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A comprehensive understanding of the genetics of resistance is essential for

developing an effective breeding strategy to create germplasm resistant to

Fusarium Ear Rot. This study aimed to determine the general combining ability

(GCA), specific combining ability (SCA), and heritability of resistance to infection by

Fusarium verticillioides in tropical maize. Using the North Carolina II mating design,

six inbred lines as females and seven as males were crossed to produce 42 hybrids,

which were evaluated across five environments using artificial inoculation. At

harvest, the hybrids were scored for Fusarium Ear Rot (FER) infection using a 1-9

severity scale. Significant GCA effects for the parents and SCA effects for the

hybrids were observed. The narrow-sense heritability estimate was 0.22, while the

broad-sense heritability was 0.73, and the additive genetic effects, as represented

by GCA (m+f), were more significant than non-additive effects. The inbred parents

JPS25-13, JPS26-125, JPS26-86, JPS25-11, JPS25-5, JPS25-7, and JPS25-9 were

identified as the best general combiners for FER resistance. These lines, with

favorable general combining ability effects for resistance to Fusarium verticillioides,

are strong candidates for breeding resistant varieties.
KEYWORDS

Zea mays, Fusarium, gene action, heritability, genetics
1 Introduction

Maize is one of the most important cereal crops globally due to its high yield potential

and its widespread use as food, animal feed, and for various industrial applications (Ju et al.,

2017). In sub-Saharan Africa, maize serves as a critical source of food security and

economic development (Cairns and Prasanna, 2018), with over 300 million Africans
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relying on it as their primary staple food (Badu-Apraku and

Fakorede, 2017). In Uganda, maize is a staple food for many

households in both rural and urban areas (Epule et al., 2021),

with total production in the 2020 agricultural year estimated at

approximately 3.5 million metric tonnes (MT) from around 2.0

million hectares (ha) of planted area (UBOS, 2020).

Despite its importance, maize production faces numerous biotic

and abiotic challenges, including Fusarium Ear Rot (FER) caused by

Fusarium verticillioides. This fungal pathogen is widespread and

infects various plant species, including maize, millet, rice, wheat,

and sorghum (Xu et al., 2023). In maize, it causes ear, stalk, and root

rots (Logrieco et al., 2002) and can lead to yield losses of up to 50%

(Ding et al., 2008; Magarini et al., 2024). FER is typically favored by

warm and dry conditions, although warm and wet conditions

following inoculation at silking can also promote disease

development (Afolabi et al., 2007). This fungus poses a major

problem not only due to the yield losses it causes but also because

it produces fumonisin, a mycotoxin harmful to both humans and

animals. In Uganda, studies by Atukwase et al. (2009; 2012)

reported occurrence of fumonisin in major maize growing

districts. A recent study by Yli-Mattila and Sundheim, (2022)

reported that Uganda is among African countries with high levels

of fumonisins (FUM) in maize, ranging from 270 to 10,000 μg/kg,

exceeding the advisory levels of 2000 μg/kg set by the U.S. Food and

Drug Administration (FDA) and regulatory limits of 2000–4000 μg/

kg set by the East African Community (EAC) and European Union

(EU) (Atukwase et al., 2009; Niyibituronsa et al., 2020; Yli-Mattila

and Sundheim, 2022). These high levels of fumonisins identified in

Uganda are worrying, therefore awareness and management of this

fungus is an important step in controlling human exposure to the

toxins. Common practices like the use of insecticides, fungicides, or

other agronomic approaches have been reported to be

environmentally unfriendly, ineffective and, and they increase the

costs of maize production (Lanubile et al., 2017; Ayesiga

et al., 2023).

Breeding for resistance is the most economical, effective, and

environmentally friendly approach to control Fusarium Ear Rot

(FER) and reduce the risk of fumonisin accumulation in maize

(Netshifhefhe et al., 2018; Ouko et al., 2020). To develop cultivars

resistant to F. verticillioides, it is essential to identify and utilize

sources with strong resistance. However, most commercially

available maize cultivars worldwide lack specific resistance to F.

verticillioides (Tembo et al., 2022) and the known sources of

resistance predominantly originate from temperate regions, where

they are poorly adapted to the growing conditions in sub-Saharan

Africa and often have limited combining ability for yield

(Warburton et al., 2009; Tembo et al., 2022). Several studies have

reported genetic variation for resistance to FER (Lanubile et al.,

2011; Butrón et al., 2015; Stagnati et al., 2019). Efforts to understand

the mechanisms and genetics of resistance to F. verticillioides

infection in maize have highlighted that resistance to FER is

quantitatively inherited and is largely associated with additive

genetic effects, along with a significant genotype by environment

component (Ding et al., 2008; Reid et al., 2009; Mesterházy et al.,

2012; Balconi et al., 2014; Butrón et al., 2015; Maschietto et al., 2015;
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Tembo et al., 2022). Some studies have reported that resistance to

Fusarium Ear Rot involves both additive and nonadditive genetic

effects, highlighting the complexity of the trait and the need to

consider both types of genetic contributions in breeding programs

(Chen et al., 2012; Lanubile et al., 2017; de Jong et al., 2018).

