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Vegetative indices (VIs) are widely used in high-throughput phenotyping (HTP) for

the assessment of plant growth conditions; however, a range of VIs among diverse

soybeans is still an unexplored research area. For this reason, we investigated a range

of four major VIs: normalized difference vegetation index (NDVI), photochemical

reflectance index (PRI), anthocyanin reflectance index (ARI), and change to

carotenoid reflectance index (CRI) in diverse soybean accessions. Furthermore, we

ensured the correct positioning of the region of interest (ROI) on the soybean leaf

and clarified the effect of choosing different ROI sizes. We also developed a Python

algorithm for ROI selection and automatic VIs calculation. According to our results,

each VI showed diverse ranges (NDVI: 0.60–0.84, PRI: −0.03 to 0.05, ARI: −0.84 to

0.85, CRI: 2.78–9.78) in two different growth stages. The size of pixels in ROI

selection did not show any significant difference. In contrast, the shaded part and the

petiole part had significant differences compared with the non-shaded and tip, side,

and center of the leaf, respectively. In the case of the Python algorithm, algorithm-

derived VIs showed a high correlation with the ENVI software-derived value: NDVI

−0.97, PRI −0.96, ARI −0.98, and CRI −0.99. Moreover, the average error was

detected to be less than 2.5% in all these VIs than in ENVI.
KEYWORDS

vegetative indices (VIs), hyperspectral imaging, normalized difference vegetation index
(NDVI), photochemical reflectance index (PRI), anthocyanin reflectance index (ARI)
1 Introduction

Plant phenotyping involves the process of acquiring phenotypic data (observable traits

or characteristics of any organism) throughout the developmental stages of the crop plant

at different scales with analysis of multidimensional phenotypes in an accurate and precise

manner (Yang et al., 2020). The advancement of analytical techniques, reduced data
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collection durations, increased automation, and the ability to

acquire large amounts of data with a high level of precision and

thoroughness have led to the emergence of the plant phenotyping

technique known as high-throughput phenotyping (HTP) (Kim

et al., 2020b). At present, HTP based on imaging technique has been

a topic of research interest, which has led to the acquisition of data

based on image sensors more accurately, non-invasively, and

automatically; thus, it has been extensively utilized for the

assessment of the quantitative and qualitative characteristics in

crops (Li et al., 2014, 2018; Barboza et al., 2023). Various imaging

techniques like red, green, and blue (RGB) imaging/visible imaging,

fluorescence imaging, thermal imaging, tomography (magnetic

resonance imaging, positron emission tomography, computed

tomography scanning), and spectral imaging have been widely

used for phenotyping of different plants (Fiorani and Schurr,

2013; Omari et al., 2020). Among them, the hyperspectral

imaging (HSI) system has the capacity to extract both structural

and physiological data from plants concurrently and has the ability

to effectively, accurately, and easily capture the phenotypic variation

of the biotic and abiotic stress in plants both in field and controlled

conditions (Neilson et al., 2015; Mishra et al., 2017; Sarić

et al., 2022).

The main way to utilize the valuable information obtained from

HSI analysis is by computing vegetation indices (VIs), which are

derived by comparing the reflectance values of specific wavelength

bands and are selected based on their sensitivity to various vegetation

characteristics (Sytar et al., 2017; Kang et al., 2019). VIs derived from

the calculation of these key wavelength relationships can be used as a

tool to monitor and evaluate changes in the physiological properties

and overall health of plants throughout their life cycle and provide

both quantitative and qualitative data for the plant cover and growth

pattern (Thenkabail et al., 2000). The study utilized ENVI V.5.5.3

software (Research System, Inc., USA) to measure vegetation indices

(VIs), which were subsequently categorized into seven distinct groups:

broadband greenness, narrowband greenness, canopy nitrogen,

canopy water content, dry or senescent carbon, leaf pigments, and

light use efficiency (https://www.nv5geospatialsoftware.com/docs/

BackgroundVegetationIndices.html, accessed on 29 April 2024).

Four different VIs used in this study fal l under the

abovementioned categories. Normalized difference vegetation

index (NDVI) is related to the broadband greenness of the leaf,

photochemical reflectance index (PRI) is related to light efficiency,

and anthocyanin reflectance index (ARI) and carotenoid reflectance

index (CRI) are related to leaf pigments. NDVI measures the

greenness of the vegetation and plant canopy properties like leaf

area index and light interception (Pettorelli, 2013; Pineda et al.,

2022). PRI measures changes in the reflectance of light by leaves,

particularly in the wavelength range sensitive to carotenoid

pigments like xanthophylls, and can be used to detect

physiological stress in plants (Peñuelas et al., 1995; Ryu et al.,

2020). ARI indicates a correlation with anthocyanin content, and

the higher the concentration of anthocyanin in leaves, the more they

are associated with stressed plants (Gitelson et al., 2001; Abdulridha

et al., 2019), and CRI has a correlation with carotenoid content

(Gitelson et al., 2002). VIs are essential tools to measure the plant

growth pattern and the change in biophysical and phenological
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characteristics of the plant over a period of time (Huete et al., 2002).

VIs, which are derived from a wide range of spectrum data, are

extensively used in plant breeding and precision agriculture via

HTP techniques. VIs are used as major parameters for the selection

of waterlogging-tolerant and susceptible soybean accessions (Kim

et al., 2021), assessment of bacterial disease in soybean (Then et al.,

2023), forecasting the yield of maize and soybean (Bolton and

Friedl, 2013), quantification of crop characteristics (Kokhan and

Vostokov, 2020), predicting the chlorophyll content based on

machine learning (Narmilan et al., 2022), and for the early

detection of plant disease (Rumpf et al., 2009).

