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Introduction: Cold acclimatization in tropical region-originated plants involves

complex gene expression reprogramming to adapt to fluctuating temperatures.

However, the molecular mechanisms and gene networks regulating cold tolerance

in king grass remain largely unknown.

Methods: To address this, we established a full-length reference transcriptome

of king grass to enhance assembly quality and performed multiple time-point

transcriptomic analyses following cold treatment at 4°C. Differentially expressed

genes (DEGs) and transcription factors (TFs) involved in cold stress response were

identified and analyzed through clustering and co-expression network analysis.

Results: A total of 13,056 DEGs were identified and classified into nine clusters via

k-means analysis. The cold response exhibited three distinct phases: early

(before 3 h), middle (6–24 h), and late (48–72 h). Early-responsive genes were

enriched in glycolipid metabolism and photosynthesis, middle-stage genes in

carbohydrate metabolism, and late-stage genes in cold stress, osmotic stress,

and endogenous stimuli responses. Key regulators of the ICE-CBF-COR signaling

module, including 13 positive and negative regulators, were identified. The co-

expression network further revealed mutual regulatory interactions within this

module, highlighting its role in cold stress adaptation.

Discussion: Our findings provide insights into the cold tolerance mechanisms of

king grass, offering a genetic basis for modifying cold stress regulators. This

research contributes to the broader understanding of low-temperature adaptive

mechanisms in tropical plants and supports future breeding strategies for

improved cold tolerance.
KEYWORDS

king grass, time-course RNA-seq, differential gene expression, gene regulatory network,
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Introduction

Cold stress is a major environmental stress factor that adversely

impacts on plant growth, development, productivity, and

geographical distribution (Zhu, 2016). Cold stress is divided into

chilling stress (0–15°C) and freezing stress (< 0°C). Chilling stress

adversely affects reactive oxygen species (ROS) homeostasis and

energy metabolism in plants, while freezing stress results in cell

membrane lesions and structural damage because of the formation

of intercellular ice (Chinnusamy et al., 2007; Ruelland et al., 2009).

Plants originating from temperate areas have a high chilling stress

resistance and can improve their freezing stress tolerance, while

those originating from tropical or subtropical regions are

susceptible to cold stress and lack of cold acclimation

mechanisms, limiting their introduction and growth from south

to north China. However, some plants, such as wheat (Triticum

aestivum L.) and barley (Hordeum vulgare L.), have evolved cold

acclimation mechanisms at cellular and molecular levels, improving

their tolerance to cold stress after exposure to non-freezing

temperatures (Guy, 1990; Liu et al., 2022; Thomashow, 1999).

Reprogramming gene expression is an adaptive molecular

mechanisms in plants responding to cold stress (Liu et al., 2022).

In particular, activating the expression of key cold-responsive genes,

such as C-repeat/DERB binding factors (CBFs) genes and cold-

regulated (COR) genes, can enhance cold tolerance. When plants

are exposed to low temperatures, CBF genes are rapidly induced by

a set of transcription factors (TFs), such as ICE1 and CAMTA, and

the resulting expressed proteins activate the downstream COR

genes (Jia et al., 2016; Liu et al., 2018; Zhao et al., 2016). The

COR genes are important elements that protect plants from cold

damage by encoding osmolyte and cryoprotective proteins and

inducing their expression (Kidokoro et al., 2017).

Although transcriptional patterns during cold stress have already

been intensively studied in various plant species (Liu et al., 2022;

Luo et al., 2022; Park et al., 2021; Thomas et al., 2020), studies on the

transient changes and gene networks involved in the regulation of

cold tolerance acclimated in tropical region-originated plants are

quite limited. As a Pennisetum C4 grass forages, king grass

(Pennisetum purpureum Schumacher × P. americanum), also

known as hybrid giant Napier grass, has a high biomass and

nutritional value but a low cold tolerance. It is barely distributed

in the tropical and subtropical regions worldwide (Fan et al., 2012;

Zhao et al., 2019). It was introduced and cultivated in the

mountainous areas of southwest China in the 1990s and has been

domesticated to adapt to the local habitat. Even so, high-yielding king

grass cultivars grow in narrow climatic niches and are known to be

less productive at an altitude of >1500 m (Wang et al., 2016).

Expanding the growing range of high-yielding king grass has been

proposed to achieve economic forage production. Since low

temperature has limited the spread of king grass northwards, we

were interested in investigating the key genes responsible for enabling

its resistance to cold stress. Cold acclimation helps plants cope with

cold stress by optimizing antioxidant enzyme activities, osmotic

adjustment potentials, and photochemical efficiency. These changes

are partially caused by reprogramming gene expression and

metabolites (Sun et al., 2020; Wei et al., 2022). Understanding the
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ones at the transcriptional level, can contribute to improving

tolerance of high-yield king grass under chilling and freezing stress.

