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1Research Center for Agricultural Robotics, National Agricultural and Food Research Organization
(NARO), Tsukuba, Ibaraki, Japan, 2Graduate School of Agricultural and Life Sciences, The University of
Tokyo, Tokyo, Japan
Early fruit size prediction in greenhouse tomato (Solanum lycopersicum L.) is

crucial for growers managing cultivars to reduce the yield ratio of small-sized

fruit and for stakeholders in the horticultural supply chain. We aimed to develop a

method for early prediction of tomato fruit size at harvest with machine learning

algorithm, and three machine learning models (Ridge Regression, Extra Tree

Regrreion, CatBoost Regression) were compared using the PyCaret package for

Python. For constructing the models, the fruit weight estimated from the fruit

diameter obtained over time for each cumulative temperature after anthesis was

used as explanatory variable and the fruit weight at harvest was used as objective

variable. Datasets for two different prediction periods after anthesis of three

tomato cultivars (“CF Momotaro York,” “Zayda,” and “Adventure.”) were used to

develop tomato size prediction models, and their performance was evaluated.

We also aimed to improve the model adding the average temperature during the

prediction period as an explanatory variable. When the estimated fruit size data at

cumulative temperatures of 200°C d, 300°C d, and 500°C d after anthesis were

used as explanatory variables, the mean absolute percentage error (MAPE) was

lowest for “Zayda,” a cultivar with stable fruit diameter, at 9.8% for Ridge

Regression. When the estimated fruit size at cumulative temperatures of 300°C

d, 500°C d, and 800°C d after anthesis were used as explanatory variables for

Ridge Regression, the MAPE decreased for all cultivars: 10.1% for “CF Momotaro

York,” 8.8% for “Zayda,” and 10.0% for “Adventure.” In addition, incorporating the

average temperature during the fruit size prediction period as an explanatory

variable slightly increased model performance. These results indicate that this

method could effectively predict tomato size at harvest in three cultivars. If fruit

diameter data acquisition could be automated or simplified, it would assist in

cultivation management, such as tomato thinning.
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1 Introduction

Fruit size and yield are crucial crop management considerations

for horticultural fruit growers. These factors can vary based on

weather conditions (Lötze and Bergh, 2004), crop load (Heuvelink,

1997; Naor et al., 2001), and responses to water and salt stress

(Nuruddin et al., 2003; Itoh et al., 2020). Since dimensions,

geometry, and fruit size are key determinations of fruit grade, for

both growers and stakeholders in the horticultural supply chain,

more precise predictions of these factors can enhance market value

(Khojastehnazhand et al., 2010). Together with the total number of

fruits, fruit size has a strong impact on yield estimation. Although

technologies for predicting tomato yield using information on the

growth environment and plant growth have been developed

(Berrueta et al., 2020; Saito et al., 2020; Higashide, 2022), no

methods for predicting tomato fruit size are currently available.

There are two lines of research into fruit size prediction. One

uses a mathematical model based on environmental and crop

growth data. Using this model, the average weekly error for

cucumber fruit size was 6.6%, but at the end of the growing

season, it was underestimated (Marcelis and Gijzen, 1998). Fruit

size prediction can also be performed using mathematical models

for peaches and tomatoes (Fishman and Génard, 2002; Liu et al.,

2007). These techniques use preset parameters, which can lead to

significant deviations from predictions when unexpected situations

occur. The second is based on direct measurement methods with

calipers and computer vision. Fruit size prediction at harvest based

on measured dimensions over time during growth has also been

done, but it is unsuitable for early-ripening apple cultivars

(Zadravec et al., 2013). In greenhouses, counting fruits based on

ripeness using visible images and estimating volume and surface

area is easier (Zhao et al., 2016; Ziaratban et al., 2017; Gongal et al.,

2018; Afonso et al., 2020; Lee et al., 2020; Ge et al., 2022). UAVs

(Unmanned Aerial Vehicles) and robots could further improve

yield prediction accuracy if the number of fruits in the entire field

could be accurately quantified (Apolo-Apolo et al., 2020; Seo et al.,

2021; Egi et al., 2022). By contrast, these techniques can only be

used to predict the size of fruit close to harvest time. Given the

antagonistic relationship between the size, composition, and

number of fruits, predicting the size of fruits at an early stage is

challenging even with current computer vision technology.