In plants, spectral characteristics vary significantly in leaves,

plant individuals, canopies, and colonies. Hence, there is a need

for appropriate hyperspectral image analysis techniques that

can represent and capture these diverse structural features

(Kim et al., 2020a). In spite of the increasing demand for utilizing

HSI, related research has an unidentified research area. In this

research, we selected the appropriate pixel size for establishing a

region of interest (ROI), particularly concerning VIs within the

same leaf when annotating different leaf positions. Additionally, we

created a Python algorithm to automatically define the ROI in such

a way that the ROI falls on the center of the leaf with no shaded part

to reduce ROI annotation and VI calculation time.
2 Methodology

2.1 Plant material

The entire experiment was conducted at Kyungpook National

University (Daegu, South Korea). To observe the variation in

vegetative indices (VIs) in soybeans, 258 accessions were

randomly selected from the Korean cultivated soybean core

collection consisting of 430 accessions (Jeong et al., 2019). Among

the cultivated soybeans selected, five germplasms: Sehwa, Hosim 2,

Pungsannamul, Seonpung, and Williams 82 were further used as

check varieties. The 258 accessions were planted in greenhouse

conditions with temperatures ranging from a maximum of 30°C to

a minimum of 20°C humidity maintained at 75% with a variation of

± 10%, and a day length of around 14h. The check varieties were

also grown in plant growth chambers with growth conditions set up

as day and night lengths as 14 and 10h with temperatures of 26°C

and 23°C, respectively. The humidity was set to 75% ± 5%. In both

conditions, horticulture soil was used as soil material consisting of

cocopeat 68%, pittMoss 14.73%, perlite 7%, zeolite 4%, rough stone

6%, and pH modifier 0.005. All the accessions were planted in

plastic pots (12 cm × 10.5 cm) consisting of three replications and a

single pot designated as one replication.
2.2 Hyperspectral image acquisition and
image processing

Spectral images were taken using a handheld portable

hyperspectral camera, Specim IQ (Oulu, Finland, model: WL18

MODGB, firmware version: 2019.05.31.1) with a 99% barium sulfate
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white reference and based on Specim’s push-broom technology. This

spectral camera captures images ranging from 400 to 1000 nm

wavelength, which is further divided into 204 bands. The captured

image is of 512 × 512 size. The spectral resolution full-width half

maximum is 7 nm, and spatial sampling is 512 pix. The HSI was

acquired under two halogen lamps (placed at approximately 45° angle

to the plant) for the check varieties grown in the chamber, and the

other 258 accession’s HSI was acquired in a normal natural lighting

condition. The plant-to-lens distance was kept at 100 ± 10 cm and

maintained at almost a 90° angle during the experiment. A white

reference was used for the calibration and to maintain the focus until

the target was highlighted with the maximum amount of orange-

colored indicators. The calibration was done on a regular basis during

the experiment for more accurate data collection. This camera has both

the hyperspectral sensor and the RGB sensor, which gives both the

spectral image and the RGB image of the plant. During the entire

experiment, the images of the plants grown in the greenhouse were

captured early in themorning, around 8 a.m. to 9 a.m. Similarly, for the

growth chamber-grown check varieties, the images were captured

during the daytime under artificial halogen light conditions. As

mentioned earlier, ENVI V.5.5.3 software (Research System, Inc.,

Redlands, California, USA) was used to process the spectral images

obtained. After acquiring the HSI, they were imported into the

software, and ROI was manually defined in individual images.
2.3 Calculation of VIs

This study analyzed four different types of VIs. These VIs were

selected in such a way that we can gain information about broadband

greenness, leaf pigments, and light efficiency and fall under the range

of our spectral wavelength, that is, from 400 to 1000 nm. These VIs

use specific combinations of different wavelengths, as listed in

Table 1. After selecting ROI from the individual plants, the band

math function in ENVI was used to write these formulas. The specific

wavelength was selected every time for individual ROI to calculate the

specific VIs. The statistics for ROI were obtained, and the mean value

of each statistic was kept as the value of VIs for each of the ROI

selected. Thus, this process of manual selection of ROI in individual

plants and then again specifying the wavelength for each of the ROI,

made obtaining VIs tedious and time consuming.
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2.4 Comparison of VIs based on ROI size
and ROI position in leaf

To compare the differences within VIs among different pixel

sizes of the ROI and the position of the ROI within the same leaf,

the HSI of the check varieties were analyzed. To compare the VIs

based on ROI position, the leaf was divided into four different

regions: center, side, tip, and petiole (Figure 1A). We also compared

the differences in VIs in the shaded region of the leaf and the non-

shaded region. Likewise, to check the effect of ROI size, we

annotated the leaf with four different pixel sizes: 1 × 1, 2 × 2, 5 ×

5, and 10 × 10 (Figure 1B). The comparison was made with the

whole leaf annotated in these cases.
2.5 Comparison of VIs variation in
cultivated soybean

To compare the variation of VIs among cultivated soybean

germplasms, 258 accessions were used. In soybeans, the vegetative

growth period is divided into different stages depending on the

number of trifoliate leaves and nodes in the main stem. When the

cotyledon emerges from the soil, it is termed the emergence stage

(VE); when unifoliate leaves unfold completely, the stage is termed

the VC stage; when the first trifoliate fully opens, it is the first

trifoliate stage (V1); when the second trifoliate unfolds fully and

plants have three nodes, it is the second trifoliate stage (V2); when

the third trifoliate unfolds fully and plants have four nodes, it is the

third trifoliate stage (V3); and so on (McWilliams et al., 1999).

Similarly, the reproductive growth period is also divided into

different growth stages. In this study, HSI was obtained outdoors

when each genotype completely reached the VC and V1 stages.

Subsequently, NDVI, PRI, ARI, and CRI were calculated using the

methods described in Table 1.
2.6 Automatic ROI selection and
VIs calculation

As mentioned earlier, the manual selection of ROI and specific

wavelengths associated with specific VIs was tedious. Thus, we

employed a Python algorithm to select ROI and calculate VIs

automatically. Python 3.11.4 was used as the coding language,

and Spyder IDE 5.5.1 was used as the working environment. The

methodology of ROI extraction and VIs calculation has been

illustrated in Figure 2. The process is divided into two major

parts: the first part includes the processing of the RGB image and

the second part includes the processing of the spectral image. After

importing the RGB image, we defined the upper and lower

greenness values for the image (Figure 2A). The values

represented in defining the upper and the lower greenness level

represent the hue, saturation, and value (HSV). The hue indicates

the color type, saturation measures the intensity, and value indicates

the brightness level. As the shady parts in the leaves have higher

intensities and darker than the leaf part with normal lightning
TABLE 1 Vegetative indices (VIs) used in the study.

