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Enhancing yield prediction in
maize breeding using UAV-
derived RGB imagery: a novel
classification-integrated
regression approach
Haixiao Ge1, Qi Zhang2, Min Shen1, Yang Qin1, Lin Wang1

and Cansheng Yuan1*

1College of Rural Revitalization, Jiangsu Open University, Nanjing, China, 2Institute of Agricultural
Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
Accurate grain yield prediction is crucial for optimizing agricultural practices and

ensuring food security. This study introduces a novel classification-integrated

regression approach to improve maize yield prediction using UAV-derived RGB

imagery. We compared three classifiers—Support Vector Machine (SVM), Decision

Tree (DT), and Random Forest (RF)—to categorize yield data into low,medium, and

high classes. Among these, SVM achieved the highest classification accuracy and

was selected for classifying data prior to regression. Two methodologies were

evaluated: Method 1 (direct RF regression on the full dataset) and Method 2 (SVM

classification followed by class-specific RF regression). Multi-temporal vegetation

indices (VIs) were analyzed across key growth stages, with the early vegetative

phase yielding the lowest prediction errors. Method 2 significantly outperformed

Method 1, reducing RMSE by 45.1% in calibration (0.28 t/ha vs. 0.51 t/ha) and 3.3% in

validation (0.89 t/ha vs. 0.92 t/ha). This integrated framework demonstrates the

advantage of combining classification and regression for precise yield estimation,

providing a scalable tool for maize breeding programs. The results highlight the

potential of UAV-based phenotyping to enhance agricultural productivity and

support global food systems.
KEYWORDS

maize, yield prediction, UAV-based imagery, random forest, pre-regression classification
1 Introduction

Accurate crop yield prediction is essential for optimizing agricultural decisions, including

harvest planning, crop insurance, and storagemanagement. Reliable yield forecasts are crucial

for farmers, agronomists, and agricultural policymakers to ensure efficient resource allocation

and enhance productivity. Traditional yield estimation methods typically rely on field
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sampling, which is labor-intensive, destructive, and prone to

inaccuracies (Liang et al., 2024). These methods usually involve

collecting samples from the field and analyzing them to estimate

the overall yield. However, this process is not only time-consuming

but also disruptive to the growing crop. Additionally, the experiential

knowledge of farmers and agricultural technicians is often used to

predict crop yield, but this approach remains subjective and can be

prone to errors, especially in large-scale or diverse farming systems

(Zhang et al., 2020). As a result, yield estimates based on such

knowledge can vary significantly, lacking consistency and often

leading to inaccurate predictions.

To address these challenges, remote sensing technologies have

emerged as powerful tools in modern agriculture. Over the past

decade, the development of high-throughput phenotyping (HTP)

systems—based on both ground-based mobile platforms and aerial

systems—has revolutionized how we monitor crop growth and

predict yield. These systems provide high spatial and temporal

resolution data, which can be directly related to grain yield or crop

responses to both biotic and abiotic stresses (Feng et al., 2020).

Among these technologies, the application of unmanned aerial

vehicles (UAVs) with high spatial resolution imagery has shown

considerable success in estimating crop yield, particularly through

the use of vegetation indices (VIs), such as the Normalized

Difference Vegetation Index (NDVI) (Ballesteros et al., 2014;

Candiago et al., 2015). These indices have been demonstrated to

correlate strongly with crop yield, making them an effective tool for

monitoring crop health and predicting yield (Hassan et al., 2019).

Numerous statistical methods have been employed to estimate

agricultural variables from UAV-derived VI data. Linear

regression models are commonly used to calibrate the

relationship between UAV-based VIs and measured agricultural

variables, such as crop height and yield. For instance, Geipel et al.

(2014) utilized UAV-RGB imagery to predict corn grain yield by

calculating crop height and VIs. Similarly, Vega et al. (2015) found a

strong linear relationship between NDVI and yield when extracting

NDVI data from multi-temporal UAV imagery.