However, no complete resistance to FER has been identified in

maize (Eller et al., 2008). Mukanga et al. (2010) found high

genotype × environment interaction (G × E) for ear rot-causing

fungi, implying that different genotypes respond variably to

infection across different environments. Tembo et al. (2022)

studied twelve inbred lines from Seed Co used as the females

mated to 12 tester lines from the International Institute of

Tropical Agriculture (IITA) using the North Carolina Design II.

The 144 F1 hybrids and six check hybrids were evaluated in

Zimbabwe under artificial inoculation with F. verticillioides. The

GCA and SCA effects for F. verticillioides incidence were variable

across sites for the lines and the testers. The study identified six

southern African inbred lines with desirable GCA for FER and

could be used as resistance sources. Both additive and nonadditive

effects were implicated in resistance to FER. Rose et al. (2016)

evaluated 18 inbred lines for resistance to FER in five locations in

South Africa and found significant environment X genotype

interactions and also reported additive gene effects were involved

in resistance to FER.

Efficient breeding for resistance to FER requires a thorough

understanding of its genetic basis; combining ability and heritability

are essential factors when studying the genetics of crop traits (Ma

Teresa et al., 1994). The objectives of this study were to evaluate the

resistance of F1 hybrids to F. verticillioides and to determine the

mode of gene action conditioning resistance to Fusarium Ear Rot.
2 Materials and methods

2.1 Plant materials and generation of
F1 hybrids

In this study, thirteen inbred lines (Table 1) with varying levels

of resistance to FER were used to investigate the genetic action

behind the resistance to FER. The parents were chosen based on

their contrasting responses to FER observed in preliminary

screening trials, and their genetic diversity (Ayesiga et al., 2022,

2023), which aimed to maximize the potential for detecting

combining ability effects. These parental lines encompass a

substantial portion of the breeding material currently used in

national programs, making the findings relevant to ongoing

breeding programs in the region. The lines are owned and

maintained by the National Agricultural Research Organization

(NARO), ensuring accessibility for further research and

development. All possible crosses between the seven males

resistant lines and six females susceptible lines were made using

North Carolina II mating design (Comstock and Robinson, 1952)

under controlled pollination conditions to produce 42 hybrids.

These hybrids were then evaluated in three locations in Uganda

as described below.
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2.2 Description of the study sites

Nakyesasa falls in the mid-altitude agro-ecological zone, located

at 0° 32’N and 32° 35´E, at 1150 meters above sea level, the soil type

is sandy clay loam and is classified as Orthic Ferrasol. The mean

annual rainfall at Nakyesasa is 1270 mm with a bimodal

distribution (March–July and September–November). Buginyanya

is located at 1°12’48.0”N and 34°23’35.0”E, at 1877 meters above sea

level and is characterized with well drained dark clay loam and red

sand clay loam with a sticky texture and is classified as Plinthic

Umbric. The region receives a bi-modal pattern of rainfall, with the

wettest months being April and October and the annual average

rainfall in the zone ranges from 1,200mm to 2,000mm. Bulindi is

located at 0°16’N, 32052’E’, at 1144 meters above sea level, the soil is

Sandy loam and is classified as Acric Ferralsol. The mean annual

rainfall at Bulindi is 1338 mm, with a bimodal distribution (March–

July and September–November).
2.3 Field evaluation

Forty-two single-cross hybrids were evaluated in this trial,

conducted across three sites (Nakyesasa, Buginyanya, and Bulindi)

over two growing seasons (A and B). Uganda has two seasons; season

A which runs from February to June and season B runs from

September to December. Buginyanya season A (E1) was planted on

22nd/04/2022; Nakyesasa season A (E2) was planted on 14th/04/2022;

