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Introduction: Orychophragmus violaceus is a popular horticultural plant

because of its bright purple flowers that are commonly found in parks and

green belts. However, three flower colors (purple, light purple, and white) were

observed in the wild-typeO. violaceus. Themolecular mechanism underlying the

formation of these intriguing flower colors remains unknown.

Methods: Here, we combined metabolomics and transcriptomics to identify a

pathway cascade leading to anthocyanin biosynthesis associated with flower

color formation in O. violaceus.

Results and discussion: A total of 152 flavonoid metabolites were identified based

on metabolomic data, most of which were quercetin and kaempferol.

Comparative analysis of the metabolites among the three flower samples

revealed that two anthocyanins, peonidin-3-glucoside and delphinidin 3-(6’’-

malonyl-glucoside), are the pigments most likely responsible for the coloration

of the petals of O. violaceus. Subsequent transcriptomic analysis revealed 5,918

differentially expressed genes among the three groups of flowers, 87 of which

encoded 13 key enzymes in the anthocyanin biosynthetic pathway. Moreover, the

high expression of two transcription factors, OvMYB and OvbHLH, in purple

flowers suggests their role in the regulation of anthocyanin biosynthesis. By

integrating metabolomic and transcriptomic data, OvANS, which encodes

anthocyanidin synthase, was significantly upregulated in purple flowers. OvANS

is the enzyme responsible for the transformation of colorless leucoanthocyanidins

to colored anthocyanidins. This study provides novel insights into the molecular

mechanism of flower color development inO. violaceus, laying the foundation for

flower color breeding.
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1 Introduction

The flower colors of various plants in nature span the entire

color spectrum of both humans and pollinators (Rezende et al.,

2020). Plants of different species often differ in flower color, and

even the same species differs in geographic and temporal scales

(Trunschke et al., 2021). Flower color not only affects the

interaction between plants and pollinators but also serves as an

important quality determinant for ornamental plants (Zhou et al.,

2023; Sun et al., 2021; Wang et al., 2024a). Many colorful species,

such as Chrysanthemum, Cymbidium, and Malus halliana, have

been selected as ornamental plants (Tang et al., 2022; Li et al., 2021a;

Han et al., 2020).

The formation of flower color is determined mainly by the type

and content of colored secondary metabolites such as anthocyanins,

carotenoids, and betaine in flower tissue (Jiang et al., 2020; Guo and

Qiu, 2013; Tanaka et al., 2008). Among these three pigments,

carotenoids are fat-soluble chemicals that can appear yellow to

red and are widely distributed in seed plants and are involved in

photosynthesis (Guan et al., 2023; Sun et al., 2024; Wang et al.,

2018). Betaines are water-soluble chemicals that appear yellow to

red and occur only in the order Caryophyllales (Tomizawa et al.,

2021). Anthocyanins, which are composed of flavones and

aglycones, are soluble in water and are reported to be the

dominant metabolites that determine flower color (Wang et al.,

2024b; Li et al., 2022). Anthocyanins enable flowers to exhibit a

broad spectrum of colors, from orange and red to purple and blue

(Zhang et al., 2022; Guo et al., 2019; Xiao et al., 2023). There are six

types of anthocyanins, including pelargonidin (Pg), cyanidin (Cy),

delphinidin (Dp), peonidin (Pn), petunidin (Pt), and malvidin (Mv)

(Tanaka and Brugliera, 2013; Zhang et al., 2014). The types of

anthocyanins vary among different species of plants and are the

main factors affecting different flower colors. In addition, flavone

and flavonol derivatives are responsible for copigmentation,

endowing plants with unlimited color variation (Liu et al., 2020).

Orychophragmus violaceus (family Brassicaceae) is an annual or

biennial herb, also known as the ‘February orchid’ for its flowering

phase in February and is widely distributed in Northeast China and

North China. O. violaceus is mainly used as an oil-producing crop

and ornamental plant in China (Wang et al., 2014; Guo et al., 2022).