Additionally, early fruit size prediction techniques are needed for

artificial control, such as reducing the yield percentage of small-

sized fruit.

Tomato fruits size is determined by cell number and cell size.

Depending on the tomato cultivar, the division of pericarp cell

progresses in a short period 12 to 25 days after anthesis (Bertin

et al., 2009), and cell elongation continues until the start of fruit

ripening (Giovannoni, 2004). Although most fruit volume increase

occurs during cell elongation, final fruit size is highly correlated

with the number of cells determined during early cell division

(Bertin et al., 2009). After the middle stage of fruit enlargement,

temperature strongly influenced the volume growth rate, which was

lower at 14°C (low temperature) and 26°C (high temperature)

compared to 18°C and 22°C, respectively (Adams, 2001). From

the above, it is possible that the final size of harvested fruit can be
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predicted by two factors: the rate of volume increase and the

temperature conditions, which are especially critical during the

initial cell division phase of fruit enlargement and the middle

growth stage. Fruit diameter has been widely used across various

crops to estimate size and calculate the growth rate (Warrington

et al., 1999,; Minchin et al., 2003; Tran et al., 2017). Using actual

measured diameter data of fruits, fruit size can be estimated

nondestructively over time and the rate of volume increase can be

evaluated more accurately than by setting parameters in advance. It

is also highly compatible with future use of computer vision-

based technology.

In this study, we aimed to develop a technique for predicting the

size of harvested fruit using the fruit size at the beginning and

middle of the growth period, which we considered important for

predicting harvested fruit size. To predict fruit size with high

accuracy, we analyzed the data using various machine learning

algorithms. We analyzed three tomato cultivars to identify

the morphological characteristics those most adaptable to

this prediction method and sought to enhance its precision

by incorporating additional explanatory variables related

to temperature.
2 Materials and methods

2.1 Plant materials and growth conditions

Plants were cultivated in a greenhouse (5.4 m width, 10.8 m

length) at Tsukuba (36°01’N 140°05’E), Japan. Three tomato

cultivars were used for this research: “CF momotaro York” (Takii

& Co. Ltd., Kyoto, Japan), “Zayda,” and “Adventure” (Rijk Zwaan,

De Lier, the Netherlands). The cultivation experiment was

conducted between August 16, 2022, and April 27, 2023. Tomato

plants were transplanted on coconut shell medium (Coco-bag;

Toyotane Co., Ltd., Aichi, Japan) with a plant density of 3.75

stems m-2. Nine plants of each cultivar were surveyed up to about

15 or 16 trusses, with each truss limited to four fruit sets.
2.2 Tomato fruit data set
acquisition method

Overview of the proposal methodology is shown in Figure 1.

The first anthesis date of three tomato cultivars during the growing

season was September 14, 2022, and they were continuously

surveyed 2-3 times a week until March 6, 2023, for “CF

momotaro York” and until February 27, 2023, for “Zayda,” and

“Adventure.” The method of tomato data collection and integration

is detailed in Figure 2. After fruit set, the long and short diameters of

the fruit were measured once or twice a week and the data on the

cumulative temperature after anthesis of each flower was recorded

together (Figure 2A). These measurements continued until the fruit

was harvested until April 27 for three cultivars. Tomatoes were

assumed to be ellipsoids, and the fruit size of each cultivar was

calculated from the long and short diameters using the following

equation (Li et al., 2015).
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Vfruit =   43   p   l2     (
s
2 )

2 (1)

Cfruit =  Vfruit   d (2)

where Vfruit represents the fruit volume index (cm3), l represents

the long diameter (cm), and s represents the short diameter (cm),

Cfruit represents the calculated fruit size (g), and d is the fruit density

(g cm−3). The fruit density for each tomato cultivar was determined

through regression equations based on Vfruit and actual fruit sizes

after harvesting or thinning at various growth stages, 435, 547 and
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449 fruits for “CF Momotaro York,” “Zayda,” and “Adventure,”

respectively (Figure 2B). Using these equations, fruit size at each

growth stage was calculated nondestructively from the diameters.