While these methods are useful, they also have limitations. One

major drawback is their inability to account for the complex

relationships between multiple variables involved in crop growth

and yield. Traditional regression models may oversimplify these

relationships, leading to lower accuracy in yield prediction (Duan

et al., 2021). In contrast, machine learning techniques have gained

popularity due to their ability to model complex, non-linear

relationships between numerous variables without relying on

explicit equations. For instance, machine learning models such as

support vector machines (SVM) and random forests (RF) have been

successfully applied to estimate crop yield by integrating various

input features like weather conditions, soil properties, and remote

sensing data (Cai et al., 2019). These models can handle large and

high-dimensional datasets, making them well-suited for real-time

yield prediction in precision agriculture. By capturing intricate

interactions between environmental factors, crop physiology, and

management practices, machine learning models are able to provide

more robust predictions than traditional methods. Moreover,
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machine learning algorithms can be trained to adapt to new data,

improving their accuracy over time as more information becomes

available. This adaptability makes machine learning particularly

valuable in agricultural settings, where conditions and inputs vary

widely across regions and seasons.

Maize (Zea mays L.) stands as a global staple crop with triple

significance in food security, bioenergy production, and livestock

nutrition (Herrmann et al., 2020). In breeding programs, the annual

yield testing protocol for new cultivars demands particularly

accurate predict ion methodologies , as even marginal

improvements in estimation accuracy can substantially accelerate

cultivar development cycles. Traditional machine learning

regression approaches for yield prediction, however, often face

limitations when dealing with the inherent heterogeneity across

diverse maize cultivars and environmental interactions. Recent

advances in two-stage analytical frameworks combining

classification with regression have demonstrated remarkable

success in spectral analysis applications. Notably, Wang et al.

(2014) achieved enhanced coal property predictions through

initial spectral classification, while Wang et al. (2019) improved

glucose content estimation via categorical preprocessing of spectral

data. These successes suggest that a classification-before-regression

approach could effectively address the spectral complexity and

cultivar variability challenges in maize yield prediction. By

stratifying populations into homogeneous subgroups before

applying subgroup-specific regression models, this methodology

minimizes inter-group interference while maximizing intra-group

pattern recognition - a critical advantage for precision

agriculture applications.

This study introduces three significant advancements to maize

yield prediction research. First, we establish a novel two-stage

framework involving initial yield potential classification using

UAV-derived RGB imagery followed by subgroup-optimized

regression modeling. Second, we systematically investigate the

temporal dynamics of VIs across critical growth stages and their

cultivar-specific relationships with final yield - an aspect previously

under characterized in maize phenomics. Third, through

comprehensive comparison with conventional regression

techniques, we demonstrate the superior performance of our

stratified approach in handling cultivar diversity.

The manuscript is organized as follows: Section 1 provides a

comprehensive review of the relevant literature on crop yield

estimation, focusing on UAVs and machine learning techniques.

Section 2 outlines the methodology used in this study, including

data collection, feature extraction, and the application of

classification and regression procedures. Section 3 presents the

results and performance evaluation of the proposed framework.

Section 4 discusses the implications of the findings, addresses the

limitations of the current study, and offers recommendations for

future research directions. Finally, Section 5 presents the

conclusion, summarizing the key findings and emphasizing the

potential impact of the proposed classification-before-regression

technique on improving yield estimation accuracy in maize

breeding programs.
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2 Materials and methods

2.1 Experimental location and
plant materials

This study was conducted at a maize breeding base in Nong’an

County, Changchun City, Jilin Province, China (125°8’28’’ E, 44°

22’25’’ N), situated within the fertile black soil (Chernozem) region

of the Songnen Plain, a key maize-producing area in Northeast

China (Figure 1). The experimental site featured flat terrain and

uniform soil properties optimized for high-yield maize cultivation.

A total of 72 plots (5.0 m × 6.0 m each) were arranged in a

randomized complete block design, with eight rows per plot, 60 cm

row spacing, and 25 cm plant spacing. Forty-two maize genotypes

were selected from the core germplasms of the Jilin Academy of

Agricultural Sciences (JAAS), representing elite inbred lines, widely

adopted hybrids, and locally adapted landraces. These genotypes

were sown on May 2, 2021 (Table 1), aligning with the optimal

planting window for maize in Jilin Province. They were chosen for

their adaptability to Jilin’s temperate climate—including tolerance

to early-season cold stress and resistance to prevalent diseases (e.g.,

northern leaf blight, stalk rot)—genetic diversity, and alignment

with regional breeding objectives such as yield stability, abiotic

stress resilience, and dual-purpose (grain/silage) utility. The

planting density was standardized at 75,000 plants per hectare,

consistent with local high-yield practices. Field management

followed regional protocols: a base application of 200 kg/ha

compound fertilizer (15:15:15 NPK) at sowing, 150 kg/ha urea
Frontiers in Plant Science 03
topdressing at the V6 stage, supplemental irrigation during critical