Vegetation indices Formula References

Normalized difference
vegetative index (NDVI)

(R860nm − R650nm)
(R860nm + R650nm)

(Rouse Jr. et al., 1974)

Photochemical reflectance
index (PRI)

(R531nm − R570nm)
(R531nm + R570nm)

(Peñuelas et al., 1995)

Anthocyanin reflectance
index (ARI)

1
R550nm

−
1

R700nm
(Gitelson et al., 2001)

Carotenoid reflectance
index (CRI)

1
R510nm

−
1

R550nm
(Gitelson et al., 2002)
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conditions, the adjustment in these HSV removes the shady part as

well as the background. This generated the leaf image only with

normal lighting condition as shown in Figure 2B. Furthermore, a

manual method of ROI optimization has also been provided in the

study where the users can select their own ROI part. This will allow

the user to create their own ROI of varying size so that ROI can be

adjusted based on the leaf image and user desire. After the removal,

the image is then thresholded using two different thresholding

methods; Otsu’s threshold and triangle threshold. Then, the

thresholded area having the highest contour area was selected

(Figure 2C). We then found the midpoint of this highest contour

area and created an ROI on the midpoint. The ROI plotted is then

displayed, and the coordinates of the ROI are extracted (Figure 2D).

If substantial shaded region are present on the leaf and ROI falls on
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this shaded region, the size of the ROI can be minimized or

adjustment in defining the HSV value can be done. This ensures

that the ROI is placed on the region with non-shaded leaf part. The

next part begins after the calculation of ROI coordinates, where the

work is done in the HSI image. The HSI image is first imported and

displayed the image using any one of the bands (as 204 bands are

prevalent, any one band can be used to display the spectral image).

The ROI coordinates, which were extracted from the RGB image,

are then plotted in the spectral image. It must be sure that the image

size and orientation in the RGB image match the orientation and

image size of the spectral image. Otherwise, the ROI coordinates

extracted from the RGB image will not match the same position in

the spectral image. The mean spectrum of every band from the

plotted ROI is then calculated, and the graph of the mean spectrum
FIGURE 2

Extraction of region of interest (ROI) and calculation of vegetative indices. (A) Whole red, green, and blue (RGB) image, (B) image after removal of
shaded and pale parts, (C) thresholded image, (D) RGB image with ROI, and (E) spectral image processing.
FIGURE 1

Position of regions of interest (ROIs) in different leaf parts and the comparison of ROI size. (A) ROIs in different parts of the same leaf and
(B) different sizes of ROIs.
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is plotted (Figure 2E). The formula of each of the VIs is written, and

the VIs are plotted along with the value as results (Figure 2E). We

have provided the source code used during the in (https://

github.com/AG9843/ROI-optimization-and-VIs-calculation.git).

Apart from automatic ROI selection, manual selection of ROI to

calculate the VIs for images containing multiple plants has also been

provided. A detailed flowchart of the method is given in

Supplementary Figure S1. Twenty plants belonging to different

growth stages were randomly selected. To confirm the algorithm’s

results, the same part of the leaf identified by the automatically

generated ROI was manually annotated using ENVI software

(Supplementary Figure S2). The VIs from that ROI were then

calculated. Linear regression, along with the correlation coefficient

(R2) value, was figured out for the comparison.
2.7 Statistical analysis

Statistical analysis was conducted using SAS v9.4 (SAS Institute,

Cary, NC, USA, 2013). In an experiment comparing the differences

in VIs between the shaded area of the leaf and the part receiving

natural light, analysis of variance (ANOVA) with PROC GLM was

utilized. Subsequently, multiple comparison analysis was conducted

using the least significant difference (LSD) method. For the study on

finding the appropriate pixel size and ROI position in the leaf and

the exploration of VI variations, a Student’s t-test was conducted

using PROC GLM. The analysis of Pearson’s correlation between

the four VIs was conducted using RStudio. The linear regression

within 95% confidence interval and 95% prediction interval was
Frontiers in Plant Science 05
illustrated through RStudio. For the average error percentage

between ENVI-derived VIs and algorithm-derived VIs, the

individual error percentage was calculated, and this individual

error % was then averaged (Equation 1)).

Individual error  % =
A − B
A

�
�
�
�

�
�
�
�
� 100% (1)

Where “A” is the ENVI-derived VI value and “B” is the

algorithm-derived VI value.
3 Results

3.1 Variation of VIs among the accessions

A wide range of variation was observed within the different

accessions of soybeans in terms of all the VIs (Table 2). In the VC

stage, the NDVI value ranged from 0.68 to 0.84 with an average of

0.77, the PRI value ranged from 0.00 to −0.05 with an average of

0.02, the ARI value ranged from −0.84 to 0.85 with an average of

−0.27, and the CRI value ranged from 2.79 to 9.78 with an average

of 5.00. Among the VIs, PRI had the least variation observed within

the accessions, with standard deviation (SD) being the least 0.01,

and CRI had the highest variation among the accessions, having the

highest SD of 1.06. A similar result in variation of VIs was observed

in the V1 stage as well. The NDVI value here ranged from 0.60 to

0.83 with an average of 0.75, PRI from −0.03 to 0.04 with an average

of 0.01, ARI from −0.74 to 0.84 with an average of −0.11 and CRI

from 2.78 to 8.76 with an average of 4.93. The CRI here also showed
TABLE 2 Variation of VIs in soybean accessions among VC and V1 stage.