Nakyesasa season B (E3) was planted on 7th/09/2022; Buginyanya

season B (E4) was planted on 30th/09/2022 and Bulindi season B (E5)
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was planted on 24th/09/2022. The experiment followed a 6 × 7 alpha

lattice design with two replications at each location. Each hybrid was

planted in two-row plots measuring 5 meters in length, with rows

spaced 0.75 meters apart and 0.25 meters between plants. Two seeds

were sown per hill, and after four weeks, the seedlings were thinned to

one plant per hill. Standard agronomic practices, including weeding

and appropriate fertilizer applications, were applied consistently

across all trials. Although cycle length was not directly evaluated in

this study, artificial inoculations were standardized at seven days after

flowering to ensure consistency in FER resistance evaluation across

hybrids following the technique outlined by Ayesiga et al. (2023), in

brief, fully colonized toothpicks were used to inoculate the maize ears

approximately seven days after flowering. Inoculation was conducted

by piercing through the middle of the primary ear of five plants per

plot. Paper bags were used to cover the ears to avoid allo-infection. At

maturity, the inoculated ears from each plot were harvested, and FER

symptoms were assessed based on the percentage of infected area

using the following nine-point scale: 1 = 0% (no visible disease

symptom), 2 = 1%, 3 = 2%–5%, 4 = 6%–10%, 5 = 11%–20%, 6 = 21%–

40%, 7 = 41%–60%, 8 = 61%–80%, and 9 = 81%–100%

(Supplementary Figure S1). Scores of 1–2 were classified as “good,”

3–5 as “intermediate,” and 6–9 as “poor.” (Tembo et al., 2022).
2.4 Data analysis

2.4.1 Analysis of variance
The data was subjected to Analyses of variance in R software

using the agricolae package (De Mendiburu, 2021) in R software
TABLE 1 List parental lines used and their pedigrees.

Parent Inbred
line

Status Pedigree

Males

1 JPS26-125 FER resistant POBLAC2ICO/WL 118-17-4-3-1

2 JPS25-22 FER resistant (NML85/(La Posta Seq C7-F71-1-2-1-2-B-B-B/CML312SR = MAS[MSR/312]-117-2-2-1-2-B*4-B-B-B-B/CML312SR)
DH-10-B-B-B)-B-1-2-2-B-B

3 JPS25-36 FER resistant (NML85/(La Posta Seq C7-F71-1-2-1-2-B-B-B/CML312SR = MAS[MSR/312]-117-2-2-1-2-B*4-B-B-B-B/CML312SR)
DH-18-B-B-B)-B-2-2-2-B-B

4 JPS25-13 FER resistant (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-3-1-2-B-B

5 JPS26-4 FER resistant POBLAC21CO/NML 56-1-2-3

6 JPS26-86 FER resistant POBLAC2ICO/NML 89-5-2-2

7 JPS25-14 FER resistant (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-3-2-1-B-B

Females

1 JPS25-5 FER susceptible (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-1-1-5-B

2 JPS25-7 FER susceptible (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-1-1-8-B

3 JPS25-8 FER susceptible (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-1-1-10-B

4 JPS25-9 FER susceptible (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-2-1-1-B

5 JPS25-11 FER susceptible (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-2-1-4-B-B

6 JPS25-12 FER susceptible (NML85/(La Posta Seq C7-F96-1-2-1-1-B-B-B/CML444/CML444) DH-104-B-B-B)-B-2-1-6-B-B
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(R Core Team, 2021),. Each location-season combination was

considered an environment. Environments and replications were

treated as fixed effects and the other effects as random. Across

location linear model:

Yijk = m + genotypei + Envj + (genotype� Env)ij + rep(Env)jk
+ errorijk;

where Yijk is the phenotypic value of the ith genotype, jth

environment, kth replication, jk, the effect of kth replication in jth

environment and errorijk is the residual.

Variance components were calculated using the linear mixed

model:

Yijko = m + gi + lj + rkj + bojk + eijko,

where Yijko is the phenotypic value of the ith genotype at the jth

environment in the kth replication of the oth incomplete block, gi is

the effect of the ith genotype, lj, the effect of the jth environment, rkj,

the effect of the kth replication at the jth environment, bojk is the

effect of the oth incomplete block in the kth replication at the jth

environment, and eijko is the residual.

The Tukey’s HSD post-hoc test was performed to determine

significant differences among the means of genotypes across

environments. This test provides pairwise comparisons while

controlling the family-wise error rate. The analysis was conducted

using the agricolae package (De Mendiburu, 2021) in R software (R

Core Team, 2021).