Purple flowers are the main reason for its popularity as a

horticultural plant. However, three flower colors (purple, light

purple, and white) were observed in the wild-type O. violaceus.

To date, the molecular mechanism underlying purple flower

formation in O. violaceus remains unknown. Anthocyanins have

been proven to be the dominant constituents of the purple pigments

of flowers in several plants, such as Plumbago auriculata, Scutellaria

baicalensis, and Monkeyflowers (Phrymaceae) (Li et al., 2021b; Hu

et al., 2023; Grossenbacher et al., 2021). Additionally, Honda et al.

(2005) reported that the purple petals of O. violaceus are rich in

anthocyanins. Therefore, we speculated that anthocyanins might

contribute to the development of purple flowers in O. violaceus. In

this study, three groups of flowers (purple, light purple, and white)

were investigated to explore the differences in anthocyanin

metabolism and transcription of related biosynthetic genes. Here,
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we combined transcriptomic and metabolomic data of O. violaceus

to determine whether anthocyanins are the dominant pigments

involved in purple petal formation.
2 Materials and methods

2.1 Plant materials

O. violaceus samples were taken from the test site on Hehua

Road in Baoding City, Hebei Province (115.57°E, 38.85°N). Three

distinct flower colors (purple, light purple, and white) were

collected at the full bloom stage on 8 April 2023, and named

OvP, OvLP, and OvW, respectively. The colors of the flowers were

compared via CIELAB analysis using a spectrophotometer, and

each flower was tested three times. All samples were frozen in liquid

nitrogen and stored at −80°C for metabolomic and transcriptomic

sequencing studies.
2.2 Determination of relative
anthocyanin content

The total anthocyanin content was measured using the method

reported by Jiang et al. (2020). A 0.100 g fresh flower sample was

mixed with 1.0 ml of the extract (methanol:hydrochloric acid =

99.9:0.1) and ground. The mixture was ultrasonically shaken for 30

s and centrifuged at 12,000×g for 2 min at 4°C. The absorbance was

measured at 530 nm and 600 nm. The results are expressed as units

g{sp}−1{/sp} FW.
2.3 Metabolite extraction

A solid sample of 100 mg and 400 µL of extract solution

(methanol:water = 4:1(v:v)) containing four internal standards (L-

2-chlorophenylalanine (0.02 mg/mL), etc.) were added in a 2 mL

centrifuge tube with a diameter of 6 mm abrasive bead. The sample

solution was ground in a frozen tissue grinder for 6 min (−10 °C, 50

Hz) and then extracted by ultrasound at a low temperature for 30

min (5 °C, 40 kHz). The sample was placed at −20°C for 30 min,

centrifuged for 15 min (4 °C, 13,000g), and the supernatant was

transferred to an injection vial with internal intubation for machine

analysis. The flowers of the three colors were repeated three times,

and a total of nine samples were collected. The supernatant of each

sample (20 µL) was mixed as a quality control sample. The

instrument platform for this LC–MS analysis was the UHPLC-Q

Exactive system of Thermo Field’s ultra-high-performance liquid

chromatography tandem Fourier Transform mass spectrometry

(Majorbio, Shanghai).

2.3.1 Chromatographic conditions
The chromatographic column was an ACQUITY UPLC BEH

C18 column (100 mm × 2.1 mm i.d., 1.7 µm; Waters, Milford,

USA), mobile phase A consisted of 2% acetonitrile water
frontiersin.org
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(containing 0.1% formic acid), and mobile phase B consisted of

acetonitrile (containing 0.1% formic acid). The sample size was 3

mL, and the column temperature was 40 °C.