Stages Accessions Vegetation indices

NDVI PRI ARI CRI

VC stage

Range (n = 258) 0.68–0.84 0.00–0.05 −0.84 to 0.85 2.79–9.78

Mean ± SD (n = 258) 0.77 ± 0.03 0.02 ± 0.01 −0.27 ± 0.29 5.00 ± 1.06

Williams 82 (check) 0.78 0.03 −0.63 4.22

Sehwa (check) 0.77 0.03 −0.46 3.44

Hosim2 (check) 0.79 0.04 −0.58 4.22

Seonpung (check) 0.78 0.04 −0.64 4.16

Pungsannamul (check) 0.77 0.03 −0.47 4.93

V1 stage

Range (n = 258) 0.60–0.83 −0.03 to 0.04 −0.74 to 0.84 2.78–8.76

Mean ± SD (n = 258) 0.75 ± 0.04 0.01 ± 0.01 −0.11 ± 0.28 4.93 ± 1.04

Williams 82 (check) 0.78 0.01 0.01 5.45

Sehwa (check) 0.76 0.02 −0.11 5

Hosim2 (check) 0.76 0.02 −0.1 5.24

Seonpung (check) 0.74 0.02 0.03 5.13

Pungsannamul (check) 0.76 0.02 −0.02 6.44

T-test between VC and V1 stage *** *** *** NS
SD, standard deviation; n, number of accessions; NDVI, normalized difference vegetative index; PRI, photochemical reflectance index; ARI, anthocyanin reflectance index; CRI, carotenoid
reflectance index. ***indicates significance at p ≤ 0.001, and NS indicates non-significant.
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the highest variation in the value with an SD of 1.04, and PRI had

the least variation with an SD of 0.01. Student’s t-test revealed that

within the VC stage and V1 stage, there was a significant difference

(p < 0.05) between NDVI, PRI, and ARI. However, CRI did not

show such difference when the comparison was made between these

two stages. These findings revealed that the VIs are cultivar-

dependent traits. There was a wide variation in VIs among

different accessions of soybeans.

3.2 Comparison of VIs based on ROI size
and ROI position in leaf

3.2.1 Comparison of VIs based on ROI size
The effect on the VIs when there was variation in the pixel size

of the ROI is illustrated in Figure 3. It was observed that for all the

VIs calculated: NDVI (Figure 3A), PRI (Figure 3B), ARI

(Figure 3C), and CRI (Figure 3D), there were no significant

differences (p < 0.05) between the ROI size. All the VIs were

statistically at par when compared among the 1 × 1, 2 × 2, 5 × 5,

and 10 × 10 pixel sizes with whole leaves annotated. However, it was

also noted that with the increase in the size of ROI, the SD

decreased, which means that choosing a larger pixel size would

minimize the error difference within the replication.
Frontiers in Plant Science 06
3.2.2 Comparison of VIs based on ROI position
Based on the ROI position on the leaf, we compared two

regions; first, we compared VIs when ROIs were on different

positions on the same leaf, that is, tip, center, petiole, and side

(Figure 4), and second, we compared VIs among shaded and non-

shaded part of the leaf (Figure 5). No significant difference (p <

0.05) was observed in all four VIs when a comparison was made

between the tip, center, and side of the leaf with the whole leaf

annotated. However, the ROI selection on the petiole part had

significantly lower (p < 0.05) value of NDVI (Figure 4A), PRI

(Figure 4B), and CRI (Figure 4D) and higher value of ARI

(Figure 4C) compared with whole leaf annotation. On average,

NDVI decreased significantly by 2.6%, PRI by 12.4%, and CRI by

12.7%, and the ARI increased significantly by 17.6% when the

petiole region was annotated compared with the whole leaf.

Similarly, upon investigating the difference in VIs in the shaded

and non-shaded part compared with the whole leaf, it was found

that the shaded part showed significantly higher (p < 0.05) NDVI

(Figure 5A), PRI (Figure 5B), and CRI (Figure 5D) and significantly

lower (p < 0.05) ARI (Figure 5C) when compared to both the non-

shaded region and whole leaf. In the shaded region, on average, the

NDVI value increased significantly by 2.7%, PRI by 56.5%, CRI by

49.8%, and ARI decreased significantly by 74.1%.
FIGURE 3

Variation of VIs based on the pixel size of ROI. (A) Variation in NDVI, (B) variation in PRI, (C) variation in ARI, and (D) variation in CRI.
(NS, non-significant at p < 0.05).
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3.3 Development of automatic
ROI selection

The results indicated that there was no variation in VIs

regardless of the size of the selected ROI. Similarly, the position

of the ROI on the leaf, excluding the shaded and petiole regions, did

not significantly affect the VIs. During our study of the variation of

VIs on these accessions, we found that the manual selection of ROI

and calculation of VIs selecting specific wavebands was tedious and

time consuming. So, based on these findings, a Python algorithm

was created to select ROI automatically. It was ensured that the ROI

selected through the algorithm fell on the center of the leaf. By

defining the greenness value, the shaded region (Figure 2B) was

removed and the center of the largest leaf area was chosen for

annotating the ROI. Furthermore, VIs from these selected ROIs

were also calculated. As mentioned earlier two different

thresholding methods were used for segmenting the image.

However, both of these thresholding methods gave the same

qualitative result (Supplementary Figure S3). The ROI coordinates

value (203, 213, 268, and 278) was also obtained to be the same for

this representative image, indicating that these thresholding

methods did not influence much. The image obtained after the

removal of shady and pale parts (Figure 2B) has only two-color

constraints: black or green, so a simple thresholding method can

easily differentiate the image segmentation.
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3.4 Demonstration of the algorithm
with example

A demonstration of the algorithm is presented in

Supplementary Video S1. The initial step involves inputting the

RGB image location and the spectral file location in the code. Once

the program is executed, it first displays the image with the defined

greenness level, followed by the thresholded image with the highest

contour area. Finally, it shows the image with the ROI. This ROI is

then used to calculate the VIs. Finally, in the plot window and result

window, the figure spectral image, the graph of the mean spectrum,

and figures of the selected VIs are displayed along with the value of

the VIs of the selected ROI.
3.5 Comparison of ENVI-derived VIs with
algorithm-derived VIs