As the date of anthesis differs for each tomato fruit and the

temperature in the greenhouse is not constant, obtaining Cfruit at

a specific cumulative temperature after anthesis is challenging. For

each fruit, the Cfruit values at cumulative temperatures after anthesis

were fitted to a third-order polynomial using Scientific Python

(SciPy). A fitted curve (r2 ≥ 0.94) was created using Cfruit up to

cumulative temperature after anthesis<625°C d, and the estimated
FIGURE 2

Proposed fruit size data collection and integration process. (A) Diameters of tomato fruit were measured at different cumulative temperature after
anthesis of each flower, and Vfruit (Fruit volume index) was calculated. (B) The fruit density for each tomato cultivar was determined through
regression equations based on Vfruit and actual fruit sizes, and Cfruit (the calculated fruit size) was calculated. (C, D) The estimated fruit size (Efruit_500,t,
Efruit_800,t) for each cumulative temperature after anthesis was estimated from the fitted curve, and the data was collected.
FIGURE 1

Overview of the proposal methodology. (A) Tomato size, fruit diameter and number of fruits were used in the analysis of morphological characteristics
(Results Section 3.1). (B) The tomato fruit size prediction model was created using machine learning algorithms and evaluated (Results section 3.2, 3.3).
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fruit size at 200, 300, and 500°C d was obtained (Efruit_500,200,

Efruit_500,300, Efruit_500,500, Figure 2C). Similarly, a fitted curve (r2 ≥

0.95) was created using Cfruit up to cumulative temperature after

anthesis<900°C d, and the estimated fruit size at 300, 500, and 800°

C d was obtained (Efruit_800,300, Efruit_800,500, Efruit_800,800, Figure 2D).

Since the pericarp cell division occurs 10–25 days after flowering

and the cumulative temperature after anthesis is assumed to

be<500°C d, fruit size (Efruit_500,t) was collected during this

period. Additionally, 2 weeks before harvest, the cumulative

temperature after anthesis was assumed to be ≥800°C d, and fruit

size data (Efruit_800,t) was gathered to predict the harvest size by

that time.
2.3 Model development

The data set was created using estimated fruit sizes (Efruit_500,t,

Efruit_800,t) as explanatory variables and actual harvested fruit sizes

as objective variables. For the estimated fruit size data sets (Efruit_500,

t), 401, 516, and 417 fruits were used for “CF Momotaro York,”

“Zayda,” and “Adventure,” respectively. For the estimated fruit size

data sets (Efruit_800,t), 404, 524, and 421 fruits were used for “CF

Momotaro York,” “Zayda,” and “Adventure,” respectively. The data

analysis flow is shown in Figure 1. We used PyCaret 3.3, an open-

source low code Python library that automates machine learning

(AutoML) models (Moez, 2020). The library manages algorithms

for regression and classification. The PyCaret library evaluates and

compares these models based on specific metrics. Data were

normalized using Z-score normalization and randomly divided

into 80% for training and 20% for testing. Automated model

selection was performed with PyCaret 3.3, where all existing

regression models were trained and compared automatically

based on the defined preprocessing pipeline for the dataset. From

the recommended models, we selected and refined three: (1) Ridge

Regression, (2) Extra Tree Regression, and (3) CatBoost Regression.