2.3.2 Mass spectrum conditions
The sample quality spectrum signal was collected in positive

and negative ion scanning modes, and the quality scanning range

was 70 m/z–1,050 m/z. Ion spray voltage: positive ion voltage 3,500

V, negative ion voltage −3,000 V, sheath gas flow rate 50 arb,

auxiliary gas flow rate 13 arb, ion source heating temperature 450 °

C, 20–40–60 V cyclic collision energy, Full MS resolution 70,000,

and MS2 resolution 17,500 (Yang et al., 2024).
2.4 Metabolite identification and analysis

After completion of the computer, the LC–MS raw data were

imported into the metabolomics processing software Progenesis QI

(Waters Corporation, Milford, USA) for processing, and a data

matrix of retention time, mass-charge ratio, and peak intensity was

obtained. Then, the data matrix was filtered for low-quality peaks,

missing values were removed, vacant values were filled,

normalization, QC sample relative standard deviation (RSD)

assessment, data transformation, and other preprocessing was

performed to standardize the data structure. Second, the ropls

package (Version1.6.2) in R language was used to conduct

principal component analysis (PCA) and orthogonal least partial

square discriminant analysis (OPLS-DA) on the pre-processed data

matrix, and the stability of the model was evaluated using seven

cycles of interactive verification. Use http://www.hmdb.ca/, https://

metlin.scripps.edu/ and others public database and self-built

database to identify the metabolite search library. The selection of

metabolites with significant differences was based on the variable

weight value (VIP) obtained using the OPLS-DA model and the P-

value of the Student’s t-test. Metabolites with VIP >1 and P <0.05

were identified as significantly different metabolites. Differences in

metabolites by KEGG database (https://www.kegg.jp/kegg/

pathway.html) for the metabolic pathways of annotation and

differences in metabolites involved in pathways. Python software

package scipy was used. Stats were used for pathway enrichment

analysis, and the biological pathways most relevant to the

experimental treatment were obtained using Fisher’s exact test.
2.5 RNA sequencing

The petals of nine freeze-dried samples were ground for RNA

extraction using an MJZol Total RNA Extraction Kit (Majorbio,

Shanghai, China). The concentration and purity of the extracted

RNA were detected using Nanodrop2000. RNA integrity was

measured using Biowest Agarose (Biowest, Spain), and RIN

values were determined using Agilent2100. The mRNA was

randomly fractured using a fragmentation buffer, and small
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fragments of approximately 300 bp were separated by magnetic

bead screening. Six-base random hexamers were added to invert the

mRNA template to synthesize the first cDNA, and the second

strand was then synthesized to form a stable double-stranded

structure. The End Repair Mix was added to the double strand to

form a flat end, followed by the addition of nucleotide A to the 3’

end to join the Y-shaped joint. After adapter connection, the

product was purified and the fragments were sorted. The sorted

product was enriched by PCR (T100 Thermal Cycler, Bio-Rad,

USA), and the final library was purified. Quantification was

performed using Qubit 4.0, and bridge PCR amplification was

performed using cBot to generate the clusters. Sequencing was

performed using an Illumina NovaSeq 6000 instrument with a read

length of 2 ∗ 150 bp. The data generated by sequencing were stored

in Fastq format. Sequencing data quality control using software

fastp (https://github.com/OpenGene/fastp), including the sequence

of quality evaluation, deletion, low quality of the sequence

(including joint series, low quality of reading section, N rate (N

uncertain information base) high, and long for short sequences),

and clean reads were retained for subsequent analysis.
2.6 Transcriptome data analysis

Sequencing data after quality control and filtering, using HiSat2

(http://ccb.jhu.edu/software/hisat2/index.shtml) and the reference

genome alignment, for subsequent transcription of this assembly,

expression quantity calculation and so on mapped data (reads), At

the same time, the quality of the transcriptome sequencing results

was evaluated. Using RSEM (http://deweylab.github.io/RSEM/), the

expression levels of gene transcription and quantitative analysis,

differentially expressed by DESeq2 (http://bioconductor.org/

packages/stats/bioc/DESeq2) analysis, the threshold of

differentially expressed genes was set to P-adjust values <0.05,

fold change ≥2, and the BH multiple calibration method was used

to correct. According to the Kyoto Encyclopedia of Gene and

Genome (KEGG) pathway database, NCBI non-redundant (Nr)