growth phases, and integrated pest management to minimize

biotic stressors.
2.2 Data collection

2.2.1 Yield collection
At the end of the maize growing season (late September to early

October), all maize plots under investigation were harvested

manually. In each plot, all the maize plants were harvested, and

the total grain yield was measured. To minimize the effects of plot

boundaries, the entire area of each 5.0 m × 6.0 m plot was included

in the harvest, ensuring that data collected from the entire plot

represented the full yield potential of the genotype being evaluated.

The harvested cobs were threshed, and the grains were dried to

a moisture content of approximately 12%. The dried grains were

then weighed using an electronic scale with an accuracy of ± 0.1 g.

The final yield was converted to kilograms per hectare (kg/ha) based

on the plot area. This method, where the entire plot is harvested,

helps reduce the potential bias from edge effects and provides a

more accurate reflection of the genotype’s performance across the

entire plot. The grain yield was then used as the target variable for

training and testing the yield prediction models.

2.2.2 UAV image acquisition
The acquisition dates of UAV-based images are provided in

Table 1. In this study, the UAV-based remote sensing system
FIGURE 1

Location of the study area and overview of the experimental field.
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comprised a consumer-grade RGB camera and a UAV platform

(Phantom 4 Pro, DJI, Shenzhen, China). Under optimal conditions,

the UAV system could hover for up to 30 minutes. The RGB camera

was equipped with a one-inch complementary metal-oxide-

semiconductor (CMOS) sensor, capable of capturing still images

with a spatial resolution of approximately 20 million pixels. To

ensure image quality, the RGB camera was positioned vertically

downward during each flight. The flight elevation was set to 50 m,

resulting in a ground sampling distance (GSD) of 1.36 cm/pixel.

The UAV control app (Pix4Dcapture, Pix4D Corporation,

Lausanne, Switzerland) was used to design, control, and monitor

UAV flights. Before each flight, waypoints were predefined to

achieve a minimum 70% overlap in both sideward and forward

directions. All flights were conducted under stable ambient light

conditions. After each flight, geo-information was acquired from

the onboard GPS equipment integrated into the UAV system, and

images were subsequently downloaded from an SD card for further

image processing analysis.
2.3 Image processing

2.3.1 Image mosaicking
Image mosaicking was performed using Pix4Dmapper software.

The specific operation process was as follows: (1) import all images

from the same date of the UAV flight into Pix4Dmapper; (2) select

the coordinate system and processing options template; (3) align the

raw images with altitude and spatial position information; and (4)

export the orthophoto map in TIFF format. Images collected during

eight other periods of maize growth were pre-processed following

the afore-mentioned steps.

Additionally, the radiance reaching the lens had a linear

correlation with the digital number (DN) for each band.

Consequently, an empirical linear equation (Equation 1)

described by Yu et al. (2016) was adopted to maintain

radiometric consistency in multi-temporal images. The equation

is defined as:

DNnormalized = a� DNraw + b (1)

where a and b are normalization coefficients derived from the

reference image (July 9). These coefficients were calculated by

minimizing the radiometric differences between subsequent-date

images and the reference.
2.3.2 VIs calculation
VIs were calculated from UAV-based remotely sensed

orthomosaics. A total of 14 VIs, widely applied in crop research,
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were selected (Ge et al., 2021; Kim et al., 2018). The corresponding

formulations of these VIs are provided in Table 2. The calculation of

VIs for each plot involved three steps: (1) regions of interest (ROIs)

were generated using ArcGIS v.10.8 software (ESRI, Redlands, CA,

USA) to manually delineate the plots from the orthomosaics

(Figure 1); (2) a Python script was used to calculate VIs based on

the R, G, and B bands of the orthomosaics; (3) the mean VI value of

each ROI was calculated using the “ZonalStatisticsAsTable”module

in ArcGIS v.10.8 software.
2.4 Model building

2.4.1 Classification method
In this study, classification was performed using three

commonly applied methods: SVM, Decision Tree (DT), and RF.