To compare the results obtained from the automated ROI

selection and VIs calculation with ENVI-derived values, we

illustrated a linear regression plot within a 95% confidence

interval and 95% prediction interval along with a correlation

coefficient (R2) (Figure 6). The values for all the VIs were

concentrated within the 95% confidence interval, meaning high

precision of the estimated values through the algorithm. The
FIGURE 4

Variation of VIs based on ROI position. (A) Variation in NDVI, (B) variation in PRI, (C) variation in ARI, and (D) variation in CRI. (NS, non-significant at p
< 0.05 and *** = significant at p < 0.0001).
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concentrated values within these intervals also suggest low

measurement error and a strong relation between ENVI-derived

values and algorithm-derived values. Furthermore, a very high R2

value > 0.95 was observed in all the VIs (Figures 6A-D), the lowest

being 0.96 for PRI (Figure 6B) and the highest being 0.99 for CRI

(Figure 6D). Likewise, the slope of the line in all instances was near

1. It was observed that most of the data points of the VIs were

closely fitted within the regression line. The 95% confidence interval

(green lines) is the range in which the mean value of the algorithm-

derived VIs is expected to fall for a given software-derived value

(ENVI). The relatively narrow spacing of the confidence interval

also suggests a good conformity of the algorithm-derived values.

Similarly, the 95% prediction interval (red lines) represents the

range in which the VIs are expected to fall within a 95% certainty.

This interval is wider than the confidence interval since it provides a

range within which 95% of the new observation will fall. However,

there are some outliers which represents the cases where the

algorithm-derived VIs slightly deviates from the ENVI-derived

VIs. This might be due to the fact that the ROI position in

algorithm and ENVI might not be exactly on the same place

which might have resulted in slight deviation of the VIs values.

Noisy data or quality of data might also sometime cause the

deviation of the VIs among the algorithm and ENVI calculated

VIs. All these results suggest a good conformity between algorithm-
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derived VIs and ENVI-derived VIs. For an in-depth analysis of the

VIs, we have provided the ENVI-derived and algorithm-derived VIs

for 20 representative images in Supplementary Table S1.

To get more insight into the ENVI-derived VIs and algorithm-

derived VIs, we calculated the average error percentage (Table 3). It

was observed that very low error percentages were observed among

all the calculated VIs. The errors for all measurements were below

2.5%, with NDVI having the lowest error at 0.54% and ARI having

the highest error at 2.12%. Likewise, we also compared the average

time taken for the analysis of a single image in ENVI software and

through the algorithm (Supplementary Table S2). A significant

decrease in time for the analysis was noted. In ENVI, it took us

128 ± 6 s to annotate and calculate the four VIs, whereas this time

was significantly reduced to 12 ± 1 s for the same analysis through

the algorithm. The algorithm-based analysis was more than ten

times faster than the manual ROI selection and band selection for

VIs in ENVI.
4 Discussions

VIs are broadly used as a major parameter for the qualitative

and quantitative assessment of the crops. However, the variation of

VIs among different accessions of legumes is still an unresearched
FIGURE 5

Variation of VIs based on shadowed and non-shadowed regions. (A) Variation in NDVI, (B) variation in PRI, (C) variation in ARI, and (D) variation
in CRI.
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area. In this study, we explored variations of VIs in diverse soybean

accessions, focusing on aspects like leaf greenness, light use

efficiency, and leaf pigments. A total of 258 cultivated soybean

accessions were evaluated based on four major VIs: NDVI, PRI,

ARI, and CRI. In the VC stage, the variation in NDVI ranged from

0.68 to 0.84, PRI from 0.00 to 0.05, ARI from −0.84 to 0.85, and CRI

from 2.79 to 9.78. Similar variation was observed in the V1 stage as

well, where NDVI varied from 0.60 to 0.83, PRI from −0.03 to 0.04,

ARI from −0.74 to 0.84, and CRI from 2.78 to 8.76. A significant

difference among these VIs was also observed between these two

growth stages, except for CRI. The variation of VIs among the

different accessions of the crop can be used to predict the crop

growth condition and vigor and generate the yield map based on the

variation in the critical growth stage of the crop (Hatfield and

Prueger, 2010; Li et al., 2023). VI is derived as a mathematical

calculation combining the different wavelengths from the

reflectance, which has led to quantifying different agronomic

traits like nutrient content, stress condition, growth pattern, and

overall plant health (Hatfield et al., 2008; Tayade et al., 2022). It was

found that VIs have different patterns of variations among different

crops due to their differences in morphology, canopy structure, and

photosynthetic pigment concentration. It was reported that the VIs

varies depending on the type of crop (Gitelson et al., 2003),
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genotype (Cabrera-Bosquet et al., 2011), growth stage (Farias

et al., 2023), biotic (Römer et al., 2012), and abiotic (Mahlein

et al., 2013) stress conditions. In a research carried out by

Hatfield and Prueger (2010), it was observed that among the four

selected crops (corn, soybean, wheat, and canola), variations in VIs

were identified in corn and soybean over different growth seasons,

and these differences were attributed to the specific growth stages

and VIs of each crop. The study also found that crops with denser

canopies and higher biomass tend to increase VIs like NDVI. The

variation observed within the soybean accessions could be an

essential tool for the genomic selection of soybean cultivars. A

study by Rutkoski et al. (2016) used 557 lines of wheat for the

selection of high-yielding cultivars based on VIs along with canopy

temperature. Another study by Ranđelović et al. (2020) used a

variation of VIs in 66 soybean genotypes as predictors for a machine

learning model to predict the planting density in soybean.

Accurate calculation of VIs depends on the precise selection of

the ROI within a leaf. Similarly, when measuring the VIs, a

consistent standard is required because differences in the spectral

spectrum and characteristics occur depending on the spatial scale

and method of the image acquisition process (Ryu et al., 2018).

Based on HSI, our previous research was focused on the evaluation

of bacterial disease prediction (Lay et al., 2023), assessment of

disease infection (Then et al., 2023), selection of waterlogging

tolerant and susceptible soybean cultivars (Kim et al., 2021), and

comparison of bentazone-tolerant and susceptible soybean cultivars

(Ali et al., 2022) but there persisted a degree of ambiguity regarding

the selection of ROI in the spectral images obtained. We were

uncertain about selecting the appropriate pixel size when

establishing an ROI, particularly concerning VIs within the same
TABLE 3 Average error for ENVI-derived vegetative indices (VIs)
compared with algorithm-derived VIs.