database, Swiss-Prot Protein Sequence Database (Swiss-Prot),

Evolutionary Genealogy of Genes: Non-supervised Orthologous

Groups (EggNOG), Gene Ontology (GO), and Protein Family

Database (Pfam), annotated gene function. Differences in gene

function of KEGG pathway enrichment were analyzed using the

Python scipy software package (https://scipy.org/install/) (Young

et al., 2010; Kanehisa et al., 2023).
2.7 qRT-PCR analysis

The extracted RNA was reverse-transcribed into cDNA using a

Hiscript III RT SuperMix for qPCR (+gDNA wiper) reverse

transcription kit (Vazyme, China), according to the manufacturer’s

instructions. The Actin 7 gene (ID: OV05G038310) ofO. violaceuswas

used as the internal reference gene. The ChamQ Universal SYBR
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qPCR Master Mix kit (Vazyme, China) was used to detect the relative

expression levels of 13 genes related to the anthocyanin synthesis

pathway. Gene-specific primers used are listed in Supplementary

Table S1. Real-time fluorescence quantitative polymerase chain

reaction (qRT-PCR) was performed using ABI Prism 7500 real-time

fluorescence quantitative PCR system. Quantitative analyses were

performed using the 2{sp}−DDCT{/sp} method (Zhao et al., 2022).
2.8 Statistical analysis

Statistical analysis was performed using the SPSS Statistics 27

software (GraphPad Software, Inc.). Data are presented as the mean

± standard deviation (SD). The level of statistical significance was

analyzed using the least significant difference test (p <0.05).
3 Results and discussion

3.1 Relative contents of total anthocyanins
in the flowers of O. violaceus

Phenotypically, the flowers of the three colors displayed no

observable differences in shape, but the OvW and OvLP flowers

were smaller than the OvP flowers (Figure 1A). Intuitively, the

pigment contents of OvP and OvLP were significantly greater than

that of OvW. We selected three fully blooming flowers for

anthocyanin measurement and reported that the anthocyanin

content in OvP (~78.77 units/g FW) was significantly greater

than that in OvLP (~23.83 units/g FW) and OvW (~0.60 units/g
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FW) (Figure 1B). These results suggest that total anthocyanin

content might play an important role in the color of O. violaceus.
3.2 Metabolic differences in flavonoids

To investigate the metabolic differences of flavonoids in flowers of

the three colors, we performed untargeted metabolome analysis via LC

−MS and established a high-capacity metabolic library. KEGG

metabolic pathway enrichment analysis with a P value <0.05

indicated that metabolic processes associated with the biosynthesis of

phenylalanine and flavonoids were enriched (Figure 2A). A total of 152

flavonoid metabolites were detected and classified into 11 types:

anthocyanins (3), chalcones (3), flavanols (1), flavanones (2),

flavones (9), flavonols (8), isoflavones (18), new flavonoids (1),

flavone glycosides (94), other flavones (8), and flavanonols (5)

(Figure 2B). Pairwise comparisons (OvP vs OvW, OvLP vs OvW,

and OvP vs OvLP) revealed significant metabolic differences in 88

flavonoids, including 55 flavonoids in OvP vs OvW (up: 40, down: 15),

59 inOvLP vs OvW (up: 32, down: 27), and 54 inOvP vs OvLP (up: 36,

down: 18) (VIP value >1) (Figures 2C, D). Additionally, three

anthocyanins were identified in all the flower samples, including

peonidin-3-glucoside, delphinidin 3-(6”-malonyl-glucoside), and

cyanidin 3-(2G-glucosylrutinoside), which accumulated significantly

in OvP and OvLP (Figure 2E). Notably, peonidin-3-glucoside and

delphinidin 3-(6’’-malonyl-glucoside) were positively correlated with

the degree of color of the three flower samples, suggesting that they

might be the main components of the flower pigments of O. violaceus.