In this study, time-course RNA sequencing (RNA-seq) analysis

was used to explore the dynamic changes in the transcriptome

landscape of king grass exposed to cold temperatures (4°C) for

varying durations. Key objectives were to 1) perform and analyze

the transcriptome to obtain a global gene expression profile at nine

time points, 2) identify differentially expressed genes (DEGs) during

the cold stress, and 3) determine specific biological processes

involved in cold stress, and 4) identify the transcriptional factors

(TFs) associated with cold tolerance in king grass. Our results

revealed the transcriptional patterns during short-term cold

treatment and provided novel insights into how the forage was

affected by cold stress.
Materials and methods

Plant growth and cold treatment

Tropical region-originated king grass (Pennisetum purpureum

Schumacher × P. americanum) variety Reyan NO.4 with more than

five years of cold acclimatization and located in the temperate zone

of Sichuan province, China, was selected for this study. Following

vegetatively propagation, the stalks were grown in a glasshouse

(photoperiod of 16 h light/8 h, dark cycle) at ~20°C for 12 weeks. To

standardize plant height and remove older tissue, the stalks were cut

(12 cm above the soil level) twice in a glasshouse and another time

prior to its transfer to a controlled environment chamber. The

seedlings at a uniform growth stage post-cutting were cultivated in a

plant growth chamber (at 25°C under 16 h light/8 h dark cycle) for

three weeks and were used for cold treatment at 4°C at the three-leaf

stage. For each cold treatment, three individual plants were

sampled, and the entire leaf blade, from the tip to the base, were

then collected from control (CK) and cold-treated plants at nine

time points (0 h, 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h, 48 h and 72 h) post-

cold exposure. Each cold treatment was repeated three times,

providing three biological replicates for every time point. The

collected samples were immediately frozen in liquid nitrogen for

RNA preparation.
RNA extraction, library preparation
and sequencing

Each sample was ground separately in liquid nitrogen. Total

RNA was extracted using the RNA prep Pure Plant Plus Kit

(Polysaccharides & Polyphenolics-rich) (Tiangen, Beijing, China).

Then, agarose gel electrophoresis and Nanodrop 2500 (Thermo

Fisher Scientific, US) were used to determine the quality and

quantity of each RNA extract. High quality RNA extract was used

for single-molecule real-time (SMRT) and next-generation

RNA sequencing.

For the PacBio SMRT sequencing, total RNA from different time

points was pooled in equal amounts, and 2 mg of the pooled RNA
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sample was used for cDNA synthesis and SMRT library construction.

First-strand cDNA was synthesized using the SMARTer PCR cDNA

Synthesis Kit and amplified by polymerase chain reaction (PCR).

Next, 1–6 kb fractions were collected. To obtain a sequencing library,

PCR amplification of full-length cDNA, end-repair of full-length

cDNA, connection of the SMRT dumbbell linker, and exonuclease

digestion were performed. After the library was qualified, full-length

transcriptome sequencing was performed using the PacBio platform

(BioMarker, China). The PacBio raw bam file was deposited in the

National Center for Biotechnology Information (NCBI) Sequence

Read Archive (SRA) database (SRA; BioProject Accession:

PRJNA1126330, BioSample Accession: SAMN41985243).

For Illumina sequencing, mRNA from 27 samples was added to the

fragmentation buffer and cut into short fragments. Using mRNA as a

template, cDNA was reverse-transcribed using six-base random

primers. The double-stranded cDNA samples were purified, end-

repaired, added with poly(A) tails, and then ligated to sequencing

adapters to create cDNA libraries. Sequencing was conducted using the

Illumina platform (BioMarker, China). The raw reads were deposited

in the NCBI SRA database (BioProject Accession PRJNA1126330,

BioSample Accession: SAMN41938665~SAMN41938691).
Statistics, quality control, and annotation
of raw sequencing data

The raw subreads from the PacBio platform were analyzed

using the Iso-Seq3 pipeline (https://github.com/PacificBiosciences/

IsoSeq). The pipeline included several steps: generation of circular

consensus sequence (CCS) reads, classification of full-length (FL)

reads, and clustering of FL non-chimeric (FLnc) reads. CCS reads

were generated from the subreads BAM files using CCS (v6.2.0)

with a minimum quality threshold of 0.9 (–min-rq 0.9) and a

minimum of three passes (full passes ≥3). FL transcripts were

identified as sequences containing both 5′ and 3′ cDNA primers

and a poly(A) tail. Lima (v2.1.0) was used to remove the primers,

and IsoSeq3 Refine was employed to trim poly(A) tails. High-

quality FL consensus sequences were obtained using the ICE

(Iterative Clustering and Error Correction) algorithm, with a

post-correction accuracy threshold above 99%. Iso-Seq high

quality FL transcripts for removing redundancy using cd-hit

(v4.8.1, identity > 0.99). The Proovread software (v2.14.1) was

subsequently applied to correct low-quality consistent sequences

using Illumina RNA-seq data. Finally, the integrity of the

transcripts was evaluated using Benchmarking Universal Single-

Copy Orthologs (BUSCO, v5.8.2) to estimate the completeness of

conserved genes across related species. This process ensured high-

quality data for downstream analyses.

The transcripts were subjected to BLASTx queries (v2.16.0,

https://ftp.ncbi.nlm.nih.gov/blast/executables/release/) with an e-

value < 0.00001, based on the priority order of NCBI non-

redundant (NR) protein sequences, SwissProt (http://ftp.ebi.ac.uk/

pub/databases/swissprot), Gene Ontology (GO, http://

geneontology.org), Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa and Goto, 2000), and EuKaryotic Orthologous

Groups (KOG) databases. To identify the gene family, the Hmmer
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v3.3.1 software (Finn et al., 2011) and Pfam (http://pfam.xfam.org)

were used. Only one coding sequence (CDS) per transcript was

produced as an output by setting the “–single_best_only” parameter

and running a homology search against the UniProt database.
Structure analysis of
reference transcriptome

