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Basic proposal for evaluation of
plant genetic resources to
generate new crops
I. Darı́o Flores-Sánchez, Manuel Sandoval-Villa*

and Libia Iris Trejo-Téllez

Department of Edaphology, Colegio de Postgraduados, Montecillo, Texcoco, Mexico
Given the reduced diversity of foods available in production systems, a factor

linked to malnutrition in society, it is necessary to evaluate new plant genetic

resources for human consumption. Underutilized or abandoned plant species,

wild, semi-domesticated or domesticated, are an alternative to this problem.

However, the lack of skills in people interested in this species, and the little

attention paid to these resources in research centers, leads to a lack of basic data

on characterization and evaluation, and makes it difficult to identify germplasm

with potential for improvement purposes or for direct use. The objective of the

proposal is to raise a basic theme to characterize and evaluate plant genetic

resources in greenhouses and hydroponics, to propose and generate alternative

crops with topics such as seed germination, traits of agronomic interest, nutrient

absorption, phenology, fruit quality and secondary metabolites, which serves as a

methodological guide, and meets the recommendations of the World Health

Organization (WHO) and the Food and Agricultural Organization of the United

Nations (FAO), on the need to generate data for the use of the biodiversity of

underutilized or abandoned species, which will allow to increase the diversity of

foods with important nutrimental content for the population.
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1 Introduction

Worldwide, a reduced diversity of foods is reported in production systems; aspect

linked to the problem of malnutrition in the population, resulting from an inadequate

intake of nutrients, minerals and vitamins for the development and maintenance of a

healthy body (Li et al., 2020). Currently, 1 in 3 people is affected by at least one form of

malnutrition, such as nutrient deficiency (FAO and WHO, 2019).

The reduced diversity is due, among other factors, to the low use of plant species

utilized to satisfy food needs, since of the 5,538 species that have been used by some method

of use, 103 provide 90% of the calories consumed and corn, rice, wheat, soybeans and

potatoes are the crops that contribute 60% of these calories (Li et al., 2018; N’Danikou and

Tchokponhoue, 2019).
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This situation has left aside species with important nutrient

content and beneficial components, such as underutilized or

abandoned species, which could help address the problem of

malnutrition, as mentioned by the World Health Organization

(WHO, 2020), by contributing to a healthier, balanced and

diverse diet, ensuring an adequate supply of nutrients (Li et al.,

2020). This need is also raised in the second objective of the

Sustainable Development Goals relating to improving the

nutrition of the population (ONU, 2014).

However, two of the problems that limit their study,

characterization and evaluation for their use are that they have

been marginalized in research centers, as they are not included in

basic crops, and the reduced skills of people interested in these

resources to address the challenges of interdisciplinary research, a

fundamental aspect when studying new genetic resources of wild or

semi-domesticated plants. This condition is exacerbated by the lack

of a methodology to conduct the study and selection of germplasm

(Padulosi et al., 2013; Nixwell et al., 2022).

For the above reasons, the following thematic proposal is

presented, which is considered basic in the evaluation of plant

genetic resources to propose and generate alternative crops, to serve

as a guide for people interested in the study of these resources.
2 Background

2.1 Underutilized or abandoned species

These species are considered an alternative to address

malnutrition problems due to their important nutritional content

of proteins, vitamins, micronutrients and nutraceutical compounds,

poorly supplied by the main basic crops rich in carbohydrates

(FAO, 2018; Li et al., 2020).

They belong to a broad group of wild, semi-domesticated and

domesticated plants (Padulosi et al., 2013). According to Dansi

et al. (2012) these species are characterized by having been

exploited under mechanisms of use such as collection, incipient

cultivation, that is, characterized by a low level of production,

using simple technology, focused mainly on self-consumption,

and with the capacity to sustain only small populations (Zent and

Zent, 2012) or being encouraged, that is, strategies applied to

maintain or increase the population of useful wild or weedy

plants within wild or human-made environments (Casas et al.,

2007), and by their link to traditional production systems, mostly

under subsistence levels; additionally, for being adapted to

unfavorable heterogeneous climatic and soil conditions and,

because these are more resistant to local pests and diseases

(Padulosi et al., 2013).

This group of species is relevant due to its nutritional value

similar to or greater than that of commercial crops (Padulosi et al.,

2019; Karthiga et al., 2022), have social importance (they reaffirm

cultural identity), economic importance (income opportunity for

the farmer and for other actors involved in the value chain)

(Padulosi et al., 2013), and productive importance (improves the

resilience of the production system to biotic and abiotic factors, as

these are more diverse systems) (FAO, 2018).
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However, many of these species are at risk of disappearing along

with the associated traditional knowledge due, among other factors,

to the change from the traditional production system to one that

promotes monoculture and the use of agrochemicals such as

herbicides, leading to the displacement of native genotypes of the

main crops and of wild or semi-domesticated species linked to

traditional systems.

Furthermore, their stigmatization as a food for the poor has led

to a decline in their consumption and replaced by modern products

for export or import, which discourages their conservation and use

in rural communities where these are found. This, combined with

the focus on the production of the main species, has marginalized

them in research centers, by not including them in basic crops

(Padulosi et al., 2013; Nixwell et al., 2022).

This leads to a low capacity of countries to research this type of

resources and to the loss of opportunity for their study,

characterization and promotion as potential food resources, and

as an alternative source of income mainly for poor farmers

(Padulosi et al., 2013). However, in recent times, interest in the

study of these species has increased, due to the aforementioned

problems and the increase in demand for foods with nutraceuticals

such as antioxidants.
2.2 Studies carried out on underutilized or
abandoned species

In some regions of Southern Africa, Asia Pacific, Southern Italy

and Latin America, research, production and promotion of

underutilized or abandoned species has increased, increasing their

popularity for food, medicinal and functional use due to their

health benefits.

In species such as amaranth (Amaranthus tricolor L.), a

significant content of antioxidant compounds such as

polyphenols, flavonoids and carotenoids are reported (Platel,

2020). In buckwheat (Fagopyrum esculentum Moench), a high

content of phenolic compounds and balanced content of amino

acids and minerals, as well as high protein quality (Jing et al., 2016).

In mung bean [Vigna radiata (L.) R. Wilczek], it is also recognized

as a good source of protein, with high digestibility and suitable as

baby food (HanumanthaRao et al., 2016).

In arugula (Eruca vesicaria L.) (Proietti et al., 2021) and

Salicornia spp. (L.) Parl (Scarano et al., 2021), an important

nutritional content and nutraceutical compounds have been

recorded. Moringa (Moringa oleifera L.) has an important foliar

content of Ca, K, Fe, Mg, P, Zn, vitamins A, B1 (thiamine), B2

(riboflavin) and B3 (niacin) (Nixwell et al., 2022). Quinoa

[Chenopodium quinoa (Willd.)] stands out for its folic acid

content, which is deficient in a large part of the world's

population, and for not containing gluten (Schoenlechner, 2017),

in addition to its nutritional and functional value due to its content

of amino acids and antioxidants (Basantes-Morales et al., 2019).

Regarding the positive effect on health, buckwheat seeds

[Fagopyrum esculentum (Moench)] have potential as a functional

and medicinal food (Jing et al., 2016). Moringa has been

documented to have an effect on reducing blood sugar and
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cholesterol (Nixwell et al., 2022); while Cyclopia (Vent.) spp. has a

beneficial effect on reducing the risk of cardiovascular diseases

(Windvogel, 2020). Studies carried out on tassel hyacinth

[Leopoldia comosa (L.) Parl.] suggest that it could be an

important source of compounds capable of suppressing the

absorption of fat from the diet, an important alternative to drugs

used to control obesity, which have been reported adverse effects

(Marrelli et al., 2019). In purslane (Portulaca oleracea L.) an

important content of omega 3 and 6 fatty acids has been

reported, which regulate blood cholesterol levels, prevent water

loss in the skin, and maintain proper function of the nervous system

(Mera-Ovando et al., 2018).