Hyperparameters were optimized by repeated 10-fold cross-

validation to maximize the determination coefficient (R2) in the

training data with grid search (PyCaret’s default parameter). The

model was then fitted to maximize the R2 for all training data. These

analyses were conducted using PyCaret. Test data were used to

verify prediction accuracy. To evaluate model performance, we used

MAPE, R2, and root mean squared error (RMSE), which can be

calculated as follows:
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MAPE   =   100n on
i=1

Pi − Hi

Hi

����
���� (3)

R2   = 1 −   o
n
i=1

(Pi−Hi)
2

on
i=1

(Pi−�H)2
(4)

RMSE   =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n  on

i=1(Pi −Hi)
2

q
(5)

where n represents the number of observations, Pi represents

the predicted tomato size, Hi represents the harvested tomato size,

and �H represents the mean harvested fruit size.
2.4 Model improvement

To improve the prediction model, a new dataset was created

that incorporated not only fruit size at each cumulative temperature

after anthesis but also the average temperature during the

prediction period as an additional explanatory variable. Using this

dataset, the predictive model was developed with Ridge Regression.

The model’s performance was evaluated by calculating the MAPE,

R2 and RMSE following the same procedures described in Material

and Methods Section 2.3.
3 Results

3.1 Morphological characteristics of the
tomato cultivars

We examined the morphological characteristics of the fruits

from each cultivar (Table 1). “CF Momotaro York” and

“Adventure” had larger fruit size, long diameter and short

diameter compared to “Zayda.” The standard deviation (SD) for

fruit size, the ranking of cultivars from largest to smallest was “CF

Momotaro York,” “Adventure,” and “Zayda.” The number of fruit

sets per truss for each cultivar was also analyzed (Figure 3). “Zayda”

showed particularly stable fruit set, with no fruit loss observed at

nodes 4, 5, 10, and 12 across a survey of nine plants. The fruit

volume index (Vfruit) for each cultivar was calculated using the long

and short diameters of the fruit (Figure 4). The results indicated that

the calculated fruit densities (d) for “CF Momotaro York,” “Zayda,”

and “Adventure” were 1.005, 1.072, and 0.970, respectively.
TABLE 1 Fruit size, long diameter, and short diameter of each tomato cultivar.

Cultivar
Fruit size (g)
Mean ± SD

Long diameter (cm)
Mean ± SD

Short diameter (cm)
Mean ± SD

“CF Momotaro York” 154.3 ± 51.5a 6.7 ± 0.9a 6.4 ± 0.8a

“Zayda” 140.9 ± 27.4b 6.4 ± 0.5b 6.2 ± 0.5b

“Adventure” 152.0 ± 39.2a 6.7 ± 0.7a 6.6 ± 0.7a
Data are presented as the means ± SD. Different letters in a column indicate significant differences at the 1% level according to the Tukey–Kramer test.
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3.2 Evaluation of prediction models

Estimated fruit size data (Efruit_500,t, Efruit_800,t) were used as

explanatory variables to predict actual harvest fruit size through

machine learning, utilizing three different regression models. The

MAPE, R2, and RMSE of “CF Momotaro York,” “Zayda,” and

“Adventure” are shown in Table 2, based on the predicted fruit size

data. Ridge Regression consistently demonstrated stable and highly

MAPE, R2, and RMSE for each cultivar. When Efruit_500,t was used

as the explanatory variable, “Zayda” had the lowest MAPE values,

followed by “Adventure,” and “CF Momotaro York,” regardless of

the regression model. When Efruit_800,t was used, “Zayda” again had

the lowest MAPE, with minimal differences between “CF

Momotaro York” and “Adventure,” both showing MAPE values

around 10%. These results indicate that prediction accuracy
Frontiers in Plant Science 05
improves as the fruit develops and that the performance of the

models varies by cultivar.
3.3 Improvement of prediction models

We investigated the relationship between the average

temperature and cumulative temperature from anthesis to harvest

(Figure 5). The results indicated that for all cultivars, as the average

temperature during the fruit growth period increased, the

cumulative temperature until harvest decreased. The correlation

coefficients were −0.681, −0.716, and −0.474 for “CF Momotaro

York,” “Zayda,” and “Adventure,” respectively, with a p-value of less

than 0.01 for all cultivars, indicating strong statistical significance.