Simple sequence repeats (SSRs) in the transcriptome were

identified using MISA v2.1 (http://pgrc.ipk-gatersleben.de/misa/)

to detect and annotate SSR loci based on default criteria, ensuring

reliable detection for downstream analyses. Candidate coding

sequences (CDSs) were identified using TransDecoder v5.5.0

(https://github.com/TransDecoder/TransDecoder/releases) by

applying the following criteria: a minimum length open reading

frame (ORF) was detected; the log-likelihood score, computed by

GeneID software, was greater than zero; the highest coding score

was in the first reading frame; if one ORF was encapsulated by

another, the longer ORF was reported, though multiple ORFs were

allowed for transcripts to account for operons or chimeras; and

optionally, the putative peptide matched a Pfam domain above the

noise cutoff score. Alternative splicing (AS) events were identified

using Iso-Seq™ data by performing an all-vs-all BLAST search with

high identity thresholds. Candidate AS events were defined by

BLAST alignments meeting the following criteria: the alignment

contained two high-scoring segment pairs (HSPs) in the same

orientation, with one sequence continuous or overlapping by less

than 5 bp and the other containing a distinct “AS Gap” that

exceeded 100 bp and was located at least 100 bp from the

transcript ends. Long non-coding RNAs (lncRNAs) were

identified using a combination of CPC2 v2.0, CNCI v2.0, CPAT

v3.0.4, and Pfam v35.0 to differentiate non-protein-coding RNA

candidates from protein-coding RNAs. Transcripts longer than 200

nt with more than two exons were selected as initial lncRNA

candidates and further screened using these tools to filter out

transcripts with coding potential or conserved protein domains.
Identification of DEGs

To analyze differentially expressed genes (DEGs), we primarily

relied on Illumina RNA-seq data, which were generated by

selectively capturing polyA-tailed transcripts. This ensured that

the sequenced transcripts were predominantly protein-coding.

The expression levels of these Illumina-generated transcripts were

quantified by mapping them to the Iso-Seq-based reference

transcriptome, which was used as a comprehensive annotation

resource. By combining the precision of polyA-enriched Illumina

data with the detailed annotation from Iso-Seq, we ensured that our

DEG analysis focused on biologically relevant coding transcripts

while benefiting from the full-length transcript information

provided by Iso-Seq.

The raw reads from Illumina sequencing were processed by

removing adapter and primer sequences using TrimGalore

(v0.6.10), as well as filtering out low-quality reads, to generate
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high-quality clean reads using FastQC (v0.12.1) and Trimmomatic

(v0.39) for downstream analyses. Clean reads were mapped to the

reference sequence using the STAR software (v2.7.11b) to obtain the

location information of the transcripts (Dobin et al., 2013). The

fragments per kilobase of transcript per million fragments mapped

(FPKM) were calculated using the RSEM software (v1.3.1) and used

to compare the expression levels of the transcripts (Li and Dewey,

2011). A principal component analysis (PCA) was performed using

prcomp utilities in the R package. Differential expression analysis

was performed using DEGseq2 (v1.46.0) in the R package with the

FPKM values (Love et al., 2014). Genes were considered to be

differentially expressed if they met the following criteria: |log2(fold

change) | > 1 and false discovery rate (FDR) < 0.05. KEGG

enrichment analysis of DEGs was performed using the TBtools

software (v2.148, https://github.com/CJ-Chen/TBtools) based on

KEGG annotations of full-length transcripts and plant KEGG

background (Kanehisa and Goto, 2000). The name of the

enrichment pathway, p-value, and gene number were visualized

using the ggplot2 package (v3.4.0) (Wilkinson, 2011).
Co‐expression network analyses

Weighted Gene Co-Expression Network Analysis (WGCNA,

1.71) package was used in R for co-expression network analyses

(Langfelder and Horvath, 2008). A convenient one-step network

construction and module detection function were used to generate

the co-expression gene network and identify each module with

distinct functions. The optimal soft threshold was set at 22, where

the fitting curve approached 0.9. Similar modules with a height

cutoff value of 0.25 were combined, and the threshold of the number

of genes in each module was set to 100. To identify the modules that

significantly correlated with cold treatment time, we performed

Pearson’s correlation analysis and computed the Student’s

asymptotic P-value of each module at all cold treatment time

points. All co-expressed DEGs were grouped into time point-

specific modules. Each network was visualized using Cytoscape

(v.3.7.2) (Shannon et al., 2003).
Identification of protein kinases (PKs),
transcription factors (TFs), and
transcriptional regulators (TRs)

To predict protein kinases (PKs), transcription factors (TFs),

and transcriptional regulators (TRs) in king grass, we utilized iTAK

(v1.7), a widely used tool for plant transcriptional regulatory

protein identification. iTAK integrates data from the Plant

Transcription Factor Database (PlnTFDB) and Kinase

Classification Database (KinaseDB) to classify and annotate PKs,

TFs, and TRs. The transcript sequences from our reference

transcriptome were analyzed using iTAK with default parameters.

TFs were identified based on the presence of conserved DNA-

binding domains, while TRs were annotated using their known

functional domains and interaction motifs as defined in PlnTFDB.

Similarly, PKs were predicted by identifying conserved protein
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kinase domains and classified into families according to

KinaseDB rules. Each family of PKs, TFs, and TRs was further

categorized and analyzed based on sequence similarity and domain

characteristics. The iTAK-based prediction provided a

comprehensive overview of regulatory proteins in the

transcriptome, allowing us to analyze their differential expression

under cold stress.
Quantitative real-time-polymerase chain
reaction (qRT‐PCR) assay

For the qRT-PCR assay, total RNA was extracted from the

samples using a method similar to that adopted for RNA-seq. The

extracted RNA was treated with DNase to remove genomic DNA

contamination and subjected to reverse transcription for the

synthesis of the first cDNA strand. qRT-PCR was conducted

using the SYBR mix. Actin was used as an internal control. The

gene primers were designed and shown in Supplementary Table S1.