The correlation between peonidin and plant petal color has also been

characterized in Rosa rugosa (Zan et al., 2024).
FIGURE 1

Comparison of flower phenotypes and relative anthocyanin contents in different flower colors of O. violaceus: (A) Comparison of mature petals and
their anthocyanin extracts. (B) Relative content of total anthocyanins in white, light purple, and deep purple mature petals (asterisk (***) for P <0.001,
(****) for P <0.0001).
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3.3 Expression profile of structural genes
involved in flavonoid
biosynthetic pathways

Transcriptome sequencing was performed using the Illumina

NovaSeq 6000 sequencing platform to analyze gene expression

associated with anthocyanin metabolic pathways in the three groups

offlower samples. A total of 71.09 Gb of clean data were obtained, with

94.44% of the bases having Q30 scores. For all the clean reads, the

comparison rate with the reference genome (https://ngdc.cncb.ac.cn/
Frontiers in Plant Science 05
search/?dbId=gwh&q=GWHBGBQ00000000&page=1) ofO. violaceus

ranged from 69.24% to 72.49%. BLASTX was used to retrieve all

matched clean reads from the NR, SwissProt, Pfam, KEGG, GO,

and eggNOG databases, along with functional annotations.

According to the criteria of FDR <0.05, and |Log2FC| ≥1, 5,918

differentially expressed genes (DEGs) were identified in the three

groups of flowers. Through cluster analysis of DEGs, tissue-specific

transcriptomic maps of O. violaceus flowers were generated

(Figure 3A). The expression index of cluster analysis was calculated

using the fragments per kilobase and per million reads (FPKM)
FIGURE 2

Metabolomic analysis of O. violaceus: (A) KEGG pathway enrichment histogram of the top 10 differentially accumulated metabolites. The asterisk (*)
indicates a significant difference (***P <0.001, based on Duncan’s multivariate range test). (B) Stratified cluster heatmaps of the 152 flavonoid
metabolites in each sample. (C) Venn diagrams and bar charts of the compositions of different groups of flavonoid metabolites. (D) Volcanic map of
the differential isoflavone metabolites. (E) Clustering heat maps of three different accumulated anthocyanins.
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method. Hierarchical clustering analysis was performed on the DEGs,

and four main subclustering trends, namely, purple upregulation, light

purple upregulation, purple downregulation and light purple

downregulation, were obtained (Figure 3B). The Venn diagram

revealed 4,350, 2,341, and 2,596 DEGs in the flowers of the three

groups: OvP vs OvW, OvLP vs OvW, and OvP vs OvLP, respectively.

Among the DEGs, 2,329, 1,328, and 1,425 genes were upregulated,

whereas 2,021, 1,013, and 1,171 genes were downregulated, respectively

(Figure 3C). KEGG metabolic pathway enrichment analysis indicated
Frontiers in Plant Science 06
that the DEGs were mainly enriched in flavone, flavonol, and

anthocyanin biosynthetic pathways (Figure 3D). Analysis of

transcriptome data revealed that 87 genes encoding 13 key enzymes,

including OvPAL (6), OvC4H (3), Ov4CL (18), OvCHS (8), OvCHI

(11), OvF3H (8), OvF3’H (5), OvF3’5’H (1), OvDFR (4), OvANS (1),

OvUFGT (9), Ov3MaT1 (2), and OvMT (11), were associated with the

anthocyanin biosynthetic pathway. According to the expression results,

OvPAL, OvC4H, OvCHS, OvANS, OvUFGT and most other structural

genes in the anthocyanin biosynthetic pathway of O. violaceus were
FIGURE 3

Transcriptomic analysis of O. violaceus: (A) Clustering heatmap of DEGs (5918). (B) DEG subcluster trend graph. (C) Venn diagram and histogram of
DEGs. (D) Bubble diagram of the KEGG metabolic pathway enrichment in the three comparison groups. (E) Volcano map of differentially
expressed genes.
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significantly upregulated in OvP and OvLP. Notably, OvANS (ID:

Ov03G032130) was the most significantly upregulated DEG among the

three flower types (Figure 3E). The gene transcription levels of OvANS

in OvP and OvLP were 22 and 17 times greater than those in OvW,

respectively (Figure 3E). The effect of ANS on flower color change has

been verified in many species (Hu et al., 2023; Wu et al., 2023).