VIs NDVI PRI ARI CRI

Error % 0.54% 1.87% 2.12% 1.77%
ENVI-derived NDVI ENVI-derived PRI

ENVI-derived ARI ENVI-derived CRI
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FIGURE 6

Regression plot for ENVI-derived vegetative indices (VIs) with algorithm-derived VIs. (A) Plot for NDVI, (B) plot for PRI, (C) plot for ARI, and (D) plot
for CRI.
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leaf when annotating different leaf positions. Furthermore, during

our study, we also found that the process of ROI selection and

calculation of VIs in ENVI software was time consuming and

tedious. The user needs to select the ROI in the leaf manually,

and for the calculation of the VIs every time, the wavelength

associated with the particular VIs needs to be selected manually.

As HTP aims at faster and more accurate data acquisition methods,

we were lagging due to this tedious wavelength and ROI selection

process in each image. Thus, we created a Python algorithm to

automatically define the ROI in such a way that the ROI falls on the

center of the leaf with no shaded part. Likewise, if the user finds the

automatic selection of ROI inconvenient, they can manually select

their own ROI also, and the calculation of VIs is then done

automatically without needing to select a specific wavelength

every time.

In our study, a significant increase in VIs was observed for

shaded regions. Rasmussen et al. (2016) found a similar difference

in VIs value between the brightly captured part and dark acquired

image. Zhang et al. (2015) findings indicate that shadow has an

impact on individual narrow bands of a VI and influences the

vegetation parameters. Leaves in these shaded regions have greater

reflectance in the red and blue regions, where pigments absorb light,

resulting in higher VIs (Zhang et al., 2015; Hallik et al., 2017). HSI

has a high spatial resolution, with many pixels per leaf (Tayade

et al., 2022); when VIs are calculated in HSI, they are based on the

spectral reflectance properties of the vegetation, not the spatial pixel

size, which might be the reason for the non-significant difference in

VIs values based on the ROI size. The VIs are calculated based on

the spectral properties of the photosynthetically active vegetation

components (https://www.nv5geospatialsoftware.com/docs/

VegetationIndices.html, accessed on 9 May 2024). The petiole of

the plant has a lower amount of photosynthetic pigments like

chlorophyll content, lower chloroplast number, and decreased

ratio of chlorophyll a/b compared with whole leaf (Sun et al.,

2021). Thus, with a difference in photosynthetically active

vegetation components, the VIs calculated in the petiole region

showed a significant difference with the VIs on the leaf. Likewise, we

created a Python algorithm for automatic ROI selection and VIs

calculation. A significant reduction in time for VIs calculation time

was observed in algorithm-based analysis per image. As ROI

selection is done automatically and the formula for each VIs is

already written, we just need to import the reflectance file and RGB

image and run the algorithm (Supplementary Figure S4).

Hyperspectral imaging in field conditions can be challenging due

to uneven lighting and the presence of many plants. The field

environment has many shadows and the leaf angle also differs in

such case (Liu et al., 2020a). To address the issue of dynamic field

lighting, which causes significant changes in shaded and non-

shaded regions of plants, we provided users with an option to

define their own ROI. This allows users to optimize the ROIs

themselves and extract VIs based on their selected ROIs. This

approach not only addresses lighting issues (shaded and non-

shaded regions) but also lets users choose their target plants in

the field. Furthermore, the ROI optimized by the users themselves

can be used to extract the VIs of matured leaves also or any other

stage of leaves. Apart from leaves, VIs of any other plant part can
Frontiers in Plant Science 10
also be calculated automatically once the ROI has been optimized.

To generalize the algorithm for crops other than soybean, we

analyzed sesame and cowpea for ROI optimization. The

qualitative results for ROI optimization in these crops were

similar to those for soybean, with ROIs falling at the midpoint of

the largest contoured leaf area. Supplementary Figures S5, S6 show

these qualitative results. Sesame and cowpea were imaged under

natural lighting conditions, further supporting the generalization of

the proposed method. The ability to use the method in field

conditions and for various crop species increases its potential for

broader applications. In this study, we mainly focused on four

major VIs. However, other VIs, such as the green leaf index (GLI),

simple ratio (SR), modified simple ratio (MSR), structure-

insensitive pigment index (SIPI), modified chlorophyll absorption

ratio index (MCARI), and many others can also be calculated. Their

formulas, based on wavelength, can simply be added to the

algorithm. This allows for the calculation of many other VIs in a

short time without rewriting formulas repeatedly. These

explanations highlight the applicability and generalization of the

proposed method in a broader precision agriculture system.

Sometimes, when the leaf size is small, the ROI can be plotted

outside the leaf region (Supplementary Figure S7), which adds to

the limitation of the study. In such cases, we can change the height

and width of the ROI. As the pixel size does not have a significant

difference in VIs, the size of the ROI can be adjusted in the

algorithm. Furthermore, to add some limitations to our study, we

studied only the upper leaf portion while accessing the variation in

the soybean germplasm. However, some findings suggest that crop

reflectance properties cannot be solely dependent on the upper

leaves. For example, it was found that in wheat, along with the

upper leaf, the lower leaf, stems, and spikes also had a significant

effect on the canopy reflectance characteristic and the VIs obtained

(Li et al., 2015). Furthermore, in case of narrow leaf plant like wheat

where flag leaf is usually selected to represent the whole plant for

VIs calculation (Liu et al., 2020b), the optimized ROI might fall

outside of this flag leaf which adds some limitation to this study.