The relative expression levels of genes were calculated from three

independent biological replicates using the 2−DDCT method (Livak

and Schmittgen, 2001).
Results

Construction of full-length reference
transcriptome of king grass

King grass has no available reference genome sequences yet. To

establish its transcriptional profiles in response to cold stress, we

constructed one SMRT library comprising one whole tissue culture

plantlets (F01) and a mixed sample of 26 king grass seedlings subjected

to low temperature for varying durations (F02). The libraries were

sequenced each with three cells, yielding 60.36 and 42.02 Gb clean data

for F01 and F02, respectively. A total of 671,808 and 361,660 CCSs

(including 565,567 and 285,119 full-length reads non-chimeric (FLNC)

were identified, and 163,949 and 94,995 high-quality non-redundant

FLNC were identified after polishing using RNA-seq reads, clustering

and demultiplexing of full-length transcripts in F01 and F02,

respectively (Table 1). After merging FLNC transcript lists from the

two libraries and conducting a redundancy analysis, we identified

57,068 unique transcripts. We simultaneously conducted Illumina

RNA-seq of 26 samples for error correction and mapped all reads to

full-length transcripts with a mean mapping rate of 84.08%, with

43.12% uniquely mapped reads and 37.51% of reads mapped to

multiple loci. We identified 1,124 AS events and predicted 17,418

SSR, 7,321 lncRNA, and 23,573 complete CDSs in the full-length

transcriptome (Supplementary Figure S1). Functional annotation of the

transcripts was conducted using nine different public databases (COG,

gene ontology (GO), KEGG, KOG, Pfam, Swissprot, TrEMBL,

eggNOG and NR; Supplementary Figure S2). The results showed

that about 83.56% of the transcripts (n = 47,685) had homologs with

significant hits (E-value cutoff: 1e-05) in the databases, which was

higher than previous reports (Zhao et al., 2019) of RNA-seq assembly

sequences in king grass (40.15%, n = 146,650).
frontiersin.org

https://github.com/CJ-Chen/TBtools
https://doi.org/10.3389/fpls.2025.1511466
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lai et al. 10.3389/fpls.2025.1511466

Frontiers in Plant Science 05
Temporal gene expression during different
cold time points

To investigate the transcriptional changes in king grass

seedlings under cold stress, we conducted RNA-seq over nine

time points post-cold treatment (Figure 1). One of the CK sample

replicates was removed due to technical errors during sequencing.

In the remaining samples, the Pearson correlation coefficients

between the biological replicates were statistically significant

(correlation coefficients > 0.9, P < 0.001), indicating that the

transcriptome data were suitable for the analysis of time point-

specific gene expression. The clean reads of 26 samples were

mapped to the full-length reference transcriptome, resulting in

the identification of 57,068 genes. The number of expressed genes

and their FPKM in each sample were also analyzed. We used PCA

to examine time point-related transcriptional changes after cold

treatment and observed that the profiles at different time points

varied significantly, separating along the first coordinate

(Figure 2A). Since we observed an intersection of some dots
TABLE 1 PacBio sequencing data statistics.

F01 F02

cDNA size 1-6 kb 1-6 kb

CCS number 671,808 361,660

Read Bases of CCS 942,127,440 570,529,164

Mean Read Length of CCS 1,402 1,577

Mean Number of Passes 40 42

Number of filtered short reads 0 0

Number of Full-length non-
chimeric (FLNC)

565,567 285,119

FLNC percentage 84.19% 78.84%

Number of consensus isoforms 163,994 95,018

Average consensus isoforms length 1,531 1,463

Number of high-quality isoforms 163,949 94,995

Percent of high-quality isoforms (%) 99.97% 99.98%
FIGURE 1

Phenotypes of king grass at nine time points (0.5 to 72 h) under cold stress at 4°C, including the untreated control (0 h). A ruler was placed to
indicate plant height. Due to destructive sampling, the number of plants decreased at later time points.
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between close time points in PCA, we conducted hierarchical

cluster analysis (HCA), which revealed that the expression

patterns of genes formed three distinct clusters with the time

points. The CK and groups with short-term cold treatments (0,

0.5, 1, and 3 h) were closest to clustering, although the 3-h sample

was slightly clustered away from the 1-h sample. This result

suggested no significant change, at least within an hour of cold

treatment, in the expression patterns of the king grass genes.

Furthermore, the 6-h, 12-h, and 24-h samples clustered together

but were separated at their respective time points. However, the

samples subjected to long-term cold treatments (48 and 72 h) were

the closest to the clustering. These two samples exhibited similar

intrinsic gene expression profiles, which were farthest from the

samples subjected to short-term cold treatments (Figure 2B). The

Pearson correlation coefficients indicated that the 48-h and 72-h

samples were distant from the samples subjected to clod treatment

for less than 3 h (correlation coefficients < 0.8), and the 6 h~12 h

samples (correlation coefficients < 0.9), which was consistent with

the PCA and HCA results (Figure 2C). These results suggested the

expression of the king grass genes was affected by the time spans

under cold stress and could be classified as early (before 3 h), middle

(6~24 h) and late responses (48 and 72 h).

HCA provided a global view of the temporal alterations in the

gene expression profiles during the cold treatment. A comparison of

the different treated samples revealed 13,056 DEGs. We compared

the gene expression patterns and identified the up- and down-

regulated DEGs between the cold-treated and control samples

(Figure 3A). In general, 17.95%~52.80% of the DEGs were

identified in different treated samples. The number of DEGs

tended to increase along with the cold stress duration, with most

DEGs in the 48-h sample compared with the 0-h sample. Thus, the

number of DEGs was larger at the late response time points

compared to the early response time points. Furthermore, we

compared the number of DEGs in the latter time-point samples

with those in the earlier time-point samples. As shown in Figure 3B,

the sample corresponding to the first time point of each response

stages, that is, 0.5, 6 and 48 h, showed substantially more DEGs in

comparison to the sample in the previous stage, suggesting a change
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in gene expression patterns during early, middle, and late responses.

