construct a classification model is more beneficial for identifying

G. uralensis. Therefore, the remote sensing identification model of

G. uralensis was constructed by combining January–December

GUVI data. Third, by comparing the classification accuracy of the

RF classification model constructed based on the January-

December GUVI and common vegetation indices feature sets

with that of the SVM classification model constructed with the

GUVI feature set for G. uralensis, we find that the RF classification

model constructed using the GUVI feature set for G. uralensis

distribution area identification is more efficient and robust than the

combination of other indices feature sets and classification models.

Finally, through the visual interpretation of the spectral feature

analysis results of historical images from 2014 to 2021, the

distribution area of G. uralensis in Dengkou County in the past

eight years was successfully identified and extracted, which showed

that the model had high versatility and portability, and provided a

reference for extracting the historical distribution area of the plant.

In addition, this paper provides a reference for identifying and

extracting the distribution area of G. uralensis in areas with similar

conditions to the study area. At the same time, it provides a

scientific basis for the rational utilization and ecological

protection of G. uralensis.
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2 Materials and methods

2.1 Study area

Dengkou County, located in Bayannur City, Inner Mongolia

Autonomous Region, China, was selected as the study area (Figure 1).

The highest altitude of Dengkou County is approximately 1951 m,

with a total area of approximately 4,200 km2. The climate is a

temperate continental monsoon type, with an average annual

temperature of approximately 9.16°C. The average annual rainfall is

106–155 mm. The temperature difference between day and night is

large, approximately 14.5°C, and the frost-free period lasts for 136–

144 days. From the remote sensing image shown in Figure 1,

Dengkou County is located in the upper reaches of the river bend

irrigation area and at the eastern edge of the Ulanbuh Desert in the

southwestern Inner Mongolia Autonomous Region. Dengkou

County is one of the nine experimental demonstration counties for

sand control and prevention in China because of its diverse

topography, which is dominated by sands, mountains, and plains,

and is known as “seven sands, two mountains, and one plain”. The

topography and climate of Dengkou County provide a unique

foundation for the development of modern agriculture and animal

husbandry. In addition to planting traditional crops such as Avena

sativa L., Helianthus annuus L., Zea mays L. and Glycine max (L.)

Merr., medicinal plants such as Cistanche deserticolaMa, G. uralensis,

and Astragalus membranaceus (Fisch.) Bunge is grown in Dengkou

County, and the area under cultivation is increasing annually (Jia

et al., 2022; Le and Lihua, 2022).
2.2 Data sources and pre-processing

The primary data source for this study was the Gaofen-1

Satellite Wide Field of View (GF-1 WFV) images, which can be
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obtained free of charge from the Land Observation Satellite Data

Service (LOSD) of the China Centre for Resources Satellite Data and

Application (CRSDA). Application (https://data.cresda.cn/#/home)

of the CRSDA. The technical specifications of its payload are shown

in Table 1. The GF-1 satellite was not only launched earlier, but also

has a higher spatial resolution, a larger width and a shorter revisit

period (Tong et al., 2023; Yuan et al., 2024). Therefore, more

historical image data can be acquired, the details are more clearly

shown, more information is covered, and more image data can be

acquired within the same period.

For the acquired GF-1 WFV images, radiometric calibration

was first performed using the GF-1 absolute radiometric calibration

coefficients released by CRASAC for the corresponding period.

Next, the GF-1 WFV spectral response function was imported into

the spectral library file, and atmospheric correction was applied

using the FLAASH module. Finally, ortho-rectification was

conducted with the GMTED2010 elevation data. After

radiometric calibration, atmospheric correction, and ortho-

rectification, the data significantly reduce atmospheric influence

and achieve high geometric accuracy, allowing for better stacking of

multi-period images.
2.3 Methods

2.3.1 Classification algorithm
RF is an integrated learning algorithm that classifies and predicts

samples by training multiple decision trees. Two key parameters play

important roles in the RF algorithm: the number of decision trees and

the number of split nodes in each tree. By using multiple decision trees

to train, classify, and predict data, the RF algorithm can make full use

of the differences between different trees, thus improving the accuracy

and stability of the classification. In addition, the RF algorithm

effectively reduces errors that may be generated by a single classifier
FIGURE 1

Study area.
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using voting multiple classification, which further improves the

reliability of the classification. As a novel machine learning

algorithm, the RF algorithm has significant advantages in the field

of remote sensing classification, as it can integrate numerous decision

trees to generate classification results with higher accuracy (Dubrovin

et al., 2023; Qian et al., 2023; Pugh et al., 2024).

SVM is a machine learning method based on the Vapnik-

Chervonenkis dimension theory of statistical learning theory and

the principle of structural risk minimization. SVM can seek the

optimal balance between the complexity of the model and the

learning ability according to the limited sample information, and it

better overcomes the problems of small samples, nonlinearity, over-

learning, high dimensionality, and local minima that exist in the

traditional classification methods. SVM can obtain better

classification accuracy, which is widely used in classification

research on remote sensing images, and achieves good results

(Pan et al., 2023; Rash et al., 2023; Zhang et al., 2023; Chen, 2024).

2.3.2 Sample collection
The ground reference data for the feature types play a crucial

role in the development of training and validation samples to

support the image analysis process of feature type mapping. Field

observations were used to classify feature types to ensure

classification accuracy. We randomly selected sampling points in

each plot by contacting a local farmer in advance, which facilitated

the establishment of the G. uralensis plantation. The minimum

distance between any two points was not less than 20 m, and sample

points in the same sample area could only be used for training or

validation (Zhang et al., 2022; Zhao et al., 2024). Pictures of the G.

uralensis field planting areas in Dengkou County are shown in

Figure 2. Figure 2 illustrates the growth of G. uralensis across

different planting areas during the same period, ensuring data

diversity and enhancing the generalizability and transferability of
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the research findings. The geographic coordinates of the different

feature types were collected using GPS. The data collected for the

ground sampling points are shown in Figure 3. Based on the

number of sampling points, 70% were randomly selected as

training data and 30% as validation data.

2.3.3 Validation methods
In this study, four different measurement methods, namely,

overall accuracy (OA), Kappa coefficient (KC), G. uralensis

producer accuracy (PA), and G. uralensis user accuracy (UA), of

the pixel-based accuracy calculation assessment method were used

to judge the classification results comprehensively. All ground

object classes in the reference image were considered positive

classes, while the classes in the final classification image of the

proposed method were predicted classes (Li et al., 2022; 2023b; Rash

et al., 2023; Wu et al., 2024; Yilma and Yitay, 2024). A positive class

may be predicted as positive (TP) or negative (FN). A negative class

can likewise be predicted as being positive (FP) or negative (TN) (Li

et al., 2021, 2024a). OA (also known as the percentage of correct

classifications) represents the ratio of the number of correctly

predicted samples to the number of all predicted samples. KC is a

classification consistency test based on the confusion matrix, and its

value can represent the level of classification accuracy to a certain

extent. PA (also known as precision) represents the ratio of the

number of samples correctly predicted as positive to the total

number of samples predicted as positive. UA (also known as

recall) represents the ratio of the number of samples correctly

predicted as positive to the number of all positive samples (Gun and

Chen, 2023). Usually, higher values of OA, KC, PA, and UA

indicate higher classification accuracies. Shown here are

Equations (1) to (5).

OA = TP+TN
TP+FN+FP+TN (1)
FIGURE 2

Map of the G. uralensis field cultivation areas. (A–C) are showing the growth of G. uralensis in different planting areas during the same period.
TABLE 1 GF-1 WFV satellite payload technical specifications.

Satellite data Band Wavelength (mm) Band Description Spatial resolution (m) Span (Km) Revisit cycle (days)

GF-1 WFV

Band 1 450-520 blue band

16 800 2
Band 2 520-590 green band

Band 3 630-690 red band

Band 4 770-890 near infrared (NIR)
frontiersin.org

https://doi.org/10.3389/fpls.2025.1517764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2025.1517764
KC = OA−PRE
1−PRE (2)

PRE = (TP+FP)(TP+FN)+(FN+TN)(FP+TN)
(TP+TN+FP+FN)2 (3)

UA = TP
TP+FN (4)

PA = TP
TP+FP (5)
3 Results of G. uralensis vegetation
index construction and G. uralensis
distribution area extraction

3.1 Spectral characterization of
feature types

After ensuring the authenticity and the accuracy of the surface

reflectance data by preprocessing the remote sensing images and

eliminating the noise, distortion, and interference factors in the

images, the surface reflectance values of the main feature types in

Dengkou County in 2022 were extracted using field survey data and

remote sensing image data, and the results are shown in Figure 4.

From Figure 4A, the January–December surface reflectance of

each feature type in the blue band was similar, and except for water

bodies and mountains, the curves of all of the other feature types

were consistent with each other, showing a decreasing trend in

spring (March-May), increasing in summer (June–August),

decreasing and then increasing in autumn (September–

November), and increasing and then decreasing in winter

(December–January). In autumn (September–November), the
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curves first decreased and then increased, whereas in winter

(December–January), they first increased and then decreased. The

G. uralensis reflectance curves distinctly differed from the other

feature types in January, February, September, and October. As

shown in Figure 4B, the surface reflectance for each feature type

under the green band exhibits distinct curve characteristics in

spring, summer, and autumn, except for the overall trend of

increasing and then decreasing in winter. Likewise, the G.

uralensis reflectance curves were distinguished from other feature

types in January, February, September, and October. In Figure 4C,

the surface reflectance curves for each feature type under the red

band are similar to those under the green band and show an overall

increasing and then decreasing trend in winter. The G. uralensis

reflectance curves were distinguished from the other feature types in

September. From Figure 4D, all of the feature types under the Near

Infrared (NIR) band showed the same pattern of increasing and

then decreasing, except in winter, with peaks of different sizes from

June to October, which is similar to the reflectance curves of all

feature types under the blue band. The G. uralensis reflectance

curves differed significantly from those of the other feature types in

June. Therefore, calculating the difference between the blue and

near-infrared bands can enhance the distinction between spectral

curves, facilitating the identification and extraction of G. uralensis

and other feature types.

As shown in Figure 5, certain feature types can be accurately

recognized under month-specific imagery, and a collation of such

feature types and the months in which they are recognized are as

follows: buildings (September), water bodies (January–December),

deserts (August–September), mountains (February, September),

oats 1 (September), wetlands (March-May), and unknown 2

(April–May). In addition, the feature types exhibit similar curve

changes for the same remote-sensing image. Except for the imagery
FIGURE 3

Map of sampling sites in Dengkou County.
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from June and August, the reflectance values of each band in the

remaining images show a trend of blue, green, red, and near-

infrared bands from small to large. Therefore, it is difficult to

accurately identify G. uralensis and other features using remote

sensing images at certain times. Moreover, according to the

reflectance values of the four bands for the main feature types, a

result consistent with the analysis in Figure 4 can be obtained; that

is, the calculation between the blue and near-infrared bands is more

conducive to increasing the differences between G. uralensis and the

feature types, thus facilitating the identification of each feature type.

Based on these results, the band importance was evaluated using

RF, and the results are shown in Figure 6. Figure 6A shows that the

raw importance contribution rate is highest for the NIR band,

followed by the blue band with a higher contribution rate, and the

red and green bands with the lowest raw importance contribution

rate. The normalized importance contribution rate was highest for

the blue band, followed by the near-infrared band, and lowest for

the red and green bands. After further organizing the band

contribution rates by band types, Figure 6B shows that the raw

contribution rates ranked from largest to smallest as NIR, blue, red,

and green bands. The normalized importance contribution rates

from the largest to smallest were the blue, near-infrared, red, and

green bands. This result is consistent with the aforementioned

results and shows that combining the January–December bands

into a model enhances the classification of each object type.
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3.2 Vegetation index construction for
G. uralensis

Based on the result that the calculation between the blue and

near-infrared bands is more conducive to increasing the difference

between G. uralensis and other feature types obtained from the

analysis of spectral characteristics of feature types, the difference

between the near-infrared band and blue band was increased using

the formula (A−B)/(A + B) in combination with commonly used

vegetation indices formulas (Zhai et al., 2023; Pei et al., 2024; Tang

et al., 2024; Zhen et al., 2024). It was named GUVI, and the formula

is shown in Equation (6).

GUVI = (NIR−B)
(NIR+B) (6)

where NIR represents the near-infrared band, and B denotes the

blue band.

To verify the reliability of the GUVI for identifying the

distribution area of G. uralensis, seven commonly used vegetation

indices (Table 2) were selected to construct the G. uralensis

identification model for comparison and verification (Giovos

et al., 2021; Zeng et al., 2022; Han et al., 2024). Because it is

difficult to accurately identify and extract the distribution area of G.

uralensis and other feature types under a single remote sensing

image, and according to the results of the band importance
FIGURE 4

Surface reflectance of feature types in Dengkou County under GF-1 WFV imaging band. (A–D) are the surface reflectances of the major feature
types in Dengkou County in the blue, green, red, and near-infrared bands, respectively.
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contribution rate, this study, the monthly GUVI, and seven other

vegetation indices were calculated separately after processing the

remote sensing images from January to December 2022 and were

combined into eight long time series data as feature sets in the order

of months. Based on the sampling point data of the main feature

types in 2022, 70% were selected as the training set and the
Frontiers in Plant Science 08
remaining 30% as the validation set. Eight identification models

of G. uralensis were constructed using the RF algorithm, and the

reliability of the GUVI was verified by comparing the classification

accuracies of the RF algorithm for the eight models. The

classification effect of different classification algorithms on the

GUVI feature set construction was compared by comparing the
FIGURE 5

Surface reflectance of major feature types in Dengkou County under GF-1 WFV imagery from January to December. (A–L) is the surface reflectance
of the major feature types in Dengkou County under GF-1 WFV imagery from January to December.
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classification accuracy of the RF classification model constructed

with the GUVI feature set and the SVM classification model (Ko

et al., 2024; Yang et al., 2024). The results are shown in Table 3.

Table 3 shows that the model constructed with DVI as a feature

had the highest OA and KC of 93.79% and 92.29%, respectively,

and its G. uralensis UA and PA were 93.68% and 97.22%,

respectively. The model constructed with GNDVI as a feature

had the highest G. uralensis UA of 97.13%, OA of 92.10%, KC of

90.23%, and G. uralensis PA of 98.02%. The model constructed

using GUVI as a feature had the highest G. uralensis PA of 97.26%,

OA of 93%, KC of 91.38%, and G. uralensis UA of 97.32%. The

model constructed with GUVI as a feature was better than the DVI

in terms of G. uralensis UA and PA values; it was better than the

GNDVI in terms of OA, KC, and G. uralensis PA values; OA and

KC were not the highest, but the performance was excellent. In
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addition, through the classification accuracy of the two

classification algorithms, SVM and RF, for the GUVI feature set

that RF has a better classification effect, which is higher than the

classification accuracy of SVM in the values of OA, KC, G. uralensis

UA and G. uralensis PA. From the vegetation indices feature set

model classification results graph (Figure 7), the GUVIRF
classification results were more accurate than the other results

and were able to identify the subtle differences between the habitat

types more accurately, producing fewer misclassifications. Even

using different classification algorithms to classify the GUVI feature

set yielded better results, indicating that the method is more robust

and efficient in recognizing G. uralensis. That is, the classification of

the GUVI model with RF can effectively recognize the distribution

area of G. uralensis in Dengkou County, and it has certain

applicability in other G. uralensis planting areas.
FIGURE 6

Band raw and normalized significance contributions. (A) shows the original and normalized importance contribution rate of a single band, where 1–
12 are the Band 1 of the January–December images, 13–24 are the Band 2 of the January–December images, 25–36 are the Band 3 of the
January–December images, and 37–48 are the Band 4 of the January–December images. (B) shows the total raw and normalized importance
contributions of each band from January to December; the two values of Band 1–Band 4 are the sum of the raw and normalized importance
contribution of Band 1–Band 4 of the January–December images, respectively.
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3.3 Difference analysis of spectral
characteristics of G. uralensis with different
growth years

According to the results discussed in Section 3.2, the model of

the GUVI combination for January–December 2022 can be used as

a feature set to effectively identify and classify G. uralensis and other

feature types using the RF algorithm. Therefore, this method can

identify and classify G. uralensis and other feature types in historical

remote sensing images from 2014 to 2021. However, owing to the

lack of actual sampling point data for past feature types, the

corresponding training and validation sets could not be selected.

Therefore, in this study, the spectral curves of the main feature types

and different growth years of G. uralensis were obtained based on

the average values of the training and validation sets under the

GUVI combination model for January–December 2022 to analyze

the differences between the spectral curves of G. uralensis and other
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feature types, while simultaneously understanding the difference in

the spectral curve of G. uralensis with different growth years. This

enabled more comprehensive information on G. uralensis to be

captured while distinguishing G. uralensis from other feature types

without actual sampling points, allowing the RF algorithm to

identify historical G. uralensis distribution areas more accurately.

The spectral curves of the main feature types under the GUVI

model for 2022 are shown in Figure 8, with different GUVI values

and spectral curves for each feature type. In terms of the GUVI

values, the G. uralensis spectral curve was significantly different

from the other feature types for eight months (January, February,

May, June, July, September, November, and December). The feature

types with GUVI values similar to those of G. uralensis in the

remaining months were oats in March, unknown 1 in January and

April, oats 2 and maize in August, and wetlands in October. These

feature types in other months are significantly different from those

of G. uralensis and can be distinguished based on the values for

other months. Based on the curve analysis, the feature type that has

similar characteristics to the G. uralensis curve is wetland, and the

curves are all characterized by a rise in spring, a peak in July, a low

peak in October, and a trough in winter in January of the following

year. However, both had similar values, except in October, and the

values of G. uralensis were greater than those of the wetland in the

remaining months. Therefore, according to Figure 8, it can be

concluded that the spectral curve characteristics of G. uralensis

under the GUVI model are different from those of other feature

types. Thus, the training and validation sets can be selected under

the GUVI model based on the curve characteristics, and G. uralensis

can be identified by the RF algorithm from 2014 to 2021.

G. uralensis is a perennial herb or half-shrub, and its growing

status has been shown to vary significantly from year to year (Xi,

2020), and the reflected spectral features will be different. In order to

more accurately identify and extract the distribution areas of G.

uralensis in historical remote sensing images, this study further

compiled the characteristics of the spectral curves of G. uralensis in

different years under the GUVI model for 2022, based on the G.

uralensis year information provided by local growers at the time of

sample collection.

As shown in Figure 9, the characteristics of the spectral curves

for different years of G. uralensis were different. In terms of values,
TABLE 3 Classification accuracy of vegetation indices feature set.

Model OA (%) KC (%) G. uralensis UA (%) G. uralensis PA (%)

NDVI 92.47 90.64 93.53 97.67

DVI 93.79 92.29 93.68 97.22

EVI 92.15 90.30 96.57 97.73

GNDVI 92.10 90.23 97.13 98.04

GCVI 92.12 90.25 96.70 98.04

RVI 92.45 90.62 93.21 97.79

TVI 92.43 90.60 93.63 97.41

GUVIRF 93.00 91.38 97.26 97.32

GUVISVM 85.63 82.42 93.36 79.93
TABLE 2 Vegetation indices information.

Vegetation
index
in English

Abbreviations Formulas
Reference
source

Normalized
Difference
Vegetation Index

NDVI
(NIR-R)/
(NIR+R)

Huang
et al. (2021)

Difference
Vegetation Index

DVI NIR-R
Ragini
et al. (2024)

Enhanced
Vegetation Index

EVI
2.5*(NIR-R)/
(NIR+6*R-
7.5*B+1)

Ambadkar
et al. (2024)

Green Normalized
Difference
Vegetation Index

GNDVI
(NIR-G)/
(NIR+G)

Daliman
et al. (2024)

Green Chlorophyll
Vegetation Index

GCVI (NIR/G)-1
Shuai and
Basso (2022)

Ratio
Vegetation Index

RVI NIR/R
Chowdhury
et al. (2024)

Triangular
Vegetation Index

TVI
60*(NIR-G)-
100*(R-G)

Sun
et al. (2023)
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annual G. uralensis had lower values than biennial and triennial G.

uralensis in all months except June and October. Biennial G.

uralensis had higher values than triennial G. uralensis in January,

May, June, July, and November, while triennial G. uralensis had

higher values than biennial G. uralensis in the remaining months.

The spectral curve of annual G. uralensis started to rise in March,

surged in April–June, peaked in June, and then started to decline,
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and was more moderate in July–August, declined in September, and

then started to rise in October, declined again in November, and

rose again in December. The spectral curve of biennial G. uralensis,

however, started to fall in January, began to rise after March, peaked

in July, and then fell to its lowest value in October, after which it

started to rise and became relatively flat in November and

December. The triennial G. uralensis curve rose in January,

declined throughout February, was relatively flat in March and

April, rose again, reached a high value in July, remained relatively

flat in August, and then declined until it began to rise again after

November. Therefore, the spectral curve characteristics of G.

uralensis across different growth years should be comprehensively

considered when selecting sample points from historical remote

sensing images to enhance the RF algorithm’s accuracy in

identifying G. uralensis distribution areas.
3.4 Extraction of G. uralensis historical
distribution area in Dengkou County

According to the results in Section 3.3, under the GUVI model,

the spectral curves of different feature types and different growth

years of G. uralensis have their characteristics, which can be used to

select samples of the main feature types in Dengkou County from

historical images. Therefore, after preprocessing the remote sensing

images from 2014 to 2021, the monthly image GUVI was calculated,

and the different years GUVI were combined into eight feature sets

of the RF algorithm in the order of January–December. The features

were deciphered according to the spectral curves of G. uralensis

with different growth years as well as other feature types. The visual

interpretation was used to obtain the sample points of G. uralensis

and the other feature types in the historical images from 2014 to

2021. After selecting the training set and validation set in the ratio of

7:3, the distribution area of G. uralensis was identified using the RF

algorithm, and its accuracy was verified.

The classification accuracies of G. uralensis distribution areas of RF

classification model constructed with GUVI feature set for 2014–2021

are shown in Table 4. Among them, the lowest value of OA was

89.72%, the lowest value of the KC lineage was 87.16%, the lowest value

of G. uralensisUA was 69.47%, and the lowest value of G. uralensis PA

was 71.08%. Therefore, the overall classification accuracy and

individual classification accuracy of G. uralensis were good for 2014–

2022 and could be used for G. uralensis range extraction.

The spatial distribution and changes in theG. uralensis distribution

area from 2014 to 2022, extracted from the identification results of the

G. uralensis distribution area using the RF algorithm under the GUVI

model, are shown in Figures 10, 11. As shown in Figure 10, the

distribution of G. uralensis gradually expanded to the central region

from its initial main concentration in the northeast of Dengkou County

and is now distributed in the southwest. The distribution area gradually

changed from small and scattered at the beginning to a large area of

concentrated distribution. Figure 11 shows the changing trend of theG.

uralensis area, which first increased and then decreased. The most

significant increase in the G. uralensis area was observed in 2018. AsG.

uralensis is a perennial plant, it is difficult to systematically count the

area of G. uralensis planting and harvesting each year; however, it
FIGURE 7

Vegetation indices feature set model classification results map.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1517764
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2025.1517764
generally shows a stable planting pattern. In addition, although

Dengkou County has a long history of G. uralensis planting, the

planting area was small before 2018, and only after 2018 did it begin

planting on a large scale.
4 Discussion

4.1 Band characterization and construction
of a vegetation index for G. uralensis

Although multispectral remote sensing images offer advantages

such as wide coverage and high spatial-temporal resolution, their

limited spectral bands can pose challenges for accurate
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classification. When relying on original image spectra to classify

and identify feature types, often leads to suboptimal accuracy. In

addition, the fragmentation of agricultural land systems in terms of

cultivation type and area, as well as the influence of the

phenomenon of “different spectra for the same object and the

same spectra for the same object” and the mixed pixel effect,

making remote sensing identification and extraction of crops

more complicated than that of the natural vegetation (such as

woodland and grassland). Zheng et al. (2022) investigated remote

sensing identification of film-covered farmland in the Loess Plateau

using various combinations of spectral, exponential, and texture

features. They found that combining spectral, exponential, and

optimal texture features yielded the best classification results.

Liang et al. (2021) successfully constructed remote sensing
FIGURE 8

Spectral curve of major feature types under the GUVI model for 2022.
FIGURE 9

Spectral curves of G. uralensis of different ages under the GUVI model in 2022.
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features for citrus by combining spectral, climatic, textural, and

spectral indices and reported that the normalized vegetation index

(NDVI) was particularly outstanding in the identification of citrus.

Liu et al. (2023) used Google Earth Engine, Sentinel - 2 data and

winter wheat phenology as prior knowledge to develop new indices,

including the Normalized Differential Phenology Index (NDPI),

Wheat Phenology Differential Index (WPDI), Normalized

Differential Wheat Phenology Index (NDWPI), and Plastic

Mulched Index (PMI). This method is used to obtain the spatial

distribution and planting area information of winter wheat. The

accuracy of the proposed method is higher in the early wintering

stage and the regreening stage, which are 82.64% and 88.76%,

respectively, and has strong spatial and temporal transfer. In order

to improve the distribution area of a certain plant, it is necessary to

find the differences with other plants by understanding the growth

characteristics, spectral characteristics, temporal phase changes, and

other aspects of information, and then increase the differences

through the method of band operation, and further increase the

differences by combining the features to construct a more accurate

and effective remote sensing identification model. This would

improve the identification accuracy and classification effect of the

distribution area of the plant. In the classification algorithms,

although the principles of the different algorithms are different,

the classification accuracy of the two different algorithms applied in

this study for the GUVI feature set shows that this classification

model has a certain degree of robustness and the efficiency of

recognizing G. uralensis is high, thus indicating that the RF

classification model constructed based on the GUVI feature set is

not overly influenced by the characteristics of a single algorithm and

can classify G. uralensis stably in the framework of different

algorithms. In addition, the classification accuracy of G. uralensis

distribution areas under the RF classification model based on the

GUVI feature set across different growth years shows that the model

can maintain relative stability in the process of year change,

indicating that the RF classification model based on the GUVI

feature set has the common characteristics of G. uralensis

distribution areas at different times and is not subject to the

excessive interference of factors such as environmental changes

between years; therefore, it has good portability. Given that the

sampling points in this study covered a variety of G. uralensis

growth conditions ranging from good to poor growth (Figure 2),
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which ensured the diversity and representativeness of the data, the

RF classification model constructed based on the GUVI feature set

was considered to have good generalizability. However, due to the

influence of many natural and human factors such as region,

climate, soil, farmers’ planting methods and cycles, the

universality of the RF classification model based on G. uralensis

feature set in different regions may be limited, and it is necessary to

adjust the parameters and optimize the model for specific regions.

In practical applications, it is necessary to fully consider its

limitations and combine other methods to improve the accuracy

and efficiency of classification.
4.2 Difference analysis of spectral
characteristics of G. uralensis with different
growth years

There are obvious differences in the spectral characteristics of

different plants due to the differences in leaf tissue structure and

pigments. For the same plant, the spectral characteristics may

change significantly at different growth stages or under different

environmental conditions. As G. uralensis is a perennial herb or

half-shrub, understanding its spectral characteristics at different

ages forms the foundation for classifying feature types over an

extended time series. The current study demonstrated that the

spectral curve characteristics of different annual G. uralensis

varieties were significantly different. This may be because one-

year-old G. uralensis is in the early stage of growth, its leaves are not

yet mature, and the content of chlorophyll and other pigments is

relatively low. Meanwhile, its biomass is small, the leaves are thin,

and the organizational structure is not close enough, which makes

its absorption and reflection of light weaker, thus exhibiting lower

characteristics in the spectrum. In contrast, the spectral curves of

biennial and triennial sweetgrasses were more similar because of the

maturity of the leaves, increased content of chlorophyll and other

pigments, accumulation of more biomass, and other reasons.

However, there may be a few differences owing to differences in

accumulation, environmental factors, or the management styles of

farmers, which need to be further analyzed. From the overall

analysis of these three curves, reveals a clear peak from May to

August, a trough fromMarch to April and September to November.
TABLE 4 Classification accuracy of RF classification model constructed with GUVI feature set.

Years OA (%) KC (%) G. uralensis UA (%) G. uralensis PA (%)

2014 96.83 95.78 100.00 75.00

2015 95.80 94.73 100.00 100.00

2016 97.97 97.08 96.72 77.63

2017 95.44. 94.03 97.25 92.19

2018 93.34 90.92 88.41 95.87

2019 89.91 87.95 74.31 91.85

2020 89.72 87.16 89.22 99.27

2021 90.72 89.21 69.47 71.08
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This trend closely correlates to the growth cycle of G. uralensis.

From March to April, G. uralensis recovers from dormancy, the

leaves are not yet fully expanded, and the chlorophyll content is low;

therefore, the spectral characteristics are not obvious and show a

trough. From June to August, this is the most vigorous growth

period of G. uralensis, with high chlorophyll content, lush leaves,
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significant reflection and absorption spectrum characteristics,

forming a peak. From September to November, G. uralensis

enters the late stage of growth, leaves begin to senesce,

chlorophyll gradually decomposes, and the spectral characteristics

are weakened, again forming a trough. From December to February,

the ground surface is covered with snow, which has high reflectivity,

making the spectral features appear higher than from March to

April and September to November. This phenomenon further

enriches our understanding of the variation in the spectral

characteristics of G. uralensis and provides a useful reference for

the subsequent classification of feature types.
4.3 Changes in the distribution area of G.
uralensis in Dengkou County

The distribution area of G. uralensis in Dengkou County has

experienced significant changes from 2014 to 2022. Studies during

this period showed that the distribution area of G. uralensis not only

expanded, but also its concentrated distribution became more

prominent. Initially, G. uralensis was mainly distributed in a

small area in the northeastern part of Dengkou County, but over

time, it gradually expanded to the central and southwestern parts of

the county, eventually forming a large area of concentrated

distribution. This change reflects the importance of G. uralensis

in the region and shows the complex interaction between natural

conditions and human factors. First, the geographical conditions in

the northeastern part of Dengkou County provide a favorable

environment for G. uralensis growth. This region benefits from

the Yellow River and has abundant water resources, creating an

environment suitable for G. uralensis growth. The abundance of

water resources enables G. uralensis to obtain the water required

during the growing season, thereby improving its growth rate and

quality. In addition to the influence of natural conditions, the local

agricultural technology extension departments play a key role. With

the spread and popularization of G. uralensis cultivation techniques,

farmers’ cultivation and management skills have significantly

improved. These departments may help farmers master modern

cultivation methods and management techniques by providing

training and guidance that have improved the overall efficiency

and yield of G. uralensis cultivation. In addition, with the large-scale

development of the G. uralensis cultivation sector, cooperation and

exchanges among growers have become increasingly frequent.

Growers have further improved the efficiency and competitiveness

of G. uralensis cultivation by sharing cultivation experiences and

optimizing cultivation patterns. Such cooperation enhances ties

between growers and provides a good basis for the intensive

production of G. uralensis and promotes its distribution on a

wider scale. However, the areas planted with G. uralensis

fluctuated significantly between 2014 and 2022. This fluctuation

may be due to the combined effect of many factors. For example,

inconsistencies in growers’ harvest years may lead to changes in the

areas under G. uralensis cultivation. Due to the fluctuations in

market demand, growers may adjust the planting area of G.

uralensis according to the change in market price and demand in

each growing season. In addition, the intensification of market
FIGURE 10

G. uralensis distribution area in Dengkou County, 2014–2022. (A–I) are
the distribution maps of G. uralensis in Dengkou County from 2014
to 202.
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competition may impact the decision-making of growers. A few

growers may choose to reduce the area of G. uralensis cultivation

because of competition from other crops, whereas others may

expand their cultivation because of favorable market prospects.