However, the ROI optimization based on user can solve this

problem to some extent as the ROI is optimized by the user

themselves so that they can choose the ROI to be placed on the

flag leaf or the leaf as they desire. Likewise, in this study every sort of

preprocessing was done on the RGB images, the spectral image

acted only as data source for mean spectrum value for the

calculation of VIs. A more comprehensive study is required to

integrate the preprocessing in both RGB image and spectral image

so that the difference in ROI optimization in between these two

image types can be explored.
5 Conclusion

Through this study, we found the best position for ROI selection

for VIs measurement, that is, the leaf part excluding the petiole and

shaded part of the leaf. Likewise, the size of pixels while selecting

ROI does not significantly affect the results. However, we suggest

selecting a bigger pixel size, which results in a lower SD (lessening

the errors). Similarly, the variation of VIs on soybean accessions
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suggests cultivar-dependent VIs. Furthermore, we present an

algorithm-based method for ROI selection and VIs calculation for

user convenience. This algorithm was correlated with ENVI

software-derived values, which showed a higher correlation and

high accuracy. Therefore, this comparative analysis aims to

pinpoint the most effective ROI parameters for precise and

dependable determination of VIs along with easy and automatic

way of ROI selection and VIs calculation, which are important for

diverse applications in plant science.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

SL: Formal analysis, Methodology, Visualization, Writing –

original draft, Writing – review & editing, Investigation,

Software. AG: Formal analysis, Methodology, Software,

Visualization, Writing – original draft, Writing – review &

editing. YK: Conceptualization, Funding acquisition, Project

administration, Resources, Supervision, Validation, Writing –

review & edit ing. J-DL: Funding acquisi t ion, Project

administration, Resources, Supervision, Validation, Writing –

review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This

research was supported by the Biological Materials Specialized

Graduate Program through the Korea Environmental Industry

and Technology Institute (KEITI), funded by the Ministry of
Frontiers in Plant Science 11
Environment (MOE). This research was supported by the Korea

Basic Science Institute (National Research Facilities and Equipment

Center) grant funded by the Ministry of Educat ion

(2021R1A6C101A416) and the Basic Science Research Program

through the National Research Foundation of Korea (NRF) funded

by the Ministry of Education (2021R1I1A3040280). Whole genome

analysis, KNU NGS center (Daegu, South Korea).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1511646/

full#supplementary-material
References
Abdulridha, J., Batuman, O., and Ampatzidis, Y. (2019). UAV-based remote sensing
technique to detect citrus canker disease utilizing hyperspectral imaging and machine
learning. Remote Sens. 11, 1373. doi: 10.3390/rs11111373

Ali, L., Jo, H., Choi, S. M., Kim, Y., Song, J. T., and Lee, J.-D. (2022). Comparison of
hyperspectral imagery and physiological characteristics of bentazone-tolerant and-
susceptible soybean cultivars. Agron. 12, 2241. doi: 10.3390/agronomy12102241

Barboza, T. O. C., Ardigueri, M., Souza, G. F. C., Ferraz, M., Gaudencio, J. R. F., and
Santos, A. F. D. (2023). Performance of vegetation indices to estimate green biomass
accumulation in Common Bean.AgriEng. 5, 840–854. doi: 10.3390/agriengineering5020052

Bolton, D. K., and Friedl, M. A. (2013). Forecasting crop yield using remotely sensed
vegetation indices and crop phenology metrics. Agric. For. Meteorol. 173, 74–84.
doi: 10.1016/j.agrformet.2013.01.007

Cabrera-Bosquet, L., Molero, G., Stellacci, A., Bort, J., Nogués, S., and Araus, J.
(2011). NDVI as a potential tool for predicting biomass, plant nitrogen content and
growth in wheat genotypes subjected to different water and nitrogen conditions. Cereal
Res. Commun. 39, 147–159. doi: 10.1556/crc.39.2011.1.15
Farias, G. D., Bremm, C., Bredemeier, C., De Lima Menezes, J., Alves, L. A., Tiecher,
T., et al. (2023). Normalized Difference Vegetation Index (NDVI) for soybean biomass
and nutrient uptake estimation in response to production systems and fertilization
strategies. Front. Sustain. Food Sys. 6. doi: 10.3389/fsufs.2022.959681

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annu.
Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Gitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between leaf
chlorophyll content and spectral reflectance and algorithms for non-destructive
chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282.
doi: 10.1078/0176-1617-00887

Gitelson, A. A., Merzlyak, M. N., and Chivkunova, O. B. (2001). Optical properties
and nondestructive estimation of anthocyanin content in plant leaves¶. Photochem.
Photobiol. 74, 38–45. doi: 10.1562/0031-8655(2001)0740038OPANEO2.0.CO2

Gitelson, A. A., Zur, Y., Chivkunova, O. B., and Merzlyak, M. N. (2002). Assessing
carotenoid content in plant leaves with reflectance spectroscopy¶. Photochemi.
Photobiol. 75, 272–281. doi: 10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2025.1511646/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1511646/full#supplementary-material
https://doi.org/10.3390/rs11111373
https://doi.org/10.3390/agronomy12102241
https://doi.org/10.3390/agriengineering5020052
https://doi.org/10.1016/j.agrformet.2013.01.007
https://doi.org/10.1556/crc.39.2011.1.15
https://doi.org/10.3389/fsufs.2022.959681
https://doi.org/10.1146/annurev-arplant-050312-120137
https://doi.org/10.1078/0176-1617-00887
https://doi.org/10.1562/0031-8655(2001)0740038OPANEO2.0.CO2
https://doi.org/10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2
https://doi.org/10.3389/fpls.2025.1511646
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lee et al. 10.3389/fpls.2025.1511646
Hallik, L., Kazantsev, T., Kuusk, A., Galmés, J., Tomás, M., and Niinemets, Ü. (2017).
Generality of relationships between leaf pigment contents and spectral vegetation
indices in Mallorca (Spain). Reg. Environ. Change 17, 2097–2109. doi: 10.1007/s10113-
017-1202-9

Hatfield, J. L., Gitelson, A. A., Schepers, J. S., and Walthall, C. L. (2008). Application
of spectral remote sensing for agronomic decisions. Agron. J. 100, S–117. doi: 10.2134/
agronj2006.0370c

Hatfield, J. L., and Prueger, J. H. (2010). Value of using different vegetative indices to
quantify agricultural crop characteristics at different growth stages under varying
management practices. Remote Sens. 2, 562–578. doi: 10.3390/rs2020562