Next, the DEG sets between each time point were compared and

visualized. UpSet visualization was used to observe the overlapping

DEGs between two or multiple time points. The plot showed that

many DEGs were comparison set-specific, including 946, 653, and

556 genes in sets 3 h vs. 0 h, 48 h vs. 0 h, and 72 h vs. 0 h,

respectively (Figure 3C). Notably, a large number of genes were

combined as DEGs co-regulated in the middle and later response

stages, with 48-h and 72-h samples sharing 1,437 DEGs within the

later response stages, and 547, 607, and 777 DEGs common after 6,

12, and 24 h, respectively, across middle and later response stages.

As for the DEGs shared among combinations of the latter time-

point samples and the previous time-point samples, the majority of

them were comparison set-specific (Figure 3D). Most unique DEGs

(n = 1,466) were detected during the comparison between 48-h and

24-h samples, followed by 995 and 658 between 0.5-h and 0-h

samples and 6-h and 3-h samples, respectively.
Dynamic changes in king grass
transcriptome in response to cold stress

To further analyze the dynamic changes in the gene expression

profiles at different time points, we conducted GO enrichment

analysis of the DEGs and observed a time-dependent shift in the

GO terms, reflecting the different potential biological functions

during the various stages of cold response (Figure 3E). Early

responsive genes to cold stress that had high expression levels

between 0.5 and 3 h post-cold treatments were mainly enriched in

glycol ipid metabol ism and photosynthesis , including

polysaccharide catabolic process, carbohydrate metabolic process,

gluconeogenesis, lipid transport, phospholipid biosynthesis, light

harvesting in photosystem I, photosynthetic electron transport

chain, carbon fixation, and protein-chromophore linkage. The

responsive genes in the middle response stage (6~24 h post-cold

treatment) were mainly enriched in carbohydrate metabolism, such

as maltose and sucrose biosynthesis, fructose metabolic process, and

starch catabolic process. The enriched terms were also related to the
FIGURE 2

Transcriptome analysis of king grass at different times post-cold treatment. (A) Principal component analysis (PCA) of gene expression profiles before
and after cold treatment. Each point represents one treatment for gene expression profiling. (B) Hierarchical clustering analysis (HCA) of gene
expression values of all samples. (C) Pearson’s correlation coefficient of gene expression values of all samples.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1511466
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lai et al. 10.3389/fpls.2025.1511466
positive regulation of seed germination and plant hormone

pathways, including the negative regulation of the brassinosteroid

(BR)-mediated signaling pathway. The genes exhibiting a constant

upregulation during the relative long-term cold treatments (48 and

72 h) were related to response to cold stress, osmotic stress, and acid
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chemical and endogenous stimulus. Importantly, GO terms

enriched by these upregulated genes were also relevant to

hormone-mediated signaling pathways, such as the abscisic acid-

activated signaling pathway, and the regulation of salicylic acid

biosynthesis. However, the genes enriched in the regulation of the
FIGURE 3

Differentially expressed genes (DEGs) during cold treatment in king grass. (A, B) Bar graph showing the total number of differentially upregulated
(red) and downregulated (blue) genes at each pairwise comparison between the cold-treated samples and CK (A) and between the latter time-point
samples and the previous time-point samples (B). (C, D) The UpSet R plot showing numbers and interactions of DEGs between the cold-treated and
CK samples (C) and between the latter time-point samples and the previous time-point samples (D). The horizontal bars show the number of DEGs
in each set, while the vertical bars represent the intersection size. Dark spheres indicate which sets are represented in the vertical bar. The total
numbers of upregulated and downregulated genes at each of the time points are shown on the left. (E) Temporal ordering of biological processes
during cold treatment as identified using gene ontology (GO) enrichment analysis.
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jasmonic acid-mediated signaling pathway were downregulated in

later response stages.

Hierarchical clustering of the expression profiles showed

progressive expression dynamics as a cold accumulation process.

DEGs from the comparison sets were clustered into groups based

on expression changes across time points. The results were

visualized by a heatmap (Figure 4), which indicated a varying

temporal expression pattern for king grass genes under cold

stress. A total of nine co-expressed clusters were generated

through the k‐means clustering algorithm, each of which

contained a unique gene set comprising 853 to 3,074 members.

These distinct patterns suggested a precise temporal transcriptional

regulation corresponding to the different durations of cold

exposure. Particularly, cluster 3 (n = 1,113), which mostly

represented downregulated genes at all cold treatment stages, was

enriched for GO terms related to the regulation of the jasmonic

acid-mediated signaling pathway, regulation of defense response,
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etc. The clusters with upregulated genes in response to short-term

cold stress, such as clusters 7 (n = 1,552) and 6 (n = 1,333), were

enriched for GO terms associated with chlorophyll-binding,

photosystem, chloroplast organization, and ribosome biogenesis,

indicating photosynthesis was largely reduced by cold treatment.