In an effort to improve the predictive model, we incorporated data
FIGURE 3

Number of fruits per truss for “CF momotaro York,” “Zayda,” and “Adventure.” Vertical bars indicate the SD of the means (n = 9).
FIGURE 4

Relationship between fruit volume index (Vfruit) and actual fruit size in “CF momotaro York” (n = 435), “Zayda” (n = 547), and “Adventure” (n = 449).
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showing that the time to harvest varies depending on the average

temperature during fruit enlargement. By adding average

temperature during the prediction period as an explanatory

variable for fruit size prediction, the model’s performance

improved for some cultivars and specific periods, however, the

overall improvement was not substantial (Table 3).
4 Discussion

4.1 Morphological characteristics suitable
for fruit size prediction

In this study, the morphological characteristics of the fruits of “CF

Momotaro York” (a Japanese cultivar), “Zayda,” and “Adventure”

(Dutch cultivars) were found to be differ from one another.

Although the number of fruit sets per stem was limited to four in

this experiment, “Zayda” exhibited the smallest fruit size. SD in fruit
Frontiers in Plant Science 06
size was smallest for “Zayda,” followed by “Adventure,”and “CF

Momotaro York.” “Zayda” showed the most stable fruit set (Table 1,

Figure 3). The initial fruit growth rate and size differed depending on

fruit load in a tomato truss (Bertin, 2005). These minimal fluctuations

in the number of fruits suggest low variation in the morphological

characteristics of fruits in “Zayda,” which may explain the high

prediction accuracy and the machine learning model’s ability to

perform well even at early stages of cumulative temperature after

anthesis (Tables 2, 3). When Efruit_500,t was used as an explanatory

variable, “Adventure” outperformed “CF Momotaro York” in terms of

MAPE and RMSE in three machine learning algorithms, also

indicating that variation in fruit size can influence prediction

accuracy (Table 2). It is well-known that the number of days to

harvest and fruit dry matter weight in tomatoes can vary depending

on the growing season (Heuvelink, 1995b). In this study, the

cumulative temperature from anthesis to harvest varied significantly

with changes in the average temperature during this period (Figure 5),

resulting in corresponding changes in fruit size (data not shown). This
TABLE 2 Results of fruit size prediction at harvest.

Cultivar Model

MAPE (%) R2 RMSE

Explanatory variables1

Efruit_500,t Efruit_800,t Efruit_500,t Efruit_800,t Efruit_500,t Efruit_800,t

“CF Momotaro York”

Ridge Regression 17.2 10.1 0.48 0.8 32.5 19.6

Extra Tree Regrreion 17.1 9.7 0.51 0.81 31.9 19.3

CatBoost Regression 17.0 10.0 0.44 0.78 33.8 20.6

“Zayda”

Ridge Regression 9.8 8.8 0.58 0.75 19.1 13.6

Extra Tree Regrreion 10.0 8.9 0.43 0.71 22.4 14.8

CatBoost Regression 10.3 8.5 0.42 0.74 22.5 14.1

“Adventure”

Ridge Regression 15.5 10.0 0.57 0.81 27.1 16.4

Extra Tree Regrreion 16.5 10.3 0.44 0.77 30.9 18.0

CatBoost Regression 16.7 9.6 0.48 0.81 26.7 16.7
1Explanatory variables are those used for fruit size predictions. “Efruit_500,t” represents the estimated fruit size at cumulative temperatures after 200°C, 300°C and 500°C d anthesis were used an
explanatory variable. “Efruit_800,t” represents the estimated fruit size at cumulative temperatures after 300°C, 500°C and 800°C d anthesis was used as explanatory variable.
FIGURE 5