Regarding the study to determine its response under cultivation

conditions, in natal ginger [Siphonochilus aethiopicus (Schweinf.) B.L.

Burtt], the compost extract was evaluated in the secondary metabolite

content and mineral accumulation, and a positive effect on its content

was reported (Jasson et al., 2023). In arugula, the effect of different light

conditions on crop yield and nutritional properties was evaluated, as

well as different sowing conditions and fertilization times on seedling

production: it was considered that this species has potential for

cultivation in controlled environment conditions (Proietti et al.,

2021). In sea asparagus [Salicornia spp. (L.) Parl.], its importance

stands out as an alternative crop in adverse environments, such as

those with saline conditions (Scarano et al., 2021).

In Mexican wild husk tomato (Physalis spp.), different

genotypes were evaluated under cultivation conditions in

protected systems, with outstanding results for its production for

commercial purposes (Chamú-Juárez et al., 2020). Germination

studies have been carried out on species such as piquıń or chiltepıń

chili (Capsicum annuum var. glabriusculum), since its erratic and

slow germination has hindered its potential as a crop (Quintero

et al., 2018). For the evaluation of new varieties of cape gooseberry

(Physalis peruviana L.), a species recognized for its tolerance to

different environmental conditions and as an alternative source of

income for the farmer, Orozco-Balbuena et al. (2021) evaluated the

phenology, morphology and development of four varieties under

greenhouse and hydroponic conditions, with three different

concentrations of nutrient solutions.

Foliar application of moringa leaf extract was evaluated as an

organic biostimulant in several crops, with a favorable effect on the

development of plant height, fresh and dry weight of roots, and

shoots (Karthiga et al., 2022).

Honey bush [Cyclopia (Vent.) spp.], a species native to southern

Africa, is one of the few native species that has transitioned from a

wild product to a commercial one, due to its antioxidant content, an

aspect of interest in the population for health-promoting foods, a

factor that promoted the development of its cultivation (Joubert

et al., 2011). Since 2000, the demand for quinoa and products

derived from this crop has increased due to its nutritional and

functional value (Schoenlechner, 2017). In huauzontle

(Chenopodium berlandieri spp. nuttalliae) the starch of the seed

was characterized to determine its possible use in the food industry,

with acceptable results (Assad-Bustillos et al., 2014).

For the genetic improvement of buckwheat, molecular studies

were carried out with molecular marker-assisted breeding, using

random amplified polymorphic DNA markers (RAPD) and
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amplified fragment length polymorphism markers (AFLP) (Woo

et al., 2016); and phylogenetic analyses were performed to define its

evolutionary process, using chloroplast genome information and

microsatellite markers to complement morphological descriptors

(Cheng et al., 2020). In the genus Jaltomata, the application of DNA

sequencing and phylogenetic trees allowed to define the taxonomic

status of a specimen of Jaltomata, recognizing it as a new species for

the genus (Flores-Sánchez et al., 2024). In mung beans, a genetic

characterization of quantitative and qualitative traits was carried

out, and molecular markers were developed (Mehandi et al., 2019).

In purslane, participatory improvement programs have been

established with producers, the cultivation of the species has been

promoted and there are five varieties registered in Mexico

(Solis, 2014).

The use of molecular techniques for domestication and

development of new crops, such as marker-assisted genetic

improvement, can be useful when working with underutilized

wild or semi-domesticated species, because it allows studying

gene expression and identifying genes of interest associated with

phenotypic characteristics, performing selection (Vlk and Řepková,

2017), and reducing time and costs in the domestication process

(Thulin et al., 2017), since published works on this process report

that in classical breeding more than 20 generations are required to

change phenotypes and obtain the expected results (Mehdi and

Villamar-Torres, 2017; Fernie and Yan, 2019).

In pennycress (Thlaspi arvense L.) several different next-

generation sequencing (NGS) strategies were used to de novo

assemble a draft genome for the domestication of the species

(Dorn et al., 2015), for celery (Apios americana Medik) RNA-

sequencing was used to identify marker-trait associations using

single-nucleotide polymorphisms (SNPs) (Belamkar et al., 2016),

and in wheatgrass (Thinopyrum intermedium (Host) Barkworth &

D.R. Dewey) genotyping-by-sequencing was used to identify

markers using SNPs (Kantarski et al., 2017).

As can be seen, important work has been carried out in the study

of underutilized species, where the nutritional and nutraceutical value

stands out, which could contribute to solve the health problem in

society; however, due to the wide diversity of species that make up

this group, it is necessary to join forces to contribute to their study

and to the development of a methodology that serves as a guide to

direct the study and generation of information on these species,

allowing the development of alternative crops, that can be defined as

those different than the major crops widely produced, belonging to

cereals, legumes, vegetables, root and tubers, and fruits, with greater

capacity of adaptation to unfavorable environmental conditions, low-

input requirements, greater tolerance to pest and diseases, high

nutritional and nutraceutical value with a long-term positive effect

on human health, and economic importance as source of income,

important characteristics mainly for poor farmers and for consumers

(Kumar et al., 2022; Garcıá-Tejero et al., 2023; Tadele, 2023).
2.3 Agriculture in controlled environment

Technology such as greenhouses, substrates (culture media) and

hydroponics, are used in controlled environment agriculture to
frontiersin.org

https://doi.org/10.3389/fpls.2025.1507521
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Flores-Sánchez et al. 10.3389/fpls.2025.1507521
control the factors that influence the development of a crop in its

characterization and evaluation process (Bethke and Lieth, 2016), to

determine the viability of new plant genetic resources for

agricultural purposes, because it facilitates the study of the plant

behavior in its growth and development in the face of changing

environmental factors (Both et al., 2015; Bustamante et al., 2016).

Factors such as light, temperature, relative humidity, CO2 level,

presence of pests and diseases, are possible to control with the use of

greenhouses (Singh et al., 2015; Leite et al., 2017). Of these, light and

temperature are probably the factors that most affect plant growth

and development (Franklin et al., 2014).

The response to temperature depends on the species, with an

optimal interval in the different stages of plant development (Hatfield

and Prueger, 2015), outside of which, it presents different and diverse

reactions to withstand the stress generated by this factor (Yang et al.,

2018), such as the expression of protective proteins such as heat shock

protein 70 (HSP70) (Dickinson et al., 2018), where a calcium-

conducting cyclic nucleotide gated channel (CNGC2) has a function

to induce HSPs proteins (Franklin et al., 2014), response that is

coordinated by heat shock factors (HSFs) (Dickinson et al., 2018).

Light, used as an environmental signal and in the process of

photosynthesis (Jones, 2018), is perceived by different types of

photoreceptors l inked to signaling pathways such as

phytochromes, cryptochromes, phototropins and UVR8. In

combination with a chromophore, these photoreceptors define the

light absorption properties (Thoma et al., 2020).

With inert substrates, the concentration of nutrients in the root

zone can be controlled (Silber and Bar-Tal, 2008), because these do

not contribute with nutrients, absorption or ionic exchange (Raviv

and Lieth, 2008), unlike soil, where microenvironments are generated

that influence nutrient bioavailability (Nguyen et al., 2016).