Along with prolonging cold treatment, the genes that upregulated

specifically in middle response stages (6, 12, and 24 h) were

clustered in cluster 5 (n = 1,127) and enriched for GO terms

associated with photosystem repair and photoinhibition. In

contrast, the clusters with genes upregulated in response to long-

term cold treatments (sustainably upregulated after 12 h), such as

cluster 2 (n = 1,212), were enriched for GO terms associated with

nitrate assimilation, molybdenum ion binding, and nitric oxide

(NO) biosynthesis. In addition, 3,074 genes were specifically

upregulated in 48-h and 72-h samples, clustered in cluster 1, and

enriched for GO terms associated with DNA-binding transcription

factor activity, cellular response to cold, and response to acid
FIGURE 4

Hierarchical clustering and heat map of king grass DEGs and key GO terms. The numbers and expression patterns of genes in the different clusters
are shown on the left part. Middle part: Heatmap showing the expression profiles of DEGs at each time point. The heatmap was generated through
the k‐means clustering algorithm with a row‐wise Z‐score result of gene expression in the Cluster 3.0 software. The color key representing the
standardized gene expression levels from high (red) to low (blue). Right part: GO-enriched biological processes for nine clusters.
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chemical. These genes were critical for the response of king grass to

late-stage cold stress. These results showed that the expression

patterns of DEGs varied and corresponded to distinct biological

functions depending on the duration of cold stress.
Identification of differentially expressed TFs
and protein kinases (PKs) in cold stress

TFs and PKs are important regulators of the responses to cold

stresses. TFs and other transcription regulators (TRs) regulate spatial

and temporal gene expressions. A plethora of transcriptional regulatory

proteins have been identified and classified into families on the basis of

sequence similarity. In total, 1,982 TFs were differentially expressed in

our transcriptome sets under low temperatures. These TFs belonged to

52 families. The top 20 of the differentially expressed TF families were

shown in Figure 5, and the families with the most abundant TFs were

MYB-related (11.8%), followed by AP2-ERF (9.54%), NAC (7.6%),

bZIP (6.71%), bHLH (5.96%), andWRKY (5.66%), etc. These TFs were

distributed across the DEGs at different time points, indicating that TFs

play important roles during prolonged cold treatment. In the very early

response stage, Tify was the most abundant TF family among the

differentially expressed TFs, but it descended to third and fourth most

abundant in the middle response stages and ranked ninth at 48 and 72

h post-cold stress. In contrast, the number of AP2-ERF, MYB-related

and NAC TFs were relatively abundant and stable at each time point,

indicating that these families likely play important regulatory roles in

both short- and long-tern cold stress. In addition to TFs recognizing

cis-regulatory DNA sequences, additional proteins and other TRs are

involved in protein-protein interactions underlying plant cold-stress

responses. TRs of king grass were identified using iTAK, which is based

on the rules of PlnTFDB. Aux/IAA, one of the key regulators of auxin

responses in plants, was the most abundant TRs identified (12.57%),
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followed by GNAT (8.98%) and IWS1 (5.39%), etc. However, the TRs

were not abundantly expressed at different stages of cold treatment,

except for AUX/IAA family genes, which were relatively abundantly

expressed in the middle to later response stages of cold treatment

(Supplementary Figure S3). Similarly, we also observed variations in

the proportions of down- and upregulated PKs under cold treatments.

CHK1, belonging to the CAMKL family, was more upregulated than

other PKs, accounting for 12.05% of all differentially expressed PKs and

relatively abundantly expressed after 6 h of cold treatment. Another

member of the CAMKL family, CDPK, was abundantly expressed in

the early-response stage before 6 h of cold treatment (Supplementary

Figure S3). Therefore, the calcium-dependent protein kinases were

differentially expressed across all time points and exhibited important

roles in response to cold treatment.
Roles of hub TFs in cold stress

We identified some key TFs with regulatory relationships with

each other that played important roles in regulating DEGs under

cold treatment. In the respect, the classical CBF-dependent low-

temperature signaling pathway in plants has been discussed

relatively thoroughly. CBFs play a central role in cold acclimation

and have been successively identified as important TFs located

upstream of the cold-responsive genes (CORs, induced by low-

temperature environment). Based on the rich knowledge base

associated with ICE-CBF-COR in maize and the conservation of

ICE-CBF-COR in Poaceae and protein sequence alignment, we

identified the expression of 57 CBF1/2/3-related genes. As shown in

Figure 6, the 46 orthologous genes encoding CBF1 and CBF3 were

late in response to cold stress. Eventually, their transcript levels

gradually increased after 12 h. The remaining 11 orthologous genes

encoding CBF2 exhibited the opposite expression pattern, with
FIGURE 5

Differentially expressed transcription factors (TFs). (A) Bar plots showing the distribution of the top 20 differentially expressed TFs across the
differentially expressed genes (DEGs). (B) Bar plots showing the distribution of the top five differentially expressed TFs at each time point.
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decreased expression levels at the beginning of cold treatment.

These findings were consistent with the results obtained in

Arabidopsis, which showed that CBF2 negatively regulates CBF1

and CBF3. Importantly, the expression patterns of CBF1 and CBF3

were similar to those of other TFs, like WRKY, NAC, and GRAS,

which were activated and upregulated in the later response stage (48

and 72 h). In contrast, Tify showed a negative regulatory

relationship with the duration of cold treatment.