Sequence alignment revealed that OvANS has presented 96.4%, 95%,
Frontiers in Plant Science 07
and 94% amino acid identity with BjANS (Brassica juncea,

ACH58397.1), RsANS (Raphanus sativus, ALH21136.1), and MiANS

(Matthiola incana, AAB82287.1), respectively. Phylogenetic analysis

revealed that OvANS is closely related to ANS proteins of Thlaspi

arvense and Brassica carinata (Supplementary Figure S2).

Anthocyanin biosynthesis is positively regulated by members of

the MYB, bHLH, and WD40 transcription factor families, which
FIGURE 4

qPCR validation of key genes in the anthocyanin synthesis pathway of O. violaceus. The asterisk (*) for P < 0.05, (**) for P < 0.01, (***) for P < 0.001,
and (****) for P < 0.0001. ns, no significant correlation.
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together form the key MBW complex that promotes flower color

formation (Kim et al., 2018; Jin et al., 2016). Hu et al. (2023)

reported that the MYB transcription factor could bind to the

promoter of ANS and increase its expression in S. baicalensis. Qi

et al. (2020) demonstrated that bHLH1 of Paeonia suffruticosa could

transcriptionally activate the expression of DFR and ANS via direct

binding to their promoters. WD40 is primarily involved in the

formation of the MBW complex and plays a regulatory role in

anthocyanin biosynthesis (Gu et al., 2019). In addition to the MBW

complex, transcription factors, such as WRKY and NAC, also play
Frontiers in Plant Science 08
important roles in the regulation of anthocyanin biosynthesis

(Verweij et al., 2016; Zhou et al., 2015). In this study, we

retrieved 307 transcription factors, from RNA-seq data, including

OvMYB, OvbHLH, OvWD40, OvWRKY, and OvNAC, which might

be related to the synthesis of cyanidin. Compared with those in

OvW, 70 transcription factors (28 OvMYB, 13 OvbHLH, 5

OvWD40, 14 OvWRKY, and 10 OvNAC) were differentially

expressed in OvP. The expression of two transcription factors,

OvMYB (OV09G037310) and OvbHLH (OV02G027910),

significantly differed among the three groups of flowers and
FIGURE 5

Studies on genes related to the anthocyanin synthesis pathway of O. violaceus. (A) Pathway diagram of anthocyanin synthesis in O. violaceus. PAL,
phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate–CoA ligase; CHS, chalcone synthase; CHI, chalcone isomerase;
F3H, flavanone 3-hydroxylase; DFR, dihydroflavonol 4-reductase; F3’H, flavonoid 3’ hydroxylase; F3’5’H, flavonoid 3’,5’-hydroxylase; ANS,
anthocyanidin synthase; UFGT, anthocyanidin 3-O-glucosyltransferase; 3MaT1, anthocyanin 3-O-glucoside-6”-O-malonyltransferase; MT,
methyltransferase. (B) Heatmap of differentially expressed genes associated with anthocyanin synthesis in O. violaceus.
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increased with increasing flower color, suggesting that these

transcription factors may be the main regulatory factors

associated with anthocyanin biosynthesis (Supplemntary Table

S3). Interestingly, both these transcription factors were positively

correlated with structural genes in the anthocyanidin biosynthetic

pathway of O. violaceus, such as OvANS, OvPAL, OvCHS, OvDFR,

and OvUFGT, according to Spearman’s correlation analysis

(Supplementary Figure S1). Furthermore, the target genes of the

transcription factors were predicted using FIMO software, which

revealed that OvMYB might act on the OvANS, OvPAL, OvDFR,

OvF3’5’H, and OvF3’H genes; OvbHLH might act on OvDFR,

OvUFGT, OvF3’H, and OvCHS; and that OvWD40 might act on

OvDFR, OvF3’H, OvCHS, OvPAL, and OvANS.