Hydroponics uses nutrient solution (NS) to grow plants with or

without the use of substrate, where the nutrients are supplied

(Nguyen et al., 2016; Sharma et al., 2018). Factors such as pH and

electrical conductivity (EC) are important in NS, and pH influences

the availability of nutrients to the plant (Sánchez et al., 2022), with

an optimum pH of 5.5 to 6.5 for most species (Alexopoulos et al.,

2021). EC is crop-specific and is related to the amount of ions

available to plants (Ding et al., 2018), an important aspect, because a

nutrient excess or deficiency affects the development and yield of

the plant (Lam et al., 2020).
2.4 Methodological and research needs

According to Sarukhán et al. (2017), an important requirement

for the management, use and conservation of biodiversity is a deep

knowledge of the species.

FAO, in the Second Global Plan of Action for Plant Genetic

Resources for Food and Agriculture (FAO, 2012), mentions the

importance of generating data on the characterization and

evaluation of plant genetic resources, and identifying germplasm

with possibilities of improvement or direct use for production and

commercialization. Furthermore, it emphasizes the obstacle

represented by the lack of adequate data in these aspects to use

these resources, particularly underutilized species.
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Additionally, FAO (2012) refers to the areas in which research

programs should intervene, such as genetic characterization to

identify useful genes, understanding their expression and

variation, improvement to increase yield in quantity and quality,

nutritional quality, integration of abandoned or underutilized

species in diversified production systems, development of value

chains and awareness about nutritional value (FAO, 2018).

However, one of the difficulties for the study, evaluation,

production and promotion for consumption of underutilized or

abandoned species is mainly the development of skills in people

interested in these resources, to address the challenges of

interdisciplinary research and integrate the nutritional aspect in

agricultural development, a difficulty that is increased by the lack of

a standard methodology for the study, evaluation and selection of

germplasm for improvement (Padulosi et al., 2013).

Therefore, the following topics are proposed, which are

considered basic to begin the study of underutilized plant genetic

resources and develop alternative crops, with the aim of

contributing to overcoming the problem raised, through the

evaluation of these resources from agronomy perspective in

connection with genetics and botany.

The proposed theme can serve as a methodological guide and be

followed sequentially, or focus on those aspects that are considered

necessary, according to the level of study on the target species.
3 Basic topics in the evaluation of
plant genetic resources to generate
alternative crops

These topics can be applied according to the level of study of the

species of interest to resolve the missing aspects. In species that have

not been studied for agricultural production purposes, it is

recommended to prioritize in order to make efficient use of

resources, based on the criteria to consider new plant genotypes

for food purposes: edible plants for humans, with high nutritional

value, that do not require intermediate processes between

cultivation, harvest and use (Flores-Sánchez et al., 2021) climate

adaptation, cultural importance, risk of genetic erosion, alternative

income generation, importance in the ecosystem (Ulian et al., 2020),

content of nutraceutical compounds or secondary metabolites and

level of domestication.

The selection of criteria will depend on the interests of the

researcher, but it is recommended to prioritize nutritional aspects

and nutraceutical compound content.

The proposed theme include aspects of seed germination, traits

of agronomic interest, nutrient absorption, phenology, fruit quality

and secondary metabolite profile.
3.1 Seed germination evaluation

The seed is the main way of dispersion of plants in the

environment (Arc et al., 2011) and is the main way in most crops

to start a new production cycle (Finch-Savage and Bassel, 2015).
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The ability for rapid germination and development, early and

uniform plant emergence, is desirable for productive purposes,

since this capacity influences yield, quality and economic income

(Quintero et al., 2018; Mirmazloum et al., 2020).

Obtaining these germination characteristics is one of the problems

when working with wild or semi-domesticated species, because the

dormancy mechanisms presented by the seeds of some of these

species, a characteristic that prevents germination and allows them

to persist under unfavorable conditions (Flores-Sánchez et al., 2022).

In general, two types of dormancy are recognized: endogenous,

where some characteristics of the embryo limit germination; and

exogenous, where structural and chemical characteristics of the seed

prevent this process, so, considering physical, morphological,

physiological aspects, and the combination of these, dormancy

can be classified into five classes, with non-deep physiological

dormancy being the one that occurs in most seeds (Baskin and

Baskin, 2014). To overcome this problem, techniques such as

physical and chemical scarification, stratification, and the

combination of these are used to help the seeds germinate, using

different materials and equipment depending on the type of

dormancy (Flores-Sánchez et al., 2022).

With physical and chemical scarification, the aim is to promote

or accelerate germination by facilitating the entry of water, by

increasing the permeability of the seed coat or testa. In the first,

abrasion, cutting, partial removal of the testa or immersion in hot

water are used, and in the second, the use of chemical substances

such as sulfuric (H2SO4) or nitric (HNO3) acids.

In barrel cactus [Echinocactus parryi (Engelm.)] it was reported

that removing 50% of the testa resulted in the best germination

percentages, compared to gibberellic acid (GA3), a plant

development regulator, and sulfuric acid (Garcıá-González et al.,

2022). In porknut (Vachellia macracantha (Humb. & Bonpl. ex

Willd.) Seigler & Ebinger), the abrasion of the testa gave better

results than chemical scarification (Maldonado-Arciniegas et al.,

2017). On the contrary, in Conanthera spp., with physical

scarification of the seed by abrasion, no effect on seed

germination was reported (De la Cuadra et al., 2019).

In stratification, cold and warm temperatures are used,

individually or in combination. In mountain crowberry

(Empetrum hermaphroditum), warm stratification treatment

followed by cold stratification is required to obtain the highest

percentage of germination (Baskin et al., 2002); while, in japanese

rose seeds (Rosa rugosa), the germination process is favored with

cold stratification followed by warm stratification (Gao et al., 2022).

In addition to these treatments, development regulating substances

such as GA3 are used, a natural plant regulator with different

applications in agriculture, such as seed germination (Cornea-

Cipcigan et al., 2020), in addition, ascorbic and salicylic acids are

used, with reported effects on germination (Dotto and Silva, 2017).

Also, development-promoting chemical substances such as

potassium nitrate (KNO3), phosphate (KH2PO4) or chloride (KCl),

or polyethylene glycol (PEG) are used through the seed imbibition in

a solution with a certain concentration, controlling the conditions

between the water potential of the solution and the water potential
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within the seed during the hydration process, which favors the rapid

emergence capacity of the radicle (Moaaz et al., 2020).

The results obtained will depend on the species and the

technique used. In caraway (Carum carvi L.), it was reported that

PEG had the best effect on germination, followed by KNO3 and KCl

(Mirmazloum et al., 2020). In seeds of tomato cultivars (Solanum

lycopersicum), Sundar and Ahmar, it was recorded that a

concentration of 0.75% of KNO3 promoted germination (Moaaz

et al., 2020). In beet (Beta vulgaris), it was determined that

treatment with water was the most effective, followed by salicylic

or gibberellic acids (GA3), and ascorbic acid (Dotto and Silva, 2017).

For the germination of habanero chili seeds (Capsicum chinense

Jacq.), it was reported that abscisic acid increased the germination

speed; while PEG and KNO3 favored the emergence of the seedling

(Garruña-Hernández et al., 2014).

Another factor in germination is light. The seed has

environmental sensors that allow it to identify the right time to

start the germination process, such as phytochrome, cryptochrome,

phototropin and zeit lupe (ZTL) photoreceptors, with

phytochromes being the main ones (Yan and Chen, 2020; Footitt

et al., 2013). Phytochrome-A (PHYA) mediates the response to very

low fluence light (VLFR) and is present in seeds with extreme light

sensitivity, whereas, phytochrome-B (PHYB) mediates the response

to low fluence light (LFR) (Arana et al., 2007).
3.2 Traits of agronomic interest

The response of a plant species to environmental conditions

different from those of its natural habitat, such as growing

conditions, will be determined by the genotype and its interaction

with the environment (Gerrano et al., 2019). This response can be

evaluated through different traits of agronomic interest such as stem

diameter, plant height, number of leaves, clusters and flowers, fruits

per cluster and fruit weight (Flores-Sánchez et al., 2021).