Based onWGCNA, we identified some important hub TFs that co-

expressed with each other. We assessed whether they exhibited

regulatory relationships with each other and played important roles

in the regulation of the ICE-CBF-COR signaling module under cold

treatment. Based on the rich research background associated with ICE-

CBF-COR in Arabidopsis, we identified the CBF1/2/3-related genes,

including ICE1, MYB15, SOC1, EIN3 and BZR1 (Figure 7A). We

performed qRT-PCR with these thirteen target genes to confirm the

RNA-seq data. The fold changes of gene expression in the target genes

had a similar trend with those from RNA-seq analysis (R2 = 0.9232,

Supplementary Figure S4 and Supplementary Table S2), which

indicated a high reliability of RNA-seq data. We then identified

positive and negative regulators of the orthologous genes according

to their expression patterns under cold treatment. In Arabidopsis,

CBF2 negatively regulates CBF1and CBF3expression. ICE can directly

bind to CBF promoters and contribute to the regulation of constitutive

CBF expression, particularly of CBF1 and CBF3. MYB15, SOC, and

EIN3 negatively regulate ICE1 expression. BZR1 positively regulates

freezing tolerance via CBF-dependent and independent pathways. In

our Poaceae king grass dataset, we also observed that CBF1 and CBF3

were clustered together while being distant from CBF2, indicating that

the functions of CBF1/2/3 were conserved across monocotyledonous

and dicotyledonous plants. Genes showing positive or negative

regulatory relationships with CBFs also exhibited similar effects in

king grass. For instance, MYB15 and SOC1 were downregulated when

CBF1 and CBF3 were upregulated during cold treatment. BZR-

mediated output from the brassinosteroids (BRs) signaling pathway

contributes to cold tolerance through the upregulation of the CBF cold-
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response pathway. However, two EIN3 orthologs were upregulated

along with prolonging cold treatment, which was inconsistent with the

previous report in Arabidopsis (Shi et al., 2012). We further established

a co-expression regulatory network and visualized the mutual

regulatory relationship between these 13 genes (Figure 7B). The

positive and negative regulatory relationships were also shown in the

network, providing certain insights into the correlation between the

related genes in king grass and the ICE-CBF-COR signaling module at

low temperatures.
Discussion

To cope with various environmental stresses adversely affecting

their normal growth and development, plants employ several changes

in their morphology, physiology, biochemistry, metabolism, genetics,

and epigenetics (Georgieva and Vassileva, 2023). Global

transcriptional changes in response to cold stress and molecular

mechanism underlying cold-induced reprogramming of gene

expression have been intensively investigated in various plant

species. However, there is a lack of similar studies on king grass.

Although the whole genome of king grass has not yet been assembled,

full-length transcriptome sequencing of king grass has made it

feasible to identify stress-resistance genes at the gene expression

level. In this study, we determined the regulatory mechanisms

underlying cold stress response in king grass by performing

comprehensive multiple time point transcriptomic analyses and

identified the up- and down-regulated genes at each time point,

including cold-responsive genes, TFs, and PKs.

We identified several DEGs, suggesting that the expressions of

genes in king grass changed dynamically during cold exposure. The

number of comparisons set-specific DEGs fluctuates across different

time points, suggesting that the plant’s response to cold stress is

highly dynamic and occurs in distinct phases. At early time points

(0.5 h and 1 h), fewer specific DEGs were detected (300 and 234,

respectively), indicating the activation of a limited set of rapid-
FIGURE 6

Heatmaps showing the expression patterns of key transcription factors (TFs) belonging to the CBF, WRKY, NAC, Tify, and GRAS families under
cold treatment.
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response genes to perceive and signal cold stress. A sharp increase in

specific DEGs was observed at 3 h (946), likely reflecting a peak in

transcriptional reprogramming where stress-responsive pathways

are strongly induced. This was followed by a decline at 6 h (247) and

12 h (144), possibly as the plant shifts from acute responses to early

adaptation mechanisms. Interestingly, the number of specific DEGs

increased again at 24 h (405) and 48 h (653), suggesting the

activation of genes involved in sustained responses, such as

metabolic adjustments and structural modifications, to cope with

prolonged cold stress. The subsequent slight decrease at 72 h (556)

may indicate stabilization of the transcriptional response as the

plant reaches a new homeostasis. These findings demonstrate that

the transcriptional response to cold stress is not a simple linear

process but rather involves multiple phases characterized by

dynamic shifts in gene expression profiles.

We divided DEGs into nine clusters based on their expression

pattern, and found that the genes in clusters 1 and 2, which were highly

expressed at 48 and 72 h post-cold stress, were enriched and directly

related to the cold stress response. We speculated that these DEGs

might help to enhance the tolerance of king grass to late-stage cold

stress. Especially the genes upregulated in response to long-term cold

treatments (after 12 h) were enriched for GO terms associated with

nitrate assimilation, nitrate reductase activity and NO biosynthesis,

which are related to nitrogen availability. Many researchers have

reported the relationship between nitrogen assimilation and cold

tolerance in plants (Hassan et al., 2021; Ritonga and Chen, 2020;

Soualiou et al., 2023). Generally, cold stress affects root system growth

by reducing nitrogen uptake and translocation, limiting nitrogen

availability in plants (Soualiou et al., 2023). Our results demonstrated

that nitrogen assimilation, including NO production, was related to

cold acclimation and response to long-term cold treatments. Previous

reports have shown that nitrate reductase, which is usually associated

with nitrogen assimilation, can mediate NO production from nitrite in

an NAD(P)H-dependent manner and plays an important role in cold
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acclimation and freezing tolerance in Arabidopsis (Zhao et al., 2009).

After cold stress, the ability of maize seedlings to recover increases via

increased activities of nitrogen assimilation enzymes and improved

redox homeostasis (Soualiou et al., 2023).