To verify the reliability of the transcriptome information, we

performed quantitative real-time PCR (qRT-PCR) to determine the

expression of 13 DEGs involved in the synthetic pathway of

anthocyanins. The results revealed that the expression of nine

genes (OvPAL, OvCHS, OvCHI, OvF3’H, OvDFR, Ov3MaT1,

OvMT, OvUFGT, and OvANS) increased as the flower color

increased, whereas the expression of three genes (OvC4H, OvF3H,

and OvF3’5’H) tended to decrease (Figure 4). The expression levels

of OvUFGT, OvANS, and OvPAL were significantly higher in OvP

than in OvW. Moreover, the expression of Ov4CL did not correlate

with flower color. Overall, the qRT-PCR results were consistent

with those of the transcriptome analysis, with the exception of the

OvC4H gene, and further confirmed the correlation between the

upregulated genes and flower color.
3.4 Comprehensive analysis of the
transcriptome and metabolomics

Based on the metabolomic and transcription data, all structural

genes involved in the anthocyanin biosynthetic pathway in O.

violaceus were mapped (Figure 5A). As shown in Figure 5B, 32

prominent EDGs related to the anthocyanin biosynthetic pathway

were selected for comparison between the three flower groups. The

results of the analysis revealed that the expression of most DEGs

increased with the purple color of the flowers. In particular, OvANS,

which coverts colorless proanthocyanidins to colored

anthocyanidins, was significantly upregulated in OvP and OvLP

(Figure 5B). Moreover, OvUFGT was also highly expressed in OvP

and OvLP, and could catalyze the glycosylation of anthocyanidins

to form anthocyanins. The high expression of both key genes

resulted in high anthocyanin production, which was consistent

with the metabolomic data. Therefore, the metabolomic data

revealed that three anthocyanins, peonidin-3-glucoside,

delphinidin 3-(6”-malonyl-glucoside), and cyanidin 3-(2G-

glucosylrutinoside), rather than the intermediates of the

biosynthetic pathway, accumulated in OvP and OvLP

(Figure 5A). Both metabolomic and transcriptomic data suggest

that anthocyanin production affects the color of O. violaceus

flowers. Finally, for a better understanding, we established a

simple model of O. violaceus flower color change based on

phenotypic, transcriptomic, and metabolomic data of the

materials in this study (Supplementary Figure S3).
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4 Conclusions

In this study, we investigated the molecular mechanisms of the

three different flower colors of O. violaceus via a combination of

metabolomics and transcriptomics. Metabolomic analysis revealed

that the contents of three anthocyanins, peonidin-3-glucoside,

delphinidin 3-(6”-malonyl-glucoside), and cyanidin 3-(2G-

glucosylrutinoside), differed among the three flower types, and

peonidin-3-glucoside and delphinidin 3-(6”-malonyl-glucoside)

were positively correlated with color. Eighty-nine DEGs related to

flavonoid biosynthesis were identified among the three distinct

groups of flower samples via transcriptome analysis. Among these

genes, the expression of OvANS, which is responsible for the

biosynthesis of anthocyanins, significantly differed among the three

flower types, which was further supported by qRT-PCR analysis. The

results of the metabolomics and transcription analyses were

consistent with the high expression of the three anthocyanins,

suggesting that they were the dominant factors for the different

flower colors of O. violaceus. Our study provides valuable

information for investigating the genes and metabolism of the

anthocyanin synthesis pathway in O. violaceus. Identification of the

key genes responsible for the biosynthesis of these three anthocyanins

lays the foundation for breeding O. violaceus with cauliflower color.
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SUPPLEMENTARY FIGURE 1

Correlation analysis of transcription factor expression. The red nodes
represent transcription factors, the blue nodes represent structural genes,

the red line represents a positive correlation, the blue line represents a
negative correlation, the solid line represents the correlation between

transcription factors and structural genes, and the dashed line represents
the correlation between structural genes.

SUPPLEMENTARY FIGURE 2

Phylogenetic tree analysis of the ANS of O. violaceus.

SUPPLEMENTARY TABLE 1

qPCR primer sequence.

SUPPLEMENTARY TABLE 2

The transcription factors associated with the anthocyanin synthesis pathway
ofO. violaceus were significantly different between the OvP and OvW groups

(VIP > 1 and P < 0.05).
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