The evaluation of these traits makes it possible to assess the

viability of a species and the appropriate conditions for its

production in a cultivation environment.

3.2.1 Plant height
Plant height is important as it is related to architecture, lodging

resistance (resistance of the aerial parts of the plant to the

horizontal-permanent condition from its vertical position due to

factors such as wind or rain) and yield (Juárez-López et al., 2012;

Gao et al., 2020). In tall species or indeterminate growth height is

relevant under greenhouse conditions, because it influences the risk

of damaging stems and the use of labor during tying (Juárez-López

et al., 2012). It can be influenced by management (elimination of

axillary and basal shoots) and by EC (the higher the EC, the lower

the plant height), as reported in jaltomate (Jaltomata procumbens)

(Flores-Sánchez et al., 2021) and tomato (Marchese et al., 2008). In

addition, by removing axillary shoots and leaves, or managing

planting densities as recorded in tomato (Casuriaga et al., 2020;

Jo and Shin, 2020).
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3.2.2 Stem diameter
Stem diameter is a characteristic related to the plant's ability to

withstand the stress generated in the transplant, lodging resistance,

and is also an indicator of plant vigor (Antúnez-Ocampo et al.,

2014; Chiquito-Contreras et al., 2018), which expresses the

accumulation of reserves that can be transferred to sites of

demand (Preciado-Rangel et al., 2002), where leaf area and

metabolic activity are important for the synthesis and

accumulation of these reserves in the stem, during vegetative

development (Pegoraro et al., 2014).

This characteristic can be influenced by plant management, as

reported in jaltomate (Flores-Sánchez et al., 2021), where pruning

of lateral and basal shoots reduced stem diameter, while high EC of

NS increased it, effect that was attributed to the availability of N in

the culture medium, an element involved in the development of leaf

area and therefore, in the synthesis of photosynthates (Leghari et al.,

2016). Furthermore, it is attributed to the presence of K, an element

involved in stomatal opening, cell expansion, enzymatic activation

and osmotic adjustment, whose absorption is often closely

correlated with that of N (Ragel et al., 2019). Stem diameter can

also be affected by the application of growth regulators such as GA3,

which in bean (Phaseolus vulgaris L.) reduced stem diameter

(Troyjack et al., 2017).
3.2.3 Number of leaves and leaf area
The number of leaves is one of the factors on which the

photosynthesis and yield of the plant depend (Jo and Shin, 2020).

It is also an indicator of the leaf area where the carbon skeletons that

the plant uses in its different structures or that are stored in the stem

are produced (Preciado-Rangel et al., 2002).

This characteristic can be influenced by the EC of the NS. High

EC levels cause water stress in the plant, due to the decrease in the

osmotic potential of the NS by increasing the concentration of

nutrients in the root zone, which can affect the absorption of water

and some nutrients (Bagale, 2018; Parra et al., 2008), and therefore,

the vegetative development of the plant as reported in the number

of leaves in jaltomate (Flores-Sánchez et al., 2021) and tomato

(Bustomi et al., 2014).
3.2.4 Reproductive structures characteristics
Characteristics such as the number of clusters, flowers and

fruits, as well as the fruit weight are related to the yield of the plant,

an important aspect in crop production. In species such as tomato

and cowpea (Vigna unguiculata L.), it has been reported that yield is

determined by the number and weight of fruits, and by the number

of pods related to the number of flowers, respectively (Sánchez-Del-

Castillo et al., 2014; Gerrano et al., 2019). These structures can be

affected by plant management, through pruning or by the EC level

of the NS.

As for pruning, the elimination of shoots allows regulating

vegetative and reproductive growth, favoring the generation of

flowers and fruits, and the removal of reserve substances towards

the fruits, the main organs of demand in the flowering and fruiting

stage, promoting higher fruit weight (Ponce-Valerio et al., 2011;

Mbonihankuye et al., 2013). High EC negatively influences the
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number of clusters, flowers and fruits (Marchese et al., 2008), and

the fruit weight according to the genotype (Colli-Cortés et al., 2020),

as fruit expansion is affected by a decrease in osmotic potential

(Dorai et al., 2001).
3.3 Phenological characteristics

Phenology studies the stages of the life cycle of organisms and

how they are synchronized as the time and climate change (Liang,

2019). They occur naturally during plant growth, and their study

seeks to evaluate the variations in the moment in which these stages

occur. By identifying correlations between environmental changes

and particular developmental events, the plant's reaction to the

environment is described and, in addition, an attempt is made to

predict its reaction under new environmental conditions

(Keller, 2020).

Knowledge of the phenological stages and their variability is

useful in crop management, in the selection of materials for a given

area (Chmielewski, 2013), and in the study of new plant genetic

resources for use in agricultural purposes, because each genotype will

respond differently to different environments (Córdoba et al., 2018),

and to the production systems and technology used, influencing its

adaptation and production (Sabino-López et al., 2016).

Studies on these characteristics have been carried out on species

such as cocoa (Theobroma cacao L.) (Meneses-Buitrago et al., 2019),

tomato (Córdoba et al., 2018), and cape gooseberry (Sabino-López

et al., 2016), in which the differential response in the emission of

floral structures and fruit formation has been documented, in

greenhouse and field conditions.
3.4 Nutrient uptake

In any production system, the balanced supply and availability

of nutrients are the most important factors, because nutrient excess

or deficiency will affect the physiology, potential growth and yield of

the crop (Lee et al., 2017; Mardanluo et al., 2018).

In hydroponic systems, the nutrients required by the plant are

supplied through the NS (Nguyen et al., 2016), with a specific

concentration of nutrients measured by the EC. The EC is

proportional to the total ions contained in said solution, where

availability and balanced supply are fundamental aspects to

improve crop production (Lee et al., 2017; Ding et al., 2018).

With the use of NS, it is possible to control the concentration of

nutrients, evaluate their absorption by the plant (Raviv and Lieth,

2008), and generate absorption curves. Genetic factors,

phenological stage and environmental conditions (González et al.,

2018) influence the processes of absorption, transport, and nutrient

storage based on the requirements of each plant structure (Gilliham

et al., 2011; Guo et al., 2016; González-Fontes et al., 2017); therefore,

they are essential for the design of fertilization plans (Castro-

Villarreal and Villarreal-Núñez, 2020).

The information obtained, which is genotype-dependent and

differentially expressed according to the evaluated structure is

relevant when new plant genetic resources are studied for use in
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agricultural production systems (Gandica and Peña, 2015). In black

pepper (Piper nigrum), the leaf and cluster evaluation showed a

variation in the first structure during the growing season, mainly in

the accumulation of K and Mg; while, in the second, the greatest

accumulation was recorded for N, K and Ca (Dalazen et al., 2020).

In cape gooseberry, the elements reported with the highest

accumulation in leaves were N, P, Ca and Mg; in stems it was K

(Torres et al., 2015).
3.5 Fruit quality

Attributes such as firmness, total soluble solids (TSS)

concentration, color, titratable acidity (TA), size, fruit weight and

the ratio of TSS/TA are some important characteristics to determine

fruit quality, and influence its acceptance by the consumer.