Notably, genes that were responsive to the early stages of cold

stress in the current study were enriched in photosynthesis and

phospholipid biosynthesis. These genes were upregulated in the first

3 h of cold treatment, which was inconsistent with the previous

observations in Arabidopsis (Xi et al., 2020). In Arabidopsis, genes

involved in photosynthesis and photosystem were downregulated

during the cold treatments, indicating that photosynthesis was

repressed in response to cold stress. However, we identified a brief

upregulation of photosynthesis-related genes before the inhibition of

the photosynthetic efficiency. We speculated that these early responsive

genes are aimed at accumulating energy to cope with cold stress. It has

been reported that plants with cold acclimation have a high

photosynthetic capacity (Rapacz et al., 2008). As shown in Figure 4,

the upregulation of early responsive genes involved in photosynthesis

and phospholipid biosynthesis produced more energy to remodel

chromatin structure to reprogram gene transcription, maintain

membrane stability, facilitate endurance to cold injury, and

accomplish all kinds of energy-dependent biological processes. For

example, genes upregulated at 3 h or later were enriched for GO terms

associated with ribosome biogenesis and rRNA processing, which is

one of the most energy-demanding processes in the cell and is usually

associated with cellular stress. In addition, we observed a significant

downregulation of photosynthesis after 3 h post-cold treatment and the

genes were enriched in photoinhibition within 6~24 h post-treatment,

indicating that cold stress caused a downregulation of light absorption

and a decrease in photosynthetic efficiency after energy accumulation,

potentially protecting plants from photo-oxidative damage.

The expression of many TFs is also regulated in response to cold

stress (Abdullah et al., 2022). In the present study, a total of 1,982

differentially expressed TFs, belonging to 52 TF families, were
FIGURE 7

Identification of ICE-CBF-COR genes in king grass and visualization of their co-expression network. (A) Heatmaps showing the expression patterns
of 13 ICE-CBF-COR genes. The red and blue colors indicate high and low expression levels, respectively. (B) Visualization of the co-expression
networks of the 13 ICE-CBF-COR genes.
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identified. The key TF families identified in the current study have also

been identified as crucial in responses to cold temperatures in rice

(Shen et al., 2014), Zea mays (Waititu et al., 2021), and Triticum

aestivum L (Jiang et al., 2022), indicating that these TF families might

have similar biological functions and regulatory roles in different plant

species under cold stress. Moreover, we identified 13 genes in the ICE-

CBF-COR signaling module and analyzed their expression at different

time points under cold stress. We found both positive and negative

regulatory factors and determined their regulatory relationships, which

were generally consistent with the previous results on Arabidopsis

(Barrero-Gil and Salinas, 2017; Kim et al., 2015). However, EIN3 was

upregulated in the CBF cold-response pathway, which demonstrated

that ICE-CBF-COR is not conserved between monocotyledonous and

dicotyledonous plants. In addition, the orthologous genes of CBF1/2/3

in king grass were conserved to those in Arabidopsis both in terms of

sequence similarity and regulatory function. However, previous studies

have reported that CBF and COR genes are early-response genes

playing an important role in short-term cold treatment in Arabidopsis

(Gilmour et al., 1998). Our results demonstrated that CBFs and the

related genes in the ICE-CBF-COR signaling module were middle- and

late-response genes, with a significant upregulation after 24 h post-cold

treatment. Their expression patterns might be associated with the high

expressions of MYB15 and SOC1 in the early stages of cold stress. Cold

stress upregulates MYB15, and the MYB15 protein interacts with ICE1

and binds to the MYB recognition sequence in the promoter sequence

of CBFs, which reduces the expression of CBF genes during cold stress.

Based on our findings, we conclude that king grass employs a

dynamic transcriptional reprogramming strategy involving energy

accumulation, photosynthesis adjustment, and nitrogen assimilation

to enhance cold tolerance. Key transcription factors and protein kinases

play pivotal roles in mediating this response, while the ICE-CBF-COR

signaling pathway exhibits unique temporal characteristics,

underscoring differences in cold adaptation mechanisms between

monocotyledonous and dicotyledonous plants.

We acknowledge that in this study, the untreated sample at 0 hours

was used as the control for all cold stress treatment time points. While

this approach is widely applied in transcriptomic studies on plant stress

responses and has been utilized to identify key regulatory pathways and

stress-responsive genes (Liu et al., 2022; Zhang et al., 2024), it may not

fully account for developmental or physiological changes occurring

independently of the cold stress over the time course. Ideally, time-

matched controls (e.g., plants grown under normal conditions for 72

hours compared to 72-hour cold stress treatments) would provide a

more precise reference, allowing for the separation of stress-specific

transcriptional changes from those related to normal growth or

development. We chose the 0-hour untreated sample as the baseline

to align with the common practice in stress response studies and to

simplify comparisons across multiple time points. However, we

recognize that this methodology could introduce biases, particularly

at later time points, where developmental divergence between treated

and untreated samples might be more pronounced. Although applying

complementary methods such as co-expression network analysis could

further validate the findings and minimize potential limitations

introduced by using a single baseline control, integrating time-
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matched controls alongside a 0-hour untreated baseline could

enhance the resolution of stress-specific gene expression patterns in

future studies.
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SUPPLEMENTARY FIGURE 1

Characteristics of the full-length reference transcriptome of king grass. (A)
the types and the number of predicted SSR in the transcriptome. (B)
prediction of lncRNA in four databases. (C) Distribution of predicted

transcription factor (TFs) in the transcriptome. (D) Distribution of predicted
lengths of protein sequences encoded by complete ORF regions.
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SUPPLEMENTARY FIGURE 2

Transcript annotation intoNr database. (A)Nr identity distribution through sequence
alignment. (B) The distribution of homologous species in Nr alignment results.

SUPPLEMENTARY FIGURE 3

Differentially expressed transcription regulators (TRs) and protein kinases (PKs). (A,
C) Bar plots showing the distribution of the top 20 differentially expressed TRs and
PKs across the differentially expressed genes (DEGs). (B, D) Bar plots showing the

distribution of the top five differentially expressed TRs and PKs at each time point.

SUPPLEMENTARY FIGURE 4

Quantitative real-time PCR (qRT-PCR) validation the 13 ICE-CBF-COR genes
of RNA-seq. FPKM values (left) and relative expression (right) of genes in

different cold times.
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