2.4.2 Determination of combining ability
The General Combining Ability (GCA) effects for each parent

were analyzed, as well as the Specific combining ability (SCA) effects

for the hybrids were Analyzed with R for Windows (AGD-R)

(Rodrıǵuez et al., 2015) software using the Henderson method to

estimate variances using the model;

Yijkq = m + gi + gj + sij + yq + rk(yq) + (gy)iq + (gy)jq + (sy)ijq

+ eijkq

where i = 1, 2,…., 6; j = 1, 2,…., 7; k = 1, 2; q = 1, 2, 3, 4, 5; and

Yijkq is the value of the hybrid frommating the jth male line and the

ith female line in the kth replication, in the qth environment; m is

the grand mean, gi is the GCA effect for the progeny of the ith

female line, gj the general combining ability effect for the progeny of

the jth male line, sij the SCA effect for hybrid got from mating the

ith female line and the jth male line, yq is the average effect of the

qth environment, rk(yq) is the effect of the kth replication nested

within the qth environment, (gy)iq and (gy)jq are the interactions

between the GCA effects and the environment, (sy)ijq is the

interaction between the SCA effect and environment, and eijkq is

the residual.

Broad sense (H2) and Narrow Sense (h2) heritabilities were also

estimated respectively using the formulae by (Falconer and Mackay,

1996);

h2 =
2d2GCA

2d2GCA + d2SCA + d2e
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Where; h2 = narrow sense heritability; d2GCA = variance of

general combining ability; d2SCA = variance of specific combining

ability of parents; d2e = error variance.

H2 =  
s 2
g

s 2
g +  

s 2
g  �e

ne
+   s 2

e
nenr

Where;

H2 = broad sense heritability;

s 2
g is the genetic variance,

s 2
g  �e is the genotype-by-environment interaction variance,

s 2
e is the residual error variance

ne is the number of environments,

nr is the number of replications.

The predominant gene action in the inheritance of resistance to

FER was estimated using Baker’s ratio (BR) (Baker, 1978),

computed as;

BR =
(2*d

2GCA)

(2�d2GCA + d2SCA)
3 Results

3.1 Mean performance of the maize
hybrids for FER across five
test environments

Table 2 presents the performance of 42 different hybrids

(labeled JPSH-1 to JPSH-42) across five environments (E1 to E5)

and their corresponding mean values. The means ranged from 2.9

to 6.9, with an overall mean of 4.6 across the five environments. The

hybrids exhibited different performances across environments, with

some performing consistently well or poorly across all

environments, while others show more variability. The hybrids

with the most outstanding performance for FER resistance were

JPSH-3, JPSH-35, JPSH-4, JPSH-1, JPSH-5, JPSH-12, JPSH-16,

JPSH-23, JPSH-29, JPSH-32 and JPSH-33 with mean severity

scores less than 4.0. The most susceptible hybrids with mean

severity scores above 5.0 were JPSH-18, JPSH-15, JPSH-30, JPSH-

36, JPSH-42, JPSH-10, JPSH-11, JPSH-13, JPSH-20, JPSH-21 and

JPSH-22. The mean scores for each environment (E1 to E5) varied,

suggesting that environmental conditions significantly influence

hybrid performance. Based on the studied environments, the

lowest FER severity score was recorded in E2 followed by E5 and

the highest score was in E4. Table 2 also presents the CV which is

the measure of relative variability, expressed as a percentage, a

higher CV suggests more variability in the data. Environments E2

and E5 had the highest CV values (59% and 59.8%, respectively),

suggesting more variability in hybrid performance in those

environments compared to E4, which has a lower CV (20.4%).

Differences in hybrid performance across environments may be

influenced by traits such as cycle length, which was not assessed in

this study. Future evaluations could explore the relationship

between cycle length and resistance to Fusarium Ear Rot. Also,
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while yield data were not collected, visual observations suggested

varying levels of plant vigor and ear development among hybrids,

warranting further investigation into their yield potential.
3.2 ANOVA of the FER severity for the
hybrids across five environments

The results of Analysis of variance are shown in Table 3, and

varying degrees of F. verticillioides infection were observed across

test environments. The combined analysis of variance across the

five environments showed that environment and genotypes were

highly significant (P < 0.001) for kernel infection, while the
TABLE 2 Mean Fusarium Ear Rot severities for 42 maize hybrids assessed
in five test environments within Uganda.