The classification method with the highest accuracy in the

validation set was selected as the final method for this study.

Hyperparameters for each model were tuned, as detailed in

Table 3. The models were tested and validated using 5-fold cross-

validation. The key hyperparameters for each model were selected

based on their influence on the classification accuracy: (1) SVM:We

tested both the ‘linear’ and ‘rbf’ kernels, selecting the optimal one

based on the classification results; (2) DT: Hyperparameters such as

“min_samples_leaf” and “min_samples_split” were optimized for

each growth stage; (3) RF: “max_depth” and “n_estimators” were

optimized for each growth stage to ensure the best model fit. The

classification accuracy was evaluated based on metrics such as

overall accuracy and F1-score. The best model, demonstrating the

highest classification accuracy, was selected for further analysis.

2.4.2 Regression method
The RF model was used to establish regression models for yield

estimation. RF is an ensemble learning algorithm that aggregates the

results of individual decision trees using bagging and random feature

selection. The final prediction is made by averaging the outputs of all

trees in the forest (Jordan and Mitchell, 2015). RF is not sensitive to

collinearity between variables, which allows it to handle complex

datasets and avoid overfitting, leading to high prediction accuracy. In

this study, regression models were developed using UAV-based VIs

and measured yield data. The RF algorithm was implemented using

the “RandomForestRegressor” function in the “scikit-learn” Python

package (https://scikit-learn.org/stable/). During calibration, three

hyperparameters—”max_depth”, “min_samples_split”, and

“min_samples_leaf”—were tuned using a grid search method with

5-fold cross-validation.

2.4.3 Calibration methods
Two different procedures were implemented to predict maize

yield using UAV-based VIs (Figure 2). The detailed descriptions of

these two strategies are as follows:

Method 1 (Regression models using the full sample set): The

complete set of VIs from Table 2 was used as input for the RF

regression model. This approach aimed to predict maize yield

directly from all available VI data.
TABLE 1 Details of the experiment and UAV flights in 2021.

Rice
plots

Date of
sowing

Date of
maturity

Date of UAV flights

72 2 May
23

September-
6 October

9 July, 21 July, 27 July, 5 August, 14
August, 25 August, 4 September, 18

September, 28 September
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Method 2 (Regression models using grouped sample sets after

classification): In this method, the samples were first classified into

three yield levels based on measured yield: low-level yield range

(30%) corresponding to plots with the lowest yield values; medium-

level yield range (40%) corresponding to plots with intermediate

yield values; and high-level yield range (30%) corresponding to

plots with the highest yield values. These yield levels were

determined using the optimal classifier identified in Section 2.4.1.

Following classification, separate RF regression models were applied

to each yield group.

To optimize data collection and prediction accuracy, maize

growth cycles were systematically categorized into four distinct

phenological phases: vegetative stage, panicle formation stage,

ripening stage, and whole growth cycle. This classification

framework was specifically applied to synchronize with multi-

temporal UAV observation schedules, with detailed stage-specific

data acquisition timelines presented in Table 4.
2.4.4 Statistical analysis
In this study, the Pearson correlation coefficient (r) was used to

analyze the relationships between UAV-based VIs and grain yield at

different growth stages. The selected VIs and the yield data were used

to create the raw dataset matrix with VIs as the independent variables

(X) and grain yield as the dependent variable (Y). Before classification

and regression, the dataset matrix was randomly split into training

(70%) and testing (30%) sets for each of the four growth stages.

Additionally, two metrics, overall accuracy and F1-score, were

selected to assess the accuracies of the different classifiers. Finally,

the predictive performance of RF regression models was

quantitatively evaluated using the coefficient of determination

(R2) and root mean square error (RMSE). These statistical metrics

were calculated in Equations 2, 3:
Frontiers in Plant Science 05
R2 = 1 −o
n
i=1(yi − byi)2

on
i=1(yi − �y)2

(2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − byi)2
n

s
(3)

where yi is the measured yield, ŷi is the predicted yield, yi is the

mean value of all the measured yield and n is the number of samples.
3 Results

3.1 Correlation analysis of VIs and
maize yield

Pearson correlation analysis was conducted to explore the

relationship between maize yield and various VIs across different

growth periods (Figure 3). The analysis revealed significant

variations in the strength and significance of these correlations at

different growth stages. At the early growth stages (DAS=68, 80, and

86), many VIs exhibited significant correlations with maize yield,

particularly at DAS=68. Notably, ExR and NGI indices

demonstrated the strongest correlations with yield at this stage,

with r values of 0.39 and -0.38, respectively (Supplementary

Table 1). This suggests that these indices are effective predictors

of yield potential during the early stages of crop development.