The attributes considered to define quality will depend on the

fruit type and destination market. Thus, for example, in blueberry

(Vaccinium corymbosum) the industry considers color, aroma,

sweetness, acidity and firmness to be important (Bolaños-

Alcántara et al., 2019) and the wax that covers the fruit (bloom),

whose function is to protect it from desiccation or damage by

pathogens (Loypimai et al., 2017). On the contrary, uniform fruit

color, sweetness, flavor, juiciness and antioxidant content are

important to consumers (Gilbert et al., 2014). In tomato, the

industry considers dry fruit weight, pH, TA, TSS, viscosity and

color to be important; while the consumer focuses on the color, size,

flavor and firmness (Islam et al., 2019; Luna-Flete et al., 2018).

These attributes are determined by the combination of

nutritional, environmental (light and temperature), physiological,

genotype, water stress or type of plant management factors

(Wiesler, 2012).

The nutritional factor can influence characteristics such as fruit

firmness, TA and TSS. Elements such as B, Ca, Se, and Si, are related

to firmness (Rahman et al., 2021) by influencing the properties of

the cell wall, and has been documented in tomato (Preciado-Rangel

et al., 2021) and apple tree (Malus × domestica Borkh) (Karagiannis

et al., 2021). On the other hand, it is reported that K has an effect on

TA because it reacts with organic acids and decreases their content

(Zhang et al., 2018). Also, it was reported that the interaction of N

and S (elements that influence post-harvest quality) positively

affected the TSS content in tomato (Siueia et al., 2020).

Light conditions affect fruit size and TSS by affecting the

photosynthetic apparatus and influencing the supply of

photoassimilates to the fruit, increasing or reducing its size

(Gruda, 2005) and TSS content. In strawberry (Fragaria ×

ananasa Duchesne), in a pyramidal cultivation system, it was

reported that the TSS concentration decreased as the shade on

the plant increased (Alvarado-Chávez et al., 2020).

The water stress generated by salinity decreases the fruit size,

caused by a reduction in water potential because less water flow to

fruit, decreasing its expansion rate (Salas-Pérez et al., 2016); opposite

effects indicate tolerance to salinity (Flores-González et al., 2012).

Genetic aspects determine characteristics such as fruit size.

Larger fruits have been reported in plants with fewer of them,

which influences a greater distribution of dry matter related to
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stored photoassimilates and which maintain favorable water

potentials as the cell expands (Pérez-Labrada et al., 2016;

Thomas, 2017). They also influence the plant's ability to

tolerate salinity, allowing it to express its potential regardless of

the level of stress to which it is subjected (Flores-González

et al., 2012).

Plant management affects aspects such as fruit size and quality.

Management practices such as pruning allow regulating vegetative

and reproductive growth by promoting the removal of reserve

substances towards the fruits, which helps to improve their

quality with greater size and TSS content, and lower TA

(Casuriaga et al., 2020; Falchi et al., 2020).

The condition of high TSS values and lower TA is important to

obtain a high TSS/TA ratio, reflected in greater palatability of the

fruit that influences the product to be more accepted by consumers

(Batista-Silva et al., 2018; Santacruz-Oviedo et al., 2018).
3.6 Secondary metabolites

Secondary metabolites, phytochemicals that are not directly

linked to normal plant development, perform defense functions

against pathogens and herbivores, and protection against abiotic

stress factors such as low temperatures, drought and UV-B

radiation (Moore et al., 2014; Anulika et al., 2016).

Based on their chemical structure and biosynthetic pathway,

they can be classified into terpenoids, phenolic and nitrogenous

compounds (Yeshi et al., 2022). In humans, functions such as

antioxidant, anti-inflammatory, antifungal, anticancer,

antimicrobial, neuroprotective, and in the treatment of diabetes,

high blood pressure, and kidney stones are described (Panche et al.,

2016; Kumar and Goel, 2019; Ashraf and Bhatti, 2021).

The content of secondary metabolites will depend on the

genotype, the climate in which the plant grows, and the agricultural

practices applied (Liu et al., 2021). Factors such as temperature, light,

growing conditions such as salinity and pruning management,

generate stress in the plant and promote enzymatic activity and

overexpression of genes in the antioxidant system, influencing the

synthesis of metabolites (Martinez et al., 2016; Ding et al., 2018).

Its study and characterization are important to evaluate the

plant response to environmental changes, biotic and abiotic stress

factors (Ibarra-Estrada et al., 2016; Sousa et al., 2019), which can

help in the evaluation of new plant genetic resources, wild or semi-

domesticated, for their production under growing conditions and to

determine the positive or negative effects on the contents of

these metabolites.

In this way, the proposed theme seeks to serve as a

methodological guide for the evaluation and characterization of

underutilized or abandoned plant genetic resources, which allows

generating the necessary data to follow up on the study of said

resources for their improvement or, for their direct use through

production and marketing.

It also seeks to meet the needs raised by the WHO and those

mentioned in the Second Global Action Plan for Plant Genetic

Resources for Food and Agriculture, and in the second objective of

the Sustainable Development Goals.
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4 Methodology

Next, the methodology that covers the points mentioned is

developed in a general way, and the one implemented by Flores-

Sánchez (2022) in the evaluation of jaltomate is taken as

an example.
4.1 Germination

Under natural conditions, the seed has environmental sensors that

allow it to identify the appropriate germination time, therefore, for

agricultural use the combination of light, temperature and the use of

growth-promoting substances is recommended, with different levels

for each factor. Also, according to the characteristics of the seed coat,

the aforementioned techniques can be used for their evaluation.

KNO3 as an example, is used in concentrations in the range of

0.1 – 1%, although higher concentrations can be used considering

the species to be treated, as reported by Moaaz et al. (2020) and

Mutetwa et al. (2023) in tomato and kiwano (Cucumis metuliferus),

respectively. For the use of substances such as KCl and PEG6000, the

methodology described by Mirmazloum et al. (2020) can be

consulted, and for the use of GA3, the methodology reported by

Cornea-Cipcigan et al. (2020). Seed imbibition times can vary from

1 h to 6 days, depending on the species (Table 1).

Once the imbibition period is over the seed is removed from the

substance, placed and distributed in containers such as Petri dishes,

with filter paper previously moistened with distilled water. The seed

is kept during the evaluation period in a controlled environment

chamber, which allows maintaining the levels of the factors

established for the treatments, such as light and temperature,

applying distilled water to keep the seed moist.

The seed is monitored daily, and germination is recorded

considering this at the time of radicle emergence, greater than 2 mm

in length. Germination variables are calculated with the data obtained:

Germination percentage (GP):

GP =  
Number of  germinated seeds

Number of  seeds set to germinate
� 100
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Energy period (EP): days after treatment to reach 50 % or more

of germinated seed.

Germination energy (GE): cumulative germination percentage

once reached the energy period.

GE =
Cumulative daily total of  germinated seeds

Number of  seeds set to germinate
� 100

Germination rate (GR): number of germinated seeds every day.

GR =
Number of  germinated seeds
Number of  days to first count

+…

+
Number of  germinated seeds
Number of  days to last count

For statistical analysis of the data, it is recommended to apply

logistic regression analysis for the germination percentage and

analysis of variance with means separation test for the

germination variables, applying data transformation in case they

do not meet the statistical assumptions.
4.2 Traits of agronomic interest

The data collected in this stage are used to evaluate

characteristics considered of agronomic interest such as plant

height, stem diameter, number of leaves and leaf area, as well as

reproductive structures; however, to make efficient use of resources,

data on phenological characteristics, fruit quality and secondary

metabolite content can also be obtained for evaluation.