Hybrid Designation E1 E2 E3 E4 E5 Mean

JPSH1 JPS26-125JPS25-5 4 2.5 4 5 1.5 3.4

JPSH2 JPS26-125/JPS25-7 3.5 3 3.5 7 4 4.2

JPSH3 JPS26-125/JPS25-8 2 2 2.5 6.5 1.5 2.9

JPSH4 JPS26-125/JPS25-9 3.5 3 4 4 1 3.1

JPSH5
JPS26-125/
JPS25-11

2.5 2 2.5 8.5 2.5 3.6

JPSH6
JPS26-125/
JPS25-12

5 2.5 7.5 3 5 4.6

JPSH7 JPS25-22/JPS25-5 6 3.5 5 7.5 2.5 4.9

JPSH8 JPS25-22/JPS25-7 6 3.5 4 8.5 2.5 4.9

JPSH9 JPS25-22/JPS25-8 6 2.5 5 5 6 4.9

JPSH10 JPS25-22/JPS25-9 7 1 5 7.5 5 5.1

JPSH11 JPS25-22/JPS25-11 4 5.5 3 8.5 5 5.2

JPSH12 JPS25-22/JPS25-12 3 2.5 3 8 2.5 3.8

JPSH13 JPS25-36/JPS25-5 9 1 2 8.5 6 5.3

JPSH14 JPS25-36/JPS25-7 5.5 1.5 5 4.5 3.5 4

JPSH15 JPS25-36/JPS25-8 6 8 4.5 6.5 8.5 6.7

JPSH16 JPS25-36/JPS25-9 4.5 3 4.5 5 2.5 3.9

JPSH17 JPS25-36/JPS25-11 3.5 4.5 6 2 2 3.6

JPSH18 JPS25-36/JPS25-12 8 5 7 7.5 7 6.9

JPSH19 JPS25-13/JPS25-5 5.5 3 6 2 1.5 3.6

JPSH20 JPS25-13/JPS25-7 7.5 3 5 9 2.5 5.4

JPSH21 JPS25-13/JPS25-8 4.5 3.5 7.5 6.5 4.5 5.3

JPSH22 JPS25-13/JPS25-9 6 3 6 7.5 3.5 5.2

JPSH23 JPS25-13/JPS25-11 6 2.5 2.5 2.5 1.5 3

JPSH24 JPS25-13/JPS25-12 7 4 3.5 8.5 4.5 5.5

JPSH25 JPS26-4/JPS25-5 7 2.5 6.5 5.5 4 5.1

JPSH26 JPS26-4/JPS25-7 3 3 4 6.5 7 4.7

JPSH27 JPS26-4/JPS25-8 5.5 2.5 4.5 5 6.5 4.8

JPSH28 JPS26-4/JPS25-9 2 5 7 1.5 6 4.3

JPSH29 JPS26-4/JPS25-11 3 2.5 5 3.5 1.5 3.1

JPSH30 JPS26-4/JPS25-30 8.5 2 7 7.5 6 6.2

JPSH31 JPS26-86/JPS25-5 6 2 3 5 4 4

JPSH32 JPS26-86/JPS25-7 3 3.5 3 7.5 2 3.8

JPSH33 JPS26-86/JPS25-8 4.5 3 3 5.5 3 3.8

JPSH34 JPS26-86/JPS25-9 5 3.5 7 8 5.5 5.8

JPSH35 JPS26-86/JPS25-11 2.5 1.5 2.5 7 1.5 3

JPSH36 JPS26-86/JPS25-12 5 5 3 9 8 6

JPSH37 JPS25-14/JPS25-5 6.5 3 6.5 8 3 5.4

(Continued)
TABLE 2 Continued

Hybrid Designation E1 E2 E3 E4 E5 Mean

JPSH38 JPS25-14/JPS25-7 7 4 6 7.5 1 5.1

JPSH39 JPS25-14/JPS25-8 4.5 3 7 6 4.5 5

JPSH40 JPS25-14/JPS25-9 3.5 2.5 5.5 8.5 2 4.4

JPSH41 JPS25-14/JPS25-11 8.5 5.5 5.5 7.5 1.5 5.7

JPSH42 JPS25-14/JPS25-12 5 2 7.5 8.5 7 6

Mean 5.1 3.1 5 6.1 3.8 4.6

LSD 1.8 1.3 1.7 2.2 2.1 1

CV 47.6 59 44.4 20.4 59.8 0.22
front
E1 Buginyanya2022A; E2 Nakyesasa2022A; E3 Nakyesasa2022B; E4 Buginyanya2022B; E5
Bulindi2022B; LSD Least significant difference; CV Coefficient of variation.
In bold: Lowest mean values indicating resistance.
TABLE 3 Mean squares and degrees of freedom for the combined
analysis of variance for percentage kernel infection for 42 tropical maize
hybrids in 5 environments of Uganda.