During the middle growth stages (DAS=95, 104, and 115), the

correlation coefficients between VIs and yield varied more

significantly across different periods. For instance, ExR exhibited

the strongest correlation at DAS=95 with an r value of 0.54, but its

correlation strength decreased at DAS=104 and DAS=115. Indices

such as R, G, G/B, and INT showed good correlations at some
TABLE 2 Formulations of the selected VIs in this study.

Variable Formula Reference

R band of UAV-based orthomosaics (R) DN value of R band –

G band of UAV-based orthomosaics (G) DN value of G band –

B band of UAV-based orthomosaics (B) DN value of B band –

Excess red index (ExR) 1.4R-G
(Woebbecke et al., 1995)

Excess green index (ExG) 2G-R-B

Normalized red index (NRI) R/(R+G+B)

(Liu et al., 2019)Normalized green index (NGI) G/(R+G+B)

Normalized blue index (NBI) B/(R+G+B)

Green–Red ratio index (G/R) G/R

(Maimaitijiang et al., 2019)Green–Blue ratio index (G/B) G/B

Red–Blue ratio index (R/B) R/B

Normalized Green-Red difference index (NGRDI) (G-R)/(G+R) (Hunt et al., 2005)

Green minus Red index (GMR) G-R (Wang et al., 2013)

Color intensity index (INT) (R + G + B)/3 (Ahmad and Reid, 1996)
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individual stages but exhibited random variations overall, indicating

some degree of inconsistency in their correlations with yield. In the

late growth stages (DAS=125, 139, and 149), the correlations

between most VIs and maize yield were generally weak and not

significant. All VIs had absolute correlation coefficients (|r|) below

0.26, suggesting that these indices are less suitable for predicting

yield during the post-heading stage of crop development.
3.2 Maize yield prediction based on
method 1

The results of predicted yield calculated by Method 1 at each

growth stage are presented in Figure 4. In the calibration datasets,

the RF models at the vegetative stage and combined stages achieved

slightly better results than those obtained at the panicle-formation

and ripening stages, with R2 values ranging from 0.92 to 0.93 and

RMSE values ranging from 0.51 t/ha to 0.52 t/ha. The predicted
Frontiers in Plant Science 06
yield was overestimated at different growth stages when the

measured yield was less than 8.4 t/ha. In contrast, all the

predicted yields were underestimated when the measured yield

exceeded 10.9 t/ha. Compared to the models in the calibration

set, the RF models at each growth stage showed lower accuracies

and higher RMSE values in the validation set, with the scatter

distributions calculated by these RF models deviating further from

the 1:1 line. Although the optimal models for yield prediction were

obtained at the vegetative and combined stages, the prediction

accuracies were somewhat unacceptable, with R2 values of 0.14

and 0.10 and RMSE values of 0.92 t/ha and 0.93 t/ha, respectively.
3.3 Maize yield prediction based on
method 2

The classification performance of three machine learning

methods, including SVM, DT, and RF, was evaluated for yield-
TABLE 3 Detail of the user-defined parameters in the classifier models with 5-fold cross validation during the calibration.

Model Parameter Description Range Stage
Optimal
value

SVM

Kernel
Specifies the kernel type to be used in

the algorithm
‘linear’ and ‘rbf’

Vegetative ‘linear’

Panicle-formation ‘linear’

Ripening ‘rbf’

Whole ‘linear’

C Regularization parameter 1-10

Vegetative 5

Panicle-formation 1

Ripening 1

Whole 2

DT

min_samples_leaf
The minimum number of samples required at

each leaf node
1-10, with an
interval of 2

Vegetative 5

Panicle-formation 9

Ripening 7

Whole 9

min_samples_split
The minimum number of samples required to

split an internal node
2-10

Vegetative 4

Panicle-formation 2

Ripening 8

Whole 5

RF

max_depth The maximum depth of each decision tree
3-15, with an
interval of 3

Vegetative 12

Panicle-formation 12

Ripening 9

Whole 12

n_estimators The number of decision trees in the forest
10-100, with an
interval of 10