The plant species to be characterized and evaluated must be

established under greenhouse and hydroponic conditions. This

makes it possible to control environmental factors that could

affect the development of this activity. In addition, the use of

inert inorganic substrates is important, since they allow

controlling the concentration of nutrients in the root zone by not

contributing with nutrients, absorption or ion exchange.

If a substrate needs to be evaluated for use, a physical and

chemical evaluation can be carried out to select the most suitable

one. In general, the minimum physical and chemical properties

recommended for the selection of a substrate are shown in Table 2.
TABLE 1 Germination-promoting substances and imbibition times used in different plant species.

Plant species
Germination-promoting substances

Imbibition time (h)
KNO3 KCl PEG6000 GA3

Cannabis sativa L. (Langa et al., 2024) ✓ ✓ 1 – 24

Cucumis metuliferus E. Mey. Ex Naudin (Mutetwa et al., 2023) ✓ 12

Jaltomata procumbens (Cav.) J.L. Gentry (Flores-Sánchez et al., 2022) ✓ 96 – 144

Cannabis sativa L. (Du et al., 2022) ✓ 8

Solanum lycopersicum L. (Moaaz et al., 2020) ✓ 24

Carum carvi L. (Mirmazloum et al., 2020) ✓ ✓ ✓ 12 – 36

Sorghum bicolor (L.) Moench (Patane et al., 2016) ✓ 48

Capsicum annuum var. glabriusculum (Quintero et al., 2018) ✓ ✓ ✓ 24 – 72
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The container to be used will depend on the species to be

evaluated. Among the types of containers that can be used are black

polyethylene bags 40 × 40 cm (13 L) or 35 × 35 cm (9 L).

For plant nutrition, to determine the most suitable level for the

species under evaluation, it is recommended to use the Steiner

nutrient solution (Table 3, Steiner, 1984) with different nutritional

levels, measured through the EC: low, sufficient and high. Although

there are other nutrient solutions that can be consulted in Trejo-

Téllez and Gómez-Merino (2012).

An EC level of 2 dS m-1 can be considered sufficient, equivalent

to -0.072 MPa of osmotic potential, at which many plants are

known to thrive (Steiner, 1961). This level corresponds to the

application of 100% Steiner nutrient solution. From this value low

and high levels can be established.

To determine the phenological behavior of the species under

growing conditions, data on the start of flowering, fruiting and

harvest are recorded, considering the days elapsed in each stage

after transplanting.

In addition, it must be evaluated whether the species presents

self-fertilization characteristics and if it requires any practice for

pollination to occur. If this characteristic is previously known, it is

evaluated whether the growing conditions affect it positively

or negatively.

Some agronomic characteristics can be evaluated, such as plant

height (recorded with a tape measure from the base of the main

stem to the tip), stem diameter (measured with a vernier graduated

in mm at the height of the cotyledonary leaves), total number of

leaves, type and number of inflorescences, and the total number of

flowers, fruits per cluster, fruit weight and yield per plant.

When the usable part of the plant is not the fruit, measurements

are adapted. For example, in the case of leaves, the most appropriate

time for harvesting can be determined and the weight of the

biomass generated recorded to obtain the yield.

The chlorophyll content of plant leaves is another important

characteristic because it is linked to the condition of the plant, and

can be estimated using a SPAD measuring device that allows

estimating the relative chlorophyll content in leaves by measuring

leaf greenness (Jiang et al., 2017).

At this stage, the type of plant growth is evaluated to determine the

pruning and tutoring needs. If the type of growth is previously known,
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pruning levels can be evaluated to determine its response to this

cultural work, as reported in jaltomate (Flores-Sánchez et al., 2021).
4.3 Fruit quality

To evaluate fruit quality, the following variables can be

determined: equatorial and polar diameters of the fruit, fruit

weight, TSS or degrees Brix, TA, TSS/TA ratio, pH, firmness and

fruit color.

To determine equatorial and polar diameters, that is, the length

and width of the fruit, a vernier caliper can be used in centimeters.

The fruit weight can be determined with a precision digital scale in

grams. Firmness is measured with a fruit penetrometer at two

equatorial parts of the fruit and the data are reported in

Newtons (N).

For TSS, two drops of fruit juice are placed in a digital

refractometer and the data are recorded as TSS percentage. As for

TA, the following methodology is applied (Association of Official

Analytical Chemists (AOAC), 1995), 10 g of fruit are ground with

50 mL of distilled water, the total volume is obtained and a 5 mL

aliquot is taken, three drops of phenolphthalein are added as an

indicator and titrated with 0.1 N NaOH; with the data obtained, the

TA value is obtained with the formula:

Titratable acidity ( % )

=
mL  NaOH � N  NaOH �meq� VT � 100

A� g

Where: mL NaOH = milliliters of sodium hydroxide spent in

the titration; N NaOH = sodium hydroxide normality; meq =

milliequivalents of the predominant acid in the fruit; VT =

prepared sample volume; A = aliquot taken for the measurement;

g = weighed grams of the fruit.

To determine the TSS/TA ratio, divide the TSS percentage by

the TA percentage (Medeiros et al., 2017).

To determine the color, the methodology described by Konica

Minolta (2007) can be applied. With a colorimeter, the L*, a* and b*

values are recorded in two areas of the equatorial part of the fruit.

The Hue angle (h) and color purity (C) are calculated using the a*

and b* values with the following formulas:
TABLE 2 Minimum physical and chemical properties for the selection of
inorganic substrates for plant growth.

Property Optimal level

1. Particle diameter (mm) 0.25 - 2.5

2. Total porosity (%) > 85

3. Water readily available (%) 20 - 30

4. Aeration capacity (%) 20 - 30

5. Bulk density (g cm-3) 0.05 - 0.8

6. Cation exchange capacity (CEC) (cmol(+) kg
-1) < 10

7. Electrical conductivity (EC) (dS m-1) < 0.15
Table elaborated based on Abad et al. (1993); Abad et al. (2005) and Castellanos and
Tapia (2009).
TABLE 3 Macronutrients and micronutrients of the nutrient solution
according to Steiner (1984) for an electrical conductivity of 2 dS m-1

(osmotic potential -0.072 MPa).

Macronutrient [mol(+) m
-3]

NO3
- P-H2PO4

- K+ Ca2+ Mg2+ S-SO4
2-

12 1 7 9 4 7

Micronutrient (mg L-1)

B Cu Fe Mn Mo Zn

0.20
- 0.60 0.01 - 0.06

0.50
– 20.00

0.20
- 2.00

0.04
- 0.06 0.10 - 0.60
fro
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° h = tan−1(b=a)           C = √ (a2 + b2)

The lightness (brightness) value L is obtained directly from the

colorimeter. With the values obtained from L*, a* and b*, the color

of the fruit is located in the color space L*a*b*, described in Konica

Minolta (2007).
4.4 Secondary metabolites

In addition to its importance in assessing plant response to

environmental changes, this characteristic is relevant due to the

growing demand for products with health-beneficial components.

It is recommended to carry out a metabolomic profile using

high-performance liquid chromatography (HPLC) to determine the

types of metabolites present in the plant, as described by Flores-

Sánchez et al. (2023) to determine flavonoids, terpenoids and

phenolic acids: 0.5 g of oven-dried or lyophilized material are

weighed and placed in 15 mL conical centrifuge tubes, afterwards

5 mL of 80% methanol are added and shaken with a vortex for 10 s,

then subjected to an ultrasound process for 30 min, at 10-min

intervals, with a 5-min rest between intervals. They are centrifuge at

5000 rpm for 5 min, and 1 mL of the extraction is taken and placed

in a 1 mL capacity vial. Samples are stored at 4°C until analysis

on HPLC.