Source Df Mean Sq

Environment 4 78.30***

Rep(Env) 5 2.09***

Genotypes 41 10.00***

GCAMALE 6 16.14***

GCAFEMALE 5 17.85***

SCA 30 7.62*

Genotype × Env 164 5.72*

GCAMALE × Env 24 8.47***

GCAFEMALE × Env 20 7.76*

SCA × Env 120 4.79ns

Residuals 155 4.36

Baker’s Ratio 0.67

Broad Sense Heritability 0.73

Narrow Sense Heritability 0.22
Df Degrees of freedom; FER Fusarium Ear Rot; (%); level of significance ***(1%), **(5%),
*(10%); ns, not significant; GCAMALE male general combining ability, GCAFEMALE, female
general combining ability; SCA, specific combining ability.
iersin.org
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Genotype × Environment interaction was significant at P < 0.05.

The F1 hybrid mean square was partitioned into male general

combining ability (GCAMALE), female general combining ability

(GCAFEMALE), and specific combining ability components. The

mean squares for (GCAMALE) and (GCAFEMALE) were highly

significant (P < 0.001). The mean squares for GCAMALE ×

environment and GCAFEMALE × Environment interaction effects

were highly significant (P < 0.001) and significant at P < 0.05

respectively. The ANOVA results (Table 3) indicate that the overall

contributions of both male and female GCA effects are significant,

reflecting the importance of additive genetic effects for resistance to

Fusarium Ear Rot. However, when examining individual lines in

Table 4, JPS26-125 was the only male line with a statistically

significant negative GCA effect, while other male and female lines

also contributed to resistance but did not reach statistical

significance individually.
3.3 Analysis of general combining ability
for Fusarium verticillioides ear rot

The results for the combining ability of the 13 parents for FER

severity are presented in Table 4. Based on GCA effects, the best

inbred parents for producing hybrids with resistance to FER were

those with negative GCA. Male inbred lines JPS26-125, JPS26-86

and JPS25-13, with JPS26-125 having the most negative (-0.98)

GCA while JPS25-14 had the most positive effect of 0.61. Among

the female inbred lines, JPS25-11 exhibited the most negative GCA

effect (-0.75), indicating its strong contribution to resistance to

Fusarium Ear Rot (Table 4).
TABLE 4 General combining ability effects of (GCAFEMALE) and
(GCAMALE) for FER infection across the five environments.

GCA Rank

Males

JPS25-13 -0.03 3

JPS25-14 0.61 7

JPS25-22 0.18 6

JPS25-36 0.41 5

JPS26-125 -0.98* 1

JPS26-4 0.11 4

JPS26-86 -0.30 2

Females

JPS25-11 -0.75 1

JPS25-12 0.86 6

JPS25-5 -0.09 3

JPS25-7 -0.02 4

JPS25-8 0.11 5

JPS25-9 -0.13 2
F
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TABLE 5 Estimates of specific combining ability effects for FER scores of
13 inbred lines across the environments.

FEMALE MALE MALE ×
FEMALE
MEAN

SCA RANK

JPS25-11 JPS25-13 2.96* -0.91 5

JPS25-12 JPS25-13 5.32 -0.17 18

JPS25-5 JPS25-13 3.55 -0.97 3

JPS25-7 JPS25-13 5.45 0.85 38

JPS25-8 JPS25-13 5.28 0.56 31

JPS25-9 JPS25-13 5.12 0.63 33

JPS25-11 JPS25-14 5.67 1.16 40

JPS25-12 JPS25-14 6.05 -0.08 19

JPS25-5 JPS25-14 5.41 0.25 27

JPS25-7 JPS25-14 5.2 -0.04 20

JPS25-8 JPS25-14 4.93 -0.44 13

JPS25-9 JPS25-14 4.28 -0.86 6

JPS25-11 JPS25-22 5.16 1.08 39

JPS25-12 JPS25-22 3.74** -1.97 1

JPS25-5 JPS25-22 4.97 0.23 26

JPS25-7 JPS25-22 4.95 0.14 25

JPS25-8 JPS25-22 4.97 0.03 22

JPS25-9 JPS25-22 5.19 0.49 29

JPS25-11 JPS25-36 3.65 -0.66 10

JPS25-12 JPS25-36 6.73 0.8 37

JPS25-5 JPS25-36 5.36 0.4 28

JPS25-7 JPS25-36 4.06 -0.98 2

JPS25-8 JPS25-36 6.58 1.41 41

JPS25-9 JPS25-36 3.97 -0.97 4

JPS25-11 JPS26-125 3.7 0.78 36

JPS25-12 JPS26-125 4.59 0.04 24

JPS25-5 JPS26-125 3.4 -0.17 17

JPS25-7 JPS26-125 4.25 0.6 32

JPS25-8 JPS26-125 2.95 -0.83 8

JPS25-9 JPS26-125 3.12 -0.42 14

JPS25-11 JPS26-4 3.17* -0.85 7

JPS25-12 JPS26-4 6.33 0.69 35

JPS25-5 JPS26-4 5.16 0.49 30

JPS25-7 JPS26-4 4.78 0.03 23

JPS25-8 JPS26-4 4.85 -0.02 21

JPS25-9 JPS26-4 4.29 -0.35 15

JPS25-11 JPS26-86 2.99 -0.6 12

(Continued)
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3.4 Analysis of specific combining ability
Fusarium verticillioides ear rot

The results of the SCA of the crosses are presented in Table 5.