Vegetative 40

Panicle-formation 30

Ripening 50

Whole 20
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level classification across different growth stages, based on the

validation set results presented in Table 5. SVM generally

outperformed DT and RF, achieving the highest F1-score of 0.71

and an overall accuracy of 68% at the vegetative stage. At the

panicle-formation stage, SVM also demonstrated better

performance, with an F1-score of 0.69 and an overall accuracy of

64%, compared to DT’s F1-score of 0.60 and RF’s F1-score of 0.62.

In the ripening stage, SVM maintained an F1-score of 0.56, but its

overall accuracy of 50% was lower than RF’s 57%. Across the whole

growth stage, SVM achieved an F1-score of 0.61 and an overall

accuracy of 59%, which was higher than DT’s 57%. These results

indicate that SVM is more effective for yield-level classification in

maize breeding, particularly at the vegetative stage, which is crucial

for early yield prediction.
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After selecting SVM for its superior classification performance,

all yield samples were classified into three levels. For each level, the

RF regression model at each growth stage was applied to predict

yield. Figure 5 shows the quantification results of Method 2. In the

calibration set, there was a good relationship between measured

yield and predicted yield (R2 = 0.91-0.96 and RMSE = 0.28-0.44 t/

ha), indicating robust performance in predicting yield using

Method 2 at each growth stage. Generally, the scatter

distributions at each growth stage were close to the 1:1 line. In

the validation set, the agreement between measured and predicted

yield at the vegetative stage was better than at other stages, with R2

and RMSE values of 0.42 and 0.89 t/ha, respectively. This result

indicated that yield simulation at the early growth stage was more

reasonable due to higher prediction accuracy of yield. However,

Method 2 in the validation set provided less accurate quantification

results than at the same growth stage in the calibration set.

Additionally, the regression models at each growth stage tended

to underestimate yield when low levels of measured yield occurred.
3.4 Method 1 vs. Method 2

Figure 6 illustrates the comparison of prediction results between

Method 1 and Method 2 across different growth stages. As shown in

the figure, Method 2 achieved significantly higher R2 values and

lower RMSE values compared to Method 1 during the vegetative

stage, indicating a marked improvement in prediction accuracy. For

instance, in the calibration set, Method 2 achieved R2 values of 0.91-
FIGURE 2

The framework for predicting maize yield in this study.
TABLE 4 The division of different growth stages for predicting
maize yield.

Specific
Stage

Dates of collecting
UAV-based data

Day after
sowing
(DAS)

Vegetative 9 July, 21 July, 27 July 68, 80, 86

Panicle-
formation

5 August, 14 August, 25 August 95, 104, 115

Ripening 4 September, 18 September, 28 September 125, 139, 149

All
9 July, 21 July, 27 July, 5 August, 14 August,

25 August, 4 September, 18 September,
28 September

68, 80, 86, 95,
104, 115, 125,

139, 149
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0.96 and RMSE values of 0.28-0.44 t/ha, demonstrating robust

performance. In the validation set, the agreement between

measured and predicted yield at the vegetative stage was better

than at other stages, with R2 and RMSE values of 0.42 and 0.89 t/ha,

respectively. These results highlight the effectiveness of the

classification-before-regression strategy in enhancing yield

prediction accuracies, particularly during the early growth stages.
4 Discussion

4.1 The optimal growth stage for
predicting maize yield

One of the primary objectives of this study was to investigate the

optimal growth stage for collecting UAV-based VIs suitable for

predicting yield in maize breeding. The UAV-based VIs data were

collected at the vegetative (DAS = 68, 80, and 86), panicle-formation

(DAS = 95, 104, and 115), and ripening (DAS = 125, 139, and 149)

stages. These growth stages are known as critical periods in maize

development and growth since various stresses during these times can

significantly impact yield. As shown in Supplementary Table 1 and

Figure 3, UAV-based VIs had strong correlations with yield during the

vegetative period across different maize cultivars. For example, certain

color indices such as ExR and NGI demonstrated strong correlations

with yield at early growth stages (e.g., DAS=68), highlighting their

potential as effective predictors of yield potential during this period.