This fluctuation in planting area reflects the complex relationship

between the market environment and farmers’ decision-making

and indicates a certain degree of vulnerability in the G. uralensis

farming industry. In summary, the change in the G. uralensis

distribution area in Dengkou County resulted from the combined

action of natural conditions and human factors. In the future, in

order to promote the sustainable development of G. uralensis

plantations, it is necessary to continue to pay attention to and

study the growth characteristics of G. uralensis and market demand

and to seek reasonable planting strategies to achieve

sustainable development.
5 Conclusions

As countries worldwide pay more attention to the development of

the pharmaceutical industry, scientific management and sustainable

development of medicinal plant resources, as the basis of the

pharmaceutical industry, are crucial for ensuring the healthy

development of the global pharmaceutical industry. The sustainable

development and management of medicinal plant resources, such as

G. uralensis, are crucial for the pharmaceutical, food, and cosmetic

industries. This study employed Gaofen-1 satellite imagery and

machine learning algorithms to monitor and extract the spatial and

temporal distribution of G. uralensis in Dengkou County, providing

valuable insights into sustainable cultivation practices. First, through a

comparative analysis of the spectral characteristics of the main feature

types in Dengkou County under different bands and months of the

GF-1 WFV image, it was observed that the near-infrared band is

significantly different from other bands in reflectance values and curve

features and has the largest difference in the number of reflectance

values with the blue band. Therefore, the difference between the blue
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and near-infrared bands was calculated to increase the spectral curves

of the feature types, which is more conducive to the identification and

extraction of G. uralensis and other feature types. The GUVI was

constructed using a combination of the near-infrared and blue bands.

The contribution rate of band importance, it is found that the addition

of the contribution rate of each band in 12 months can significantly

increase the difference between the blue and NIR bands and the other

two bands. In other words, combining the January–December data to

construct a classification model was more conducive to the

identification of G. uralensis. Second, the long time series data of

GUVI and common vegetation indices were used as the feature sets to

construct eight identification models of G. uralensis using the RF

algorithm. By comparing the classification accuracy of the RF

algorithm for the eight models, it was observed that the OA and

KC of the model constructed by the GUVI were second only to the

one model constructed by the DVI. In the aspect of G. uralensis UA,

the model constructed with EVI as the feature, the model constructed

with GNDVI as the feature, and the model constructed with GCVI as

the feature, and the best performance in G. uralensis PA. By

comparing the classification accuracies of the RF classification

model constructed with the GUVI feature set and the SVM

classification model, we observed that the RF classification model

constructed with the GUVI feature set had better efficiency. Then, in

order to identify the distribution area of G. uralensis in historical

remote sensing images, the spectral curves of G. uralensis in major

feature types and different growth years were obtained under the

GUVI feature set from January to December 2022. The spectral curve

characteristics of G. uralensis in Dengkou County under the GUVI

model differed from other feature types and the spectral curves of G.

uralensis across different growth years. Finally, the training and

validation sets were selected under the GUVI feature set for 2014–

2021 according to the curve characteristics. The G. uralensis

distribution areas for the last eight years were obtained. The

distribution area of G. uralensis in 2014–2022 was gradually

distributed in the middle of Dengkou County from the initial

distribution in the northeastern part of Dengkou County, and is
FIGURE 11

Changes in G. uralensis acreage in Dengkou County, 2014–2022.
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now distributed in the southwestern part of the county. Initially, the

distribution area gradually changed from small and scattered to large

and concentrated. The area of G. uralensis showed a trend of

increasing first and then decreasing. This study demonstrates that

the GUVI-based RF model is a powerful tool for monitoring and

identifying the distribution of G. uralensis. Its adaptability and

efficiency make it suitable for broader applications, including other

medicinal plants and regions with similar ecological characteristics.

The results of this study provide a foundation for improving the

sustainability and productivity of G. uralensis cultivation. By enabling

precise monitoring of planting areas, the GUVI-based model offers

practical benefits for policymakers, resource managers, and farmers.

However, regional customization of the model is necessary to account

for variations in environmental and anthropogenic factors. Future

research should focus on: firstly, expanding the model’s application to

other regions and medicinal plants. Secondly, integrating advanced

technologies, such as hyperspectral imagery and deep learning, to

enhance classification accuracy. Thirdly, addressing limitations related

to data quality and noise by incorporating additional datasets and

preprocessing techniques.
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