The Specific Combining Ability effects for FER were significant at P

< 0.05, whereas the SCA x environment interaction was not

significant across the five locations. Out of the 42 hybrids, 21 had

negative SCA values but only three were significant, these being

JPS25-11//JPS25-13, JPS25-12//JPS25-22 and JPS25-11//JPS26-4,

thus considered the best combinations. Hybrid JPS25-12//JPS25-

22 had the most negative (-1.97) SCA effects for F. verticillioides ear

rot across the environments and it was significant, whereas the

highest positive value was found for hybrid JPS 25-9/JPS26-86.
4 Discussion

It is important to note that the study involved a small sample of

seven males and six females selected for their FER resistance. As

such, the conclusions drawn here pertain specifically to the

genotypes evaluated and should not be generalized to the broader
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maize germplasm, including Ugandan maize populations. Never the

less, improving maize yield is a key priority for breeders to meet the

rising global demand, especially by managing diseases like FER.

Breeding for resistance is the most effective strategy for controlling

FER, particularly for smallholder farmers who primarily grow

maize for subsistence and often lack the resources to implement

other control measures (Chen et al., 2016). However, to optimize

this approach, it is crucial to identify stable and effective sources of

resistance and understand their performance across different

environments. This is especially important since FER resistance is

a complex trait, controlled by many genes with minor individual

effects, exhibiting low to moderate heritability, and highly

influenced by environmental factors.

In this study, significant variation was observed among the

hybrids (P < 0.001), indicating substantial genetic diversity that

could facilitate selection progress for FER resistance under artificial

inoculation. This variation is attributed to the hybrids’ differing

responses to the fungus and the distinct resistance mechanisms

employed (Hung and Holland, 2012). The presence of significant

variation among inbred lines and their hybrids for Fusarium

verticillioides infection offers an opportunity for genetic

improvement in local breeding programs (Clements et al., 2004;

Tembo et al., 2022). Moreover, the significant genotype-by-

environment interactions (P < 0.1) suggest that the hybrids

performed differently across the study locations, highlighting the

role of environmental factors in their differential responses (Tembo

et al., 2022). This underscores the importance of testing hybrids

across multiple environments to select those suited to specific

production areas or with broad adaptation potential (Mugisa

et al., 2022). Similar findings were reported by Ouko et al. (2020);

Tembo et al. (2022), and Netshifhefhe et al. (2018). The observed

genotype × environment interactions in this study could be

influenced by unmeasured traits such as cycle length, which has

been correlated with rotting disease resistance in previous studies
TABLE 5 Continued

FEMALE MALE MALE ×
FEMALE
MEAN

SCA RANK

JPS25-12 JPS26-86 5.9 0.69 34

JPS25-5 JPS26-86 4.02 -0.23 16

JPS25-7 JPS26-86 3.71 -0.61 11

JPS25-8 JPS26-86 3.74 -0.71 9

JPS25-9 JPS26-86 5.69 1.47 42
Level of significance; **(5%), *(10%).
FIGURE 1

Representation of the pairwise comparisons with their confidence intervals: • The bars represent the mean differences between environments. • The
horizontal lines extending from each bar indicate the confidence intervals (95%). • The dashed vertical line at 0 highlights where no difference exists.
• The annotations next to the bars indicate the significance levels (***, *,., or none).
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(Agrama and Moussa, 1996; Zwonitzer et al., 2010; Chabanne et al.,

2020). Incorporating this trait in future evaluations could provide a

more comprehensive understanding of FER resistance.

Partitioning the general combining ability (GCA) into male and

female components revealed highly significant GCA effects,

indicating that additive genetic effects from both male and female

parents are crucial. The specific combining ability (SCA) was

marginally significant (P < 0.05), suggesting that non-additive

genetic effects also play a role, albeit making a smaller

contribution. Similar findings were reported by various studies

using different materials and in different environments among

them; Tembo et al. (2022) and Ouko et al. (2020).