To identify phenolic acids and flavonoids, the wavelengths l1 =
254, l2 = 280, l3 = 330 and l4 = 365 nm are used. The absorption

spectra of the analyzed samples are obtained, they are compared

with those of the standards, and calibration curves are generated at

the different wavelengths.
Frontiers in Plant Science 10
For the identification of terpenoids, the wavelength of 220 nm is

used, and calibration curves are generated as described in the

previous paragraph. Reference standards are shown in Table 4.

It is recommended to analyze the data obtained based on a

factorial model, considering the different factors and levels used,

especially if these represent a factor such as EC, pruning or

temperature, since the synthesis of metabolites is affected by these

and by the levels of each factor to which the plant is subjected.
4.5 Nutritional concentration

At this stage, the crop is established again with the most suitable

EC determined for the species, and the macro and micronutrients

contained in the leaves are quantified for each stage of plant

development (vegetative, flowering, fruiting and harvesting); in

addition, characteristics such as stem diameter, stem and root

length, leaf area and total dry matter are evaluated.

For the quantification of macro and micronutrients, the leaves

are dried (70°C, in a forced air oven) and ground in a Wiley-type

mill (particles < 2 mm). Then 0.25 g are weighed and subjected to

wet digestion at 300°C, with 2 mL of a 2:1 (v/v) mixture of sulfuric

acid (H2SO4) and perchloric acid (HClO4), and 1 mL of hydrogen

peroxide H2O2 at 30%. Each sample is then diluted to obtain 25 mL

with deionized water and filtered.

The N is determined with the semimicro-Kjeldahl method

(Horneck and Miller, 1997), by which an aliquot of 10 mL of the

sample obtained is distilled and titrated with 0.05 N sulfuric acid

(H2SO4, 0.05 N). For titration, 20 mL of boric acid at 4% and 6

drops of the indicator solution are added [bromocresol green (0.3 g)
TABLE 4 Reference standards of phenolic acids, flavonoids, and terpenoids.

Compound
Wavelength (nm)

Flavonoids Phenolic acids

Rutin Protocatechuic ac. 3,5-di-hydroxybenzoic ac. 254

Morin p-hydroxybenzoic ac. Vanillic or caffeic ac.

Quercetin b-resorcylic ac.

Catechin Naringenin Gallic acid 280

Hesperidin Phloretin Syringic acid

Phloridzin p-coumaric acid

Apigenin Chlorogenic acid Ferulic acid 330

Sinapic acid Rosmarinic acid

Myricetin 365

Kaempferol

Isorhamnetin

Terpenoids

Carnosol Stigmasterol

Ursolic acid Alpha-amyrin 220

Oleanolic acid b -sitosterol
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and methyl red (0.165 g) in 400 mL of 95% ethanol, and the solution

is taken to final volume of 500 mL].

To calculate the percentage of total N, the following formula

is applied:

%  N =
V * N * 14 * 100
Sample weight (g)

Where: % N = percentage of total N, V = volume spent in the

titration, N = normality of H2SO4, 14: milliequivalent weight of

N (mg).

For the other macronutrients (P, K, Ca and Mg) and for the

micronutrients (B, Cu, Fe, Mn, Mo and Zn) a coupled plasma

induction atomic emission spectrophotometer is used for their

quantification (ICP-AES 725-ES, Agilent, Santa Clara, CA, USA).

For the determination of sulfur (S), a wet digestion is carried

out at 160°C, using 0.5 g of material with 5 mL of a 2:1 (v/v)

mixture of nitric acid (HNO3) and perchloric acid (HClO4).

Afterwards, each sample is diluted to 25 mL with deionized

water and filtered. In this sample, except for N, the nutrients

including S are determined in the coupled plasma induction

atomic emission spectrophotometer.

Once the evaluation and characterization of underutilized plant

genetic resources is completed with this proposal, the data obtained

can be analyzed by logistic regression for the case of germination

percentage and, for the germination variables, agronomic

assessment and nutrient concentration, analysis of variance with

means separation test can be used. In addition, if different factors

and levels are used for each factor, it is recommended to carry out

the analysis based on a factorial model. As an example, the data

presentation can be done as shown in the following figures

(Figures 1–4).
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5 Benefits of the proposal

The proposal raises different criteria that could serve as a guide

for selecting plant species and thus making efficient use of the

available resources, a problem in the study of underutilized species

(Padulosi et al., 2002).

The themes considered in this proposal, of agricultural and

alimentary interest to the population such as fruit quality,

nutraceutical compounds, nutritional requirements for plant

growing or phenological response in different environmental

conditions from those where they develop, would facilitate

their study.

The information generated would allow the selection of

germplasm for direct use or for genetic improvement, and the

identification of nutraceutical compounds or secondary metabolites

with benefits for human health such as those reported in amaranth,

moringa, buckwheat seeds or jaltomate (Jing et al., 2016; Platel,

2020; Nixwell et al., 2022; Flores-Sánchez et al., 2023).

In addition, the information generated would contribute to the

promotion of the cultivation and consumption of these species,

among low-income farmers in developing countries, where

diversified agricultural systems are crucial to meet food needs in a

sustainable way, and to the population in general by having food

alternatives that benefit a more balanced diet. Furthermore, the

production and commercialization of these alternative crops would

serve to diversify the economic income of mainly low-income

producers and actors linked to the value chain (Padulosi et al.,

2013). All these issues contribute to biodiversity conservation and

ecosystem resilience, since rescuing underutilized or abandoned

plant species, wild, semi-domesticated or domesticated will preserve

potential and alternative food sources.
FIGURE 1

Logistic regression analysis applied to the germination percentage in two genotypes of jaltomate using the Wald test. Population: erect E, erect; D,
decumbent; solution: 1 (0.1 % KNO3), 2 (0.2 % KNO3), 3 (control); imbibition: 4 days (4d), 6 days (6d) (modified from Flores-Sánchez et al., 2022).
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FIGURE 3

Analysis of variance based on a completely randomized factorial model, applied in nutrimental concentration, to determine the nitrogen (N)
concentration by vegetative stage (left), and the order of the level of macronutrients uptake (right). Phenological stage: Veg, vegetative; Flo,
flowering; Fruc, fruiting; Harv, harvest; the thin black bars in the image on the left indicate the standard error (modified from Flores-Sánchez, 2022).
FIGURE 4

Analysis of variance based on a completely randomized factorial model, applied in nutrimental concentration, to determine the accumulation of dry
matter by evaluated plant organ and by vegetative stage. Erect population; R, root; S, stem; L, leaf; RE, reproductive structure; phenological stage:
Veg, vegetative; Flo, flowering; Fruc, fruiting; Harv, harvest (modified from Flores-Sánchez, 2022).
FIGURE 2

Analysis of variance based on a completely randomized factorial model and means separation test, applied to variables of agronomic interest such as
stem diameter (left) and secondary metabolites (right): WP, with pruning; WoP, without pruning; Fm, Form; EC, electrical conductivity; population: E,
erect; D, decumbent; different letters among bars indicate statistical difference; the thin black bars in the image on the left indicate the standard
deviation, and in the image on the right indicate the standard error (modified from Flores-Sánchez et al., 2021 and Flores-Sánchez et al., 2023).
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With the application of this proposal, information could also be

generated to contribute to the protection and floristic knowledge,

where taxonomic studies based on morphological characteristics

hinder the identification and classification of specimens that are

difficult to distinguish morphologically, as reported in the genus

Jaltomata, where a studied specimen was recognized as a new

species for this genus, based on DNA sequencing studies and

phylogenetic trees (Flores-Sánchez et al., 2024).