The vegetative stage is considered the critical phase for maize

development as it is during this period that the plant’s biomass

accumulates rapidly, laying the foundation for subsequent growth

and yield formation. During this stage, the plant is highly sensitive to
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environmental stresses, and any adverse conditions can significantly

impact its growth and ultimately the yield. Therefore, early prediction

of yield during the vegetative stage can provide valuable information

for farmers to make timely decisions regarding field management

practices, such as fertilization and irrigation, to optimize yield. The

strong correlations between UAV-based VIs and yield during the

vegetative stage suggest that this period is an optimal time window

for predicting maize yield. This finding is consistent with previous

studies that have shown the potential of UAV-based VIs for yield

prediction during the early growth stages of crops. For instance, a study

by Yang et al. (2022) found that the optimal phenological phase for

maize yield prediction using high-frequency UAV remote sensing was

during the vegetative stage.

In addition, the relatively weak correlation between UAV-based

VIs and yield during the post-heading stage (Figure 3) is consistent

with the findings of Zheng et al. (2019). This is mainly because the

emergence of maize panicles alters canopy structure, significantly

influencing the relationship between UAV-based VIs and yield.

During the post-heading stage, maize genotypes consist of stems,

leaves, and panicles, with both leaves and panicles contributing to

canopy reflectance. Thus, VIs calculated frommaize canopy reflectance

exhibited varying correlations with yield. Furthermore, panicle traits

(such as number, length, and weight) vary across cultivars, influencing

canopy structure differently. Consequently, the correlation between VIs

and yield becomes more complex for different cultivars in the post-

heading stage. By contrast, as mentioned above, UAV-based VIs at the

vegetative stage demonstrated better performance in correlating with

yield. Therefore, it is more informative to predict yield in maize

breeding during the early growth stage.

However, the relationship between single-stage VIs and yield is still

affected by differences in maize cultivars. Although all maize cultivars
FIGURE 3

Pearson correlations between UAV-based VIs and yield in maize breeding across different growth periods. n.s., *, and ** represent ‘not significant’,
p<0.05, and p<0.01, respectively.
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were sown simultaneously, the maize in each plot was not at a

consistent phenological stage on the imaging and field sampling

days. Phenological variations can increase spatial variability.

Therefore, cultivars can significantly impact maize grain yield
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prediction using UAV-based data. Previous studies on rice (Duan

et al. 2021) and wheat (Dong et al. 2020) have investigated the influence

of cultivars on crop yield prediction. The varying morphology of crop

cultivars makes grain yield prediction more inaccurate and
FIGURE 4

Relationship between measured and predicted yields based on Method 1 at each growth stage: (A) Vegetative stage, (B) Panicle-formation stage,
(C) Ripening stage, and (D) Whole growth period. The scatterplots include results from both the calibration set and the validation set.
TABLE 5 The accuracy of yield-level classification by using the three machine learning methods at each growth stage.

Model

Vegetative Panicle-formation Ripening Whole

F1-
score

Overall
accuracy

F1-
score

Overall
accuracy

F1-
score

Overall
accuracy

F1-
score

Overall
accuracy

SVM 0.71 68% 0.69 64% 0.56 50% 0.61 59%

DT 0.40 43% 0.60 62% 0.45 48% 0.53 57%

RF 0.61 62% 0.62 62% 0.55 57% 0.43 43%
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complicated. Therefore, the phenological influence of different cultivars

should be considered in further analysis.
4.2 Improved RF regression based on
SVM classification

In this study, the performance of the two quantification

methods (Method 1 and Method 2) was evaluated using R² and

RMSE, with the detailed results presented in Figure 6. As discussed,

Method 2 outperformed Method 1, particularly during the

vegetative and panicle-formation stages. This improvement can

be attributed to the higher classification accuracy achieved for

each yield class in maize breeding during the pre-heading period

(Table 5). The categorization into yield classes reduced the

uncertainty in yield predictions by narrowing the yield range

within each class, thereby enhancing the model’s performance

(Figure 7).
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Considering the large number of maize genotypes in breeding

programs, which may number in the hundreds, it is crucial to explore

how classification strategies impact yield prediction models. In the case

of Method 2, the 72 maize yield samples were categorized into three

types using the optimal classifier method (SVM), with the detailed

classification results presented in Table 5. Among the four growth

periods, the vegetative stage provided the best classification results, with

overall accuracies of 68% for the validation set. Scatter plot analysis

showed that the improvement in prediction accuracy with Method 2

was particularly significant for medium and high yield levels. These

findings align with those of Wang et al. (2014), who demonstrated that

models built on classified sample sets performed better than those

using the full sample set. This suggests that SVM classification can

enhance RF regression performance by improving the accuracy of

models that categorize maize genotypes into distinct yield levels.