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. (2002).
Overview of the radiometric and biophysical performance of the MODIS vegetation
indices. Remote Sens. Environ. 83, 195–213. doi: 10.1016/S0034-4257(02)00096-2

Jeong, N., Kim, K.-S., Jeong, S., Kim, J.-Y., Park, S.-K., Lee, J. S., et al. (2019). Korean
soybean core collection: Genotypic and phenotypic diversity population structure and
genome-wide association study. PloS One 14, e0224074. doi: 10.1371/
journal.pone.0224074

Kang, K.-S., Ryu, C.-S., Jang, S.-H., Kang, Y.-S., Jun, S.-R., Park, J.-W., et al. (2019).
Application of hyperspectral imagery to decision tree classifier for assessment of spring
potato (Solanum tuberosum) damage by salinity and drought. Korean J. Agric. For.
Meteorol. 21, 317–326. doi: 10.5532/KJAFM.2019.21.4.317

Kim, D.-W., Silva, R. R., Kim, J.-S., Kim, Y., Kim, H.-J., and Chung, Y. S. (2020a).
Comparison of various kinds of vegetative indices for chlorophyll contents using
low-resolution camera. J. Crop Sci. Biotechnol. 23, 73–79. doi: 10.1007/s12892-019-
0347-0

Kim, J., Kim, K.-S., Kim, Y., and Chung, Y. S. (2020b). A short review: Comparisons
of high-throughput phenotyping methods for detecting drought tolerance. Sci. Agric.
78, e20190300300. doi: 10.1590/1678-992X-2019-0300

Kim, S.-H., Tripathi, P., Yu, S., Park, J.-M., Lee, J.-D., Chung, Y. S., et al. (2021).
Selection of tolerant and susceptible wild soybean (Glycine soja Siebold & Zucc.)
accessions under waterlogging condition using vegetation indices. Pol. J. Environ. Stud.
30, 3659–3675. doi: 10.15244/pjoes/130491

Kokhan, S., and Vostokov, A. (2020). Using vegetative indices to quantify
agricultural crop characteristics. J. Ecol. Eng. 21, 122-9. doi: 10.12911/22998993/119808

Lay, L., Lee, H. S., Tayade, R., Ghimire, A., Chung, Y. S., Yoon, Y., et al. (2023).
Evaluation of soybean wildfire prediction via hyperspectral imaging. Plants 12, 901.
doi: 10.3390/plants12040901

Li, X., Li, R., Wang, M., Liu, Y., Zhang, B., and Zhou, J. (2018). Hyperspectral
imaging and their applications in the nondestructive quality assessment of fruits and
vegetables. Hyperspectral Imaging Agric. Food Environ., 27–63. doi: 10.5772/
intechopen.72250

Li, T., Schiavo, M., and Zumr, D. (2023). Seasonal variations of vegetative indices and
their correlation with evapotranspiration and soil water storage in a small agricultural
catchment. Soil Water Res 18 (4):246-68. doi: 10.17221/60/2023-SWR

Li, L., Zhang, Q., and Huang, D. (2014). A review of imaging techniques for plant
phenotyping. Sensors 14, 20078–20111. doi: 10.3390/s141120078

Li, H., Zhao, C., Yang, G., and Feng, H. (2015). Variations in crop variables within
wheat canopies and responses of canopy spectral characteristics and derived vegetation
indices to different vertical leaf layers and spikes. Remote Sens. Environ. 169, 358–374.
doi: 10.1016/j.rse.2015.08.021

Liu, H., Bruning, B., Garnett, T., and Berger, B. (2020a). Hyperspectral imaging and
3D technologies for plant phenotyping: From satellite to close-range sensing. Comput.
Electron. Agric. 175, 105621. doi: 10.1016/j.compag.2020.105621

Liu, H., Bruning, B., Garnett, T., and Berger, B. (2020b). The performances of
hyperspectral sensors for proximal sensing of nitrogen levels in wheat. Sensors 20, 4550.
doi: 10.3390/s20164550

Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., et al.
(2013). Development of spectral indices for detecting and identifying plant diseases.
Remote Sens. Environ. 128, 21–30. doi: 10.1016/j.rse.2012.09.019

McWilliams, D. A., Berglund, D. R., and Endres, G. J. (1999). Soybean growth and
management quick guide. NDSu Ext. Circ. 1999, 1–8.

Mishra, P., Asaari, M. S. M., Herrero-Langreo, A., Lohumi, S., Diezma, B., and
Scheunders, P. (2017). Close range hyperspectral imaging of plants: A review. Biosys.
Eng. 164, 49–67. doi: 10.1016/j.biosystemseng.2017.09.009

Narmilan, A., Gonzalez, F., Salgadoe, A. S. A., Kumarasiri, U. W. L. M., Weerasinghe,
H., and Kulasekara, B. R. (2022). Predicting canopy chlorophyll content in sugarcane
crops using machine learning algorithms and spectral vegetation indices derived from
UAV multispectral imagery. Remote Sens. 14, 1140. doi: 10.3390/rs14051140
Frontiers in Plant Science 12
Neilson, E. H., Edwards, A. M., Blomstedt, C. K., Berger, B., Møller, B. L., and
Gleadow, R. M. (2015). Utilization of a high-throughput shoot imaging system to
examine the dynamic phenotypic responses of a C4 cereal crop plant to nitrogen and
water deficiency over time. J. Exp. Bot. 66, 1817–1832. doi: 10.1093/jxb/eru526

Omari, M. K., Lee, J., Faqeerzada, M. A., Joshi, R., Park, E., and Cho, B.-K. (2020).
Digital image-based plant phenotyping: a review. Korean J. Agric. Sci. 47, 119–130.
doi: 10.7744/kjoas.2020004

Peñuelas, J., Filella, I., and Gamon, J. A. (1995). Assessment of photosynthetic
radiation-use efficiency with spectral reflectance. New Phytol. 131, 291–296.
doi: 10.1111/j.1469-8137.1995.tb03064.x

Pettorelli, N. (2013). The normalized difference vegetation index (USA: Oxford
University Press).
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