In this way, the study of these resources based on the proposed

methodology could contribute to their conservation, protection and

sustainable use.
6 Limitations of the proposal

Within the limitations of the proposal is the bias of the person

interested in the study of these resources, since it will depend on the

information he has and his criteria to prioritize the different aspects

proposed for the selection of the species to study, which could lead

to a waste of time and economic resources.

Also, there would be a limitation on access to sufficient

economic resources and to the equipment and infrastructure

required for the different aspects that are proposed to be studied.

Because it is a multidisciplinary study, another limitation is that the

researcher has the knowledge of the different disciplines that are

required, which would imply the investment of significant time and

economic resources to acquire the knowledge and equipment necessary

in these disciplines, therefore, the collaboration of other researchers

interested in the study of these plant resources would be required.

The low availability of germplasm of some species to be studied

would be another limitation for genetic improvement purposes, since

it is necessary to have a wide genetic diversity of the germplasm

studied that allows identifying important characteristics such as fruit

size, stem diameter, nutritional content and nutraceutical compounds.
7 Conclusion

In this way, the proposal described seeks to contribute to the

establishment of a methodology that facilitates the study and use of

underutilized or abandoned species, through the generation of data

that allows identifying germplasm for direct use or for the

development of subsequent studies such as the identification of

characteristics of agricultural interest for genetic improvement

using molecular techniques that allow reducing times and
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economic costs in this process, the identification of secondary

metabolites useful for humans and the cultivation conditions that

affect their synthesis in a positive or negative way, or the cultivation

conditions that allow obtaining products with adequate nutritional

quality for people and, address the problem raised by the reduced

diversity of foods available in production systems, making use of the

available biodiversity, as raised by the World Health Organization

and the Food and Agricultural Organization of the United Nations.
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Assad-Bustillos, M., Ramıŕez-Gilly, M., Tecante, A., and Chaires-Martıńez, L. (2014).
Physicochemical, functional, thermal and rheological characterization of starch from
huazontle seeds (Chenopodium berlandieri spp. nuttalliae). Agrociencia. 48, 789–803.
Available at: https://agrociencia-colpos.org/index.php/agrociencia/article/view/1120
(Accessed February 2, 2023).

Association of Official Analytical Chemists (AOAC) (1995). Official methods of
analysis (Washington, D. C., USA: Association of Official Analytical Chemists), 1141.

Bagale, K. V. (2018). The effect of electrical conductivity on growth and development of
strawberries grown in deep tank hydroponic systems, a physiological study. J.
Pharmacognosy Phytochemistry. SP1, 1939–1944. Available at: http://www.phytojournal.
com/archives/2018/vol7issue1S/PartAC/SP-7-1-594.pdf (Accessed May 22, 2020).

Basantes-Morales, E. R., Alconada, M. M., and Pantoja, J. L. (2019). Quinoa
(Chenopodium quinoa Willd) production in the Andean region: challenges and
potentials. J. Exp. Agric. Int. 36, 1–18. doi: 10.9734/JEAI/2019/v36i630251

Baskin, C. C., and Baskin, J. M. (2014). “Types of seeds and kinds of seed dormancy,”
in Seeds, Ecology, Biogeography, and Evolution of Dormancy and Germination. Eds. C.
C. Baskin and J. M. Baskin (Amsterdam: Academic Press), 37–77. doi: 10.1016/B978-0-
12-416677-6.00003-2

Baskin, C. C., Zackrisson, O., and Baskin, J. M. (2002). Role of warm stratification in
promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a
circumboreal species with a stony endocarp. Am. J. Bot. 89, 486–493. doi: 10.3732/
ajb.89.3.486

Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M.,
Zsögön, A., et al. (2018). Modifications in organic acid profiles during fruit
development and ripening: Correlation or causation? Front. Plant Sci. 9.
doi: 10.3389/fpls.2018.01689

Belamkar, V., Farmer, A. D., Weeks, N. T., Kalberer, S. R., Blackmon, W. J., and
Cannon, S. B. (2016). Genomics-assisted characterization of a breeding collection of
Apios americana, an edible tuberous legume. Sci. Rep. 6, 34908. doi: 10.1038/srep34908

Bethke, A., and Lieth, H. (2016). Controlled environment agriculture Vol. 20 (United
States of America: University of California), 1–5. Available at: https://ucnfanews.ucanr.
edu/newsletters/Download_UCNFA_News_as_PDF66746.pdf (Accessed February 20,
2022).
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Mesoamericana 32, 733–749. doi: 10.15517/am.v32i3.43738

Flores-Sánchez, I. D., Sandoval-Villa, M., Soto-Hernández, R. M., and Uscanga-
Mortera, E. (2023). Effects of electrical conductivity and pruning on secondary
metabolite contents in fruits of Jaltomata procumbens (Cav.) J. L. Gentry. Natural
Product Commun. 18, 1–11. doi: 10.1177/1934578x221150547

Flores-Sánchez, I. D., Sandoval-Villa, M., and Uscanga-Mortera, E. (2022). Breaking
seed dormancy of Jaltomata procumbens (Cav.) J. L. Gentry seeds with the use of KNO3.
Crops. 2, 99–110. doi: 10.3390/crops2020008

Flores-Sánchez, I. D., Sandoval-Villa, M., Uscanga-Mortera, E., and Silva-Rojas, H.
V. (2024). Jaltomata tlaxcala, a new species of the genus Jaltomata (Solanaceae,
Solanoideae, Solaneae). Phytotaxa 641, 85–98. doi: 10.11646/phytotaxa.641.2.1

Footitt, S., Huang, Z., Clay, H. A., Mead, A., and Finch-Savage, W. E. (2013).
Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling,
resulting in winter and summer annual phenotypes. Plant J. 74, 1003–1015.
doi: 10.1111/tpj.12186

Franklin, K. A., Toledo-Ortiz, G., Pyott, D. E., and Halliday, K. J. (2014). Interaction
of light and temperature signalling. J. Exp. Botany. 65, 2859–2871. doi: 10.1093/jxb/
eru059

Gandica, O. H., and Peña, H. (2015). Acumulación de materia seca y balance de
nutrientes en tomate (Solanum lycopersicum L.) cultivado en ambiente protegido.
Bioagro 27, 111–120. Available at: http://ve.scielo.org/scielo.php?pid=S1316-
33612015000200007&script=sci_abstract&tlng=en (Accessed September 30, 2021).

Gao, P., Dong, J., Wang, S., Zhang, W., Yang, T., Zhang, J., et al. (2022). Cool-warm
temperature stratification and simulated bird digestion optimize removal of dormancy
in Rosa rugosa seeds. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.808206

Gao, Z., Wang, Y., Tian, G., Zhao, Y., Li, C., Cao, Q., et al. (2020). Plant height and its
relationship with yield in wheat under different irrigation regime. Irrigation Sci. 38,
365–371. doi: 10.1007/s00271-020-00678-z
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A. (2017). An evaluation of physical and mechanical scarification methods on seed
germination of Vachellia macracantha (Humb. & Bonpl. Ex Willd.) Seigler & Ebinger.
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variedades de tomate de cáscara (Physalis ixocarpa Brot. ex Horm.) cultivado en
campo. Rev. Chapingo Serie Horticultura 17, 151–160. Available at: http://www.scielo.
org.mx/pdf/rcsh/v17n3/v17n3a7.pdf (Accessed May 5, 2019).

Preciado-Rangel, P., Baca, C. G. A., Tirado, T. J. L., Kohashi-Shibata, J., Tijerina, C.
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