In this study, negative combining ability effects were desirable,

as they indicate a line’s contribution to resistance, while positive

combining ability effects suggest susceptibility (Mukanga et al.,

2010; Tembo et al., 2022). Based on GCA effects, the best inbred

parents for producing FER-resistant hybrids were JPS25-13, JPS26-

125, JPS26-86, JPS25-11, JPS25-5, JPS25-7, and JPS25-9.

Incorporating these resistant lines into breeding programs could

strengthen resistance to FER in future hybrids (Ouko et al., 2020).

These lines could be used in recurrent selection programs or as

testers in hybrid combinations. The significant contribution of lines

with high GCA effects highlights the predominance of additive gene

action in conferring resistance to FER. Although specific hybrids

displayed significant SCA effects, these were limited and

represented exceptions rather than the majority of the tested

hybrids. The hybrids JPS25-12/JPS25-22, JPS25-11//JPS26-4, and

JPS25-11/JPS25-13 stand out for their significant negative SCA

effects, showing strong non-additive contributions to resistance.

These crosses could serve as models for generating high-performing

hybrids in different environments.

The environment significantly influenced the observed

variation in fungal colonization, as shown in Table 2, with

differing conditions favoring the spread of F. verticillioides. This

was evident in the differences in the hybrids’ responses between the

five environments. For example, hybrid JPSH-13 exhibited

contrasting responses, being susceptible in environments E1, E4,

and E5, but resistant in E2 and E3, a pattern seen in several hybrids

environment E4 (Buginyanya) had the highest infection scores,

likely due to high relative humidity and rainfall, which promote the

fungus’s growth and spread. The same result was also observed by

Ouko et al. (2020). The significant GCA × environment interactions

in this study suggest that selecting parental lines tailored to specific

environments could enhance resistance (Mukanga et al., 2010). A

visual representation in Figure 1 of pairwise comparisons for Ear

Rot among the different environments highlights significant

differences in mean values. Notably, the comparison between E2

and E1 shows a highly significant negative difference, indicating that

E2 has a considerably lower mean Ear Rot than E1. Similarly, E3

exhibits a significantly higher mean Ear Rot compared to E2, as

evidenced by the positive difference and non-overlapping

confidence intervals. Other comparisons, such as E5-E1 and E5-

E3, reveal significant differences, with E5 generally exhibiting lower
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mean values. In contrast, some comparisons, like E3-E1 and E4-E1,

show no statistical significance, as their confidence intervals include

zero, suggesting similar performance between these environments.

Overall, the results demonstrate notable variability in Ear Rot

severity across environments, with certain environments

performing significantly better or worse than others. These

findings underscore the importance of environment-specific

factors in influencing Ear Rot levels.

The broad-sense heritability in this study was relatively high

(0.73), indicating that a large portion of the phenotypic variance

was attributable to genetic factors such as additive, dominance, and

epistatic effects. This suggests that over 70% of the observed

phenotypic variance in the hybrids was inherited from the

parents, reflecting similarities between the inbred lines and their

hybrids (Netshifhefhe et al., 2018). The high heritability estimates

imply that resistance to FER can be effectively achieved by crossing

two parental inbred lines with favorable GCA effects (i.e., negative

GCA for disease resistance). The strong heritability of resistance to

Fusarium verticillioides suggests that resistance levels in the hybrids

closely resemble those of their parent inbred lines (Netshifhefhe

et al., 2018), making phenotypic selection for improved resistance to

FER a viable strategy. This information can therefore guide

breeding programs in developing maize hybrids with enhanced

resistance to FER. The Baker’s ratio of 0.67 indicates that additive

genetic effects, as captured by the GCA, play a more significant role

than non-additive effects (SCA) in the inheritance of resistance to

FER. This aligns with the ANOVA results, which show highly

significant GCA effects for both male and female parents, and these

results are consistent with findings by Rose et al. (2016) and Hung

and Holland (2012).

The findings of this study are useful to aid breeders in selecting

maize lines with resistance to mycotoxigenic fungi for the

development of hybrids with improved tolerance to mycotoxin

contamination in Uganda and other tropical countries. Additive

gene effects were important in conferring resistance to and ear rot.

Furthermore, hybrids with improved resistance to F. verticillioides

infection were generated, and parental lines served as a good

indicator of a hybrid’s performance to infection. Although this

study focused on FER resistance, yield is a critical factor for farmer

adoption. Future evaluations of these hybrids should prioritize

identifying combinations that balance resistance with high

productivity, ensuring both economic viability and disease control.

Future research should incorporate the evaluation of cycle length and

yield potential to ensure the development of hybrids that combine

Fusarium Ear Rot resistance with superior agronomic performance.
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