Relationship between average temperature and cumulative temperature from anthesis to harvest in “CF momotaro York” (n = 416), “Zayda” (n = 530),
and “Adventure” (n = 431). **: significant negative correlation between average temperature and cumulative temperature (P< 0.01). Periods over
which average temperature and cumulative temperature are calculated from anthesis to harvest date for each fruit.
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suggests that prediction accuracy could be further enhanced by

selecting cultivars optimized for fruit size prediction and developing

seasonal models that align with fruit size trends at harvest.
4.2 Improvement of the model by adding
average temperature

Given that average temperature significantly affects the time to

harvest, we aimed to enhance the accuracy of our prediction model

by incorporating average temperature during the fruit size

estimation as an explanatory variable. Previous research found

that the influence of maximum fruit diameter was minimal within

the stable temperature range typically maintained in commercial

greenhouses (Tijskens et al., 2016). Earlier studies demonstrated

that tomatoes grown at varying temperatures of 14°C, 18°C, 22°C,

and 26°C experienced longer harvest times at lower temperatures,

with smaller fruit sizes observed at both 14°C and 26°C (Adams,

2001). This suggests that different average temperatures can lead to

varying fruit growth stages when cumulative temperatures of 500°C

d and 800°C d after anthesis are reached. While incorporating

temperature data improved the accuracy of certain predictions, the

overall improvement was not statistically significant (Table 3). The

average temperature during data collection should be recorded, as

the cumulative temperature after anthesis is essential for making

these predictions. Thus, it is recommended that this data be

included in future datasets for operational use.
4.3 Use of predictive technologies

In Japan, tomatoes are graded based on their shape and size, but

there is no unified standard for grading; it varies depending on the

cultivar, growing region, and consumer preferences. Generally,

consumers tend to prefer slightly larger tomatoes, while smaller

ones are often considered unmarketable. To produce larger, high-

value fruits, tomato cultivation involves limiting the number of
Frontiers in Plant Science 07
fruits per plant (Cockshull and Ho, 1995; Heuvelink, 1995a). Early

prediction of fruit size distribution can optimize crop management

practices to reduce fruit load. With this in mind, statistical methods

have been employed to develop predictive models for fruit size. For

example, a model for kiwifruit was created to estimate fruit size

based on fruit diameter measurements (Minchin et al., 2003). For

effective crop management, predicting model for the size

distribution of the harvested fruit have been developed for apples,

pears and citrus (Lötze and Bergh, 2004; Tanimoto and Yoshida,

2024). Pruning and thinning can be used to manipulate the crop to

achieve the desired size distribution at harvest (Guardiola and

Garcıá-Luis, 2000). In this study, to estimate the size of individual

tomato fruits and apply it to crop management, fruit size

predictions were based on the estimated fruit size (Efruit_500,t) at

cumulative temperatures after anthesis, ranging from 200°C d to

500°C d. For three tomato cultivars, MAPE was below about 17%,

which allowed predicting size distribution based on measurements

during the early stage of fruit enlargement. To facilitate rapid

information sharing with supply chain stakeholders, fruit size

predictions were made based on the estimated fruit size (Efruit_800,

t) at cumulative temperatures after anthesis, ranging from 300°C d

to 800°C d. Under the assumption of an average temperature of 18°

C d, a cumulative temperature of 800°C d after anthesis would

typically correspond to about two weeks before harvest in most

growing seasons. When the average temperature drops below 18°C,

however, the cumulative temperature required to reach harvest

increases (Figure 5). Predicting fruit size at this later stage of

accumulated temperature still allows for timely information

sharing before shipment. Depending on the season, it may be

necessary to adjust the amount of data over time for the

explanatory variables to improve prediction accuracy.
4.4 Automation of data collection

In this study, fruit diameter data was collected using calipers. To

apply this approach in practical production settings, fruit diameter
TABLE 3 Results of fruit size prediction with the addition of average temperature as an explanatory variable.

Cultivar Model
Average
temperature1

MAPE (%) R2 RMSE

Explanatory variables2

Efruit_500,t Efruit_800,t Efruit_500,t Efruit_800,t Efruit_500,t Efruit_800,t

“CF
Momotaro York”

Ridge
Regression

+ 17.2 9.8 0.50 0.82 32.1 19.0

− 17.2 10.1 0.48 0.80 32.5 19.6

“Zayda”
+ 9.4 7.6 0.63 0.81 17.9 12.0

− 9.8 8.8 0.58 0.75 19.1 13.6

“Adventure”
+ 14.8 10.0 0.59 0.81 26.3 16.3

− 15.5 10.0 0.57 0.81 27.1 16.4
1Average temperature represents the period from anthesis to the recorded fruit diameter. “+” and “−” indicate whether the variable was used as an explanatory factor or not. 2Explanatory
variables used for fruit size predictions. “Efruit_500,t” represents the estimated fruit size at cumulative temperatures after 200°C, 300°C and 500°C d anthesis were used as explanatory variable.
“Efruit_800,t” represents the estimated fruit size at cumulative temperatures after 300°C, 500°C and 800°C d anthesis was used as explanatory variable.
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data will need to be obtained through image analysis. Accurate

sensing of flowering dates will also be crucial, as fruit diameter is

closely linked to cumulative temperature after anthesis. These

technologies, aimed at achieving high precision, are currently

under development (Nyalala et al., 2019; Lee et al., 2022).

Computer vision systems can be used to quantify increases in

fruit diameter, length, and volume (Song et al., 2014; Mildenhall

et al., 2021). In this study, the fruit size in each cultivar was

calculated based on the long and short diameters, but predicting

fruit size using just one diameter would facilitate the process. The

coefficient of determination between harvested fruit size and long

fruit diameter was 0.91, 0.92, and 0.94 for “CF Momotaro York,”

“Zayda,” and “Adventure,” respectively (data not shown). Although

using only long diameters provides less accuracy compared to using

both long and short diameters, focusing on a single diameter

measurement may simplify data collection using computer vision.

Automatic measurement of fruit diameter offers the advantage of

high-frequency data collection. Frequent measurements through

computer vision could enable earlier predictions of fruit size at

harvest, potentially even sooner than the cumulative temperature

benchmarks used in this study, which would reduce the labor

required for monitoring. This technology will allow growers to

adjust thinning practices to ensure the proportion of small-sized

fruits at harvest remains low. In the future, integrating automated

fruit diameter data collection with fast, predictive crop management

strategies will be key to improving production efficiency.
5 Conclusion

In this study, we proposed a method for predicting the tomato

fruits size at harvest time by analyzing time-series data on the

diameter of tomato fruits at cumulative temperatures after anthesis

using machine learning algorithms. We developed a model that can

be used for cultivation management, such as fruit thinning, using

fruit diameter data from the early fruit growth period, and a model

that can be used for information sharing with supply chain

stakeholders, assuming a prediction two weeks before harvest.

The MAPE for fruit size prediction of the three tomato cultivars

ranged from 9.8% to 17.2% and from 8.5% to 10.3%, respectively,

and these predictions could be used for tomato producers. The

difference in accuracy between cultivars was related to the SD of

fruit size and diameter, and the prediction accuracy was higher

when used with cultivar that had less variation in individual fruits.

By adding the average temperature during the fruit size prediction

period as an explanatory variable, in addition to fruit size, the

performance improved depending on the cultivar and period. In

this study, fruit diameter was measured using a caliper, but in the

future, we are planning to use computer vision to measure diameter

more frequently in order to estimate harvest size even earlier than
Frontiers in Plant Science 08
the reference value for cumulative temperature used in this study.

This will enable tomato producers to adjust thinning work and

improve production efficiency and profitability.
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