However, the lower validation accuracies compared to calibration

accuracies point to several challenges. First, the use of a single year’s

data resulted in a limited sample size, which may have led to
FIGURE 5

Relationship between measured and predicted yields based on Method 2 at each growth stage: (A) Vegetative stage, (B) Panicle-formation stage,
(C) Ripening stage, and (D) Whole growth period. The scatterplots include results from both the calibration set and the validation set.
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overfitting during the calibration stage. Overfitting occurs when a

machine learning model learns the training data too precisely,

capturing noise and random fluctuations rather than the

underlying patterns, which negatively affects its performance on

unseen data, as observed in the validation set. Second, the

significant phenotypic variation among maize cultivars resulted in

different phenological stages on the imaging and field sampling days.

This increased spatial variability complicated the relationship

between VIs and yield, making it more difficult to characterize

yield accurately using color features. Furthermore, while Method 2

shows potential for improving yield predictions in maize breeding, it
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may encounter limitations in large-scale applications due to the

variability in environmental conditions and genetic traits. For

instance, UAV-based data collection across diverse ecological

regions may provide more reliable results and enhance model

generalizability. Thus, expanding the sample size and incorporating

data from various ecological regions will be critical for improving the

robustness and accuracy of the model. Future research should focus

on these aspects, incorporating larger, more diverse datasets and

addressing overfitting risks through techniques such as cross-

validation, the explainable artificial intelligence (XAI) technique or

data augmentation (Naga Srinivasu et al., 2024).
FIGURE 6

The comparison of the yield prediction accuracy by using Method 1 and Method 2 at each growth stage.
FIGURE 7

Yield maps in the maize breeding; (A) measured maize yield, (B, C) predicted yield from the Method 1 and Method 2 at the vegetative stage in the
calibration and validation sets, respectively.
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In summary, Method 2 holds promise for enhancing yield

prediction in maize breeding programs by improving classification

and reducing uncertainty in predictions. However, for broader

applicability, its effectiveness needs to be validated through further

research with larger sample sizes, diverse environmental conditions,

and comprehensive phenological data. The integration of

phenological and environmental variables will be essential for

improving the robustness and generalizability of the models, as also

suggested by studies such as those by Guo et al. (2023) and Guo et al.

(2021), which highlight the need for multidimensional data

integration in predictive modeling for agriculture.
5 Conclusions

This study demonstrates the potential of UAV-based imagery in

predicting grain yield for maize breeding. Multi-temporal UAV images

were collected from a field experiment, and various VIs were calculated

from these images to predict maize yield at four critical growth stages.

The results show that the accuracy of yield prediction is higher when

using UAV-based images from the early growth stages. A significant

improvement in prediction accuracy was achieved by applying a

classification-before-regression strategy, where the raw dataset was

first grouped into three yield classes using the SVM method. RF

regression models were then applied to predict yield for each class

separately. This approach reduced prediction errors, with RMSE values

of 0.28 t/ha in the calibration set and 0.89 t/ha in the validation set. The

classification-before-regression strategy outperformed traditional

regression models, demonstrating the potential of machine learning

techniques in precision agriculture.

In summary, this work highlights the effectiveness of UAV-based

imaging systems as a tool for gathering field-scale phenotypic data in

maize breeding programs. By integrating RF regression models with

SVM classification, this study offers a promising approach to predicting

within-field yield variations. These findings contribute to the growing

body of research in precision agriculture by showing that machine

learning techniques can significantly improve yield prediction

accuracy. For future research, the proposed methodology should be

tested under varying climatic zones, to assess its robustness and

generalizability. Furthermore, future studies could explore the use of

UAV-based remote sensing data for other crops, as well as the time-

dynamic information provided by multi-temporal VIs, which could

further enhance prediction accuracy.
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