Check for updates

OPEN ACCESS

EDITED BY Xin-Sheng Chen, Anhui University, China

REVIEWED BY Igor Zelnik, University of Ljubljana, Slovenia Donald J. Leopold, SUNY College of Environmental Science and Forestry, United States

*CORRESPONDENCE Jing Yuan Xyvy-8945@163.com Zhaosheng Chu chuzssci@yeah.net

RECEIVED 30 September 2024 ACCEPTED 03 March 2025 PUBLISHED 20 March 2025

CITATION

Zhu F, Yuan J, Hou Z, Guo X, Liao W, Yang S and Chu Z (2025) Seasonal water level changes affect plant diversity and littoral widths at different elevation zones in the Erhai Lake. *Front. Plant Sci.* 16:1503627. doi: 10.3389/fpls.2025.1503627

COPYRIGHT

© 2025 Zhu, Yuan, Hou, Guo, Liao, Yang and Chu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Seasonal water level changes affect plant diversity and littoral widths at different elevation zones in the Erhai Lake

Feng Zhu^{1,2,3}, Jing Yuan^{1,3*}, Zeying Hou^{1,3}, Xia Guo^{3,4}, Wanxue Liao^{1,3}, Shenglin Yang^{1,2,3} and Zhaosheng Chu^{1,2,3*}

¹State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China, ²College of Water Sciences, Beijing Normal University, Beijing, China, ³National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, China, ⁴Construction Project Environmental Impact Assessment and Audit Center of Dali Bai Autonomous Prefecture, Dali, Yunnan, China

The littoral width of lakeshores is crucial for maintaining and promoting plant diversity. However, it remains unclear how changes in seasonal water level affect littoral widths by regulating plant diversity and soil nutrient content. This study selected three elevation ranges in the lakeshore of Erhai: supralittoral, eulittoral, and infralittoral. We explored the effects of hydrological changes on littoral widths and their potential relationships by analyzing seasonal differences in plant communities and soil physicochemical properties during an extremely drought year. Our results indicated that the most significant seasonal differences in diversity indices, biomass, and soil physicochemical properties were observed in the eulittoral, followed by the infralittoral and supralittoral. The niche breadths of perennials was significantly decreased by 44.4% and the width of the eulittoral was significantly decreased by 48.6% during the winter. Generalized Additive Models (GAMs) were applied to analyze the elevation distribution ranges of dominant species. The results revealed that species with monotonically increasing distributions had the widest niche breadths, followed by symmetric unimodal species, while monotonically decreasing species exhibited the narrowest. Structural equation modeling revealed a positive and significant correlation between flooding days and soil water content and pH, and a negative correlation with plant parameters (species number, biomass, and coverage). Moreover, plant parameters showed a significant positive correlation with plant diversity. Importantly, plant diversity and soil nutrients were significantly positively correlated with littoral widths, suggesting their key roles in influencing littoral widths. This study highlights the significant impact of hydrological seasonal changes on the littoral widths of lakeshore zones, providing valuable guidance for managing wetland water levels in response to extreme drought events.

KEYWORDS

littoral widths, plant diversity, soil nutrient, hydrological seasonal changes, niche breadth

1 Introduction

The lakeshore zone is a transitional area between aquatic and terrestrial ecosystems and is a crucial component of the lake ecosystem (Ostendorp, 2004). It serves as a terrestrial-lake ecotone, being a sensitive area susceptible to water level fluctuations, and is also critical for maintaining biodiversity (Wang et al., 2022; Zhang et al., 2015). Lakeshore plants play a crucial role as a primary producer in preventing soil erosion, intercepting pollutants, and providing diverse habitats (Li et al., 2019; Zhang et al., 2021). Seasonal water level changes significantly influence the distribution of lakeshore plants, exhibiting distinct vertical distribution characteristics (Gaberscik et al., 2018; Zheng et al., 2022). Aquatic plants in the infralittoral are adapted to longterm flooding (Baschuk et al., 2012), hygrophytes in the eulittoral are adapted to intermittent flooding (Garssen et al., 2017; Ojdanic et al., 2023), and xerophytes in the supralittoral are adapted to drought conditions (Stroh et al., 2008).

Water level changes are one of the driving factors shaping the landscape patterns of wetlands and a determining factor influencing the spatiotemporal distribution of plant communities (Gathman et al., 2005; Hu et al., 2018). Wetland hydrological processes significantly influence the composition, diversity, distribution width, and area of plant communities (Gaberscik et al., 2018; Wang et al., 2015; You et al., 2015; Zheng et al., 2022). Such as long-time droughts or floods may lead to decreased numbers and diversity of plant species in wetlands, or even the formation of a single dominant species community (Gaberscik et al., 2020; Wassens et al., 2017). Secondly, the frequency and duration of wet-dry alternations significantly affect the growth and physiological characteristics of wetland plants, with frequent alternations increasing plant community diversity (Pollock et al., 1998; Zhang et al., 2022). In addition, fluctuations in the highest and lowest water levels determine the distribution width of plant communities and influence the habitat range of different plant communities (Chapin and Paige, 2013). Water level fluctuations directly or indirectly influence the seed germination and reproductive success of lakeshore plants by affecting soil water and nutrient content (Fu et al., 2018; Zhao et al., 2021). Therefore, wetland plant community structure and growth may vary significantly across elevation zones under different water level gradients.

The response of plant species to environmental gradients reflects adaptive adjustments in their niche (Hutchinson, 1957), which have received extensive attention in wetland research and management. The niche breadth of a species determines its ability to utilize different environmental gradients, thereby influencing its distribution range and competitive ability (Costa et al., 2018). The hydrology, soil, and plants are three important components of wetland ecosystems that interact and influence each other (Feng et al., 2020; Zhang et al., 2022). The constrained spatial extent of lakeshore zones results in the distribution and niche breadth of plants being particularly sensitive to variations in soil physicochemical properties, water levels, and elevation (Lou et al., 2018; Wang et al., 2022; Zheng et al., 2022). For example, larger

inter-annual differences in water levels can alter wetland soil moisture and nutrient availability, thereby affecting plant diversity (Shen et al., 2020). Lakeshore zones are ideal habitats for studying changes in plant ecological behavior, as the significant environmental gradients and diverse habitats make the response of plant communities to environmental changes more intuitive and easier to measure (Chen et al., 2020; Duval et al., 2012). However, knowledge is limited on the relationship between plant niche breadth at different elevation ranges in the lakeshore zone and environmental gradients, especially in plateau lakes.

Lake Erhai, the second largest plateau lake in the Yunnan Province of China, serves multiple functions including agricultural irrigation, climate regulation, tourism and water supply (Wang et al., 2023). In recent years, due to eutrophication and the rapid development of agriculture and tourism, the stability of the Erhai lakeshore ecosystem has been seriously damaged (Li et al., 2020). In 2023, Lake Erhai experienced an extreme drought, leading to the revision of the statutory minimum operating water level from 1964.30 m to 1964.10 m (DBAPPG, 2023). Although many studies have focused on the effects of water level fluctuations on aquatic plant communities in Lake Erhai (Wen et al., 2023; Wu et al., 2023; Zhu et al., 2018), there is still a lack of research on the effects of plant communities in different elevation zones along the lakeshore. Effective water level management requires a comprehensive understanding of how water level fluctuations affect plant community distribution ranges and structure in the Erhai lakeshore zones.

This study conducted comprehensive surveys and analyses of plants and soils in three elevation zones along the lakeshore of Lake Erhai during the summer and winter of 2023, and collected daily water level data provided by the Erhai Administration Bureau. The questions addressed in this study are: 1) to clarify the distribution characteristics and dynamics patterns of plant communities across different elevation zones of the lakeshore; 2) to compare summer and winter differences in the niche breadths of dominant species and their responses to elevation; and 3) to reveal the relationships among hydrology, plants, and soil, and the mechanisms influencing littoral widths. This study aims to demonstrate how seasonal water level fluctuations affect plant diversity and littoral widths in the lakeshore zone, providing a theoretical basis for effective water level management to improve the total plant diversity of the Lake Erhai.

2 Materials and methods

2.1 Study site

Lake Erhai (25°36′~25°58′ N, 100°06′~100°18′ E), located in Yunnan Province, China, is a faulted freshwater lake formed by crustal movement (Figure 1). The lake covers an area of 252 km², with average annual temperatures of 15.1°C. It has distinct wet and dry seasons, but precipitation is unevenly distributed, with more than 85% occurring during the rainy season from May to October (approximately 870 mm). A total of 117 tributaries flow into Lake Erhai, with legally authorized maximum and minimum operating water levels of 1966.0 m and 1964.3 m, respectively (Gong et al.,

2023). Under the combined influence of reduced precipitation and artificial regulation since 2004, the time lag between water level and precipitation in Lake Erhai has become longer, with longer time intervals between the highest and lowest water levels, consequently altering the inundation time in the lakeshore zone (Wen et al., 2021). Lake Erhai is an important ecological area in China, characterized by high plant diversity and coverage, and rich biodiversity. The Cangshan and Erhai Nature Reserves were upgraded to national nature reserve in 1993 (Wang et al., 2023).

2.2 Plant surveys and soil sampling

This study conducted plant surveys and soil sampling along the lakeshore zone of Lake Erhai in the summer (mid-July) and winter (mid-December) of 2023. We selected 29 fixed sample sites based on their accessibility and the distinct, high coverage of dominant plant communities. Each site was vertically divided into three zones based on the number of days of submergence: supralittoral (1965.77m-1967.37m), eulittoral (1965.06m-1965.74m), and infralittoral (1964.30m-1965.06m). In 2023, the average number of flooding days was 0 in the supralittoral, 98 in the eulittoral, and 283 in the infralittoral (Figure 1C). Three parallel quadrats ($1m \times 1m$) were randomly set up in each zone, and plant name, height, coverage, biomass (fresh weight), and numbers were recorded within each quadrat. The geographical coordinates of each quadrat were recorded using a portable GPS locator and combined with spray paint and red string markers for reference.

After harvesting the aboveground biomass in the quadrats using a sickle, three soil cores (0-20 cm) were collected diagonally using a soil auger. The soil samples from each zone were thoroughly mixed to form a composite sample and transported back to the laboratory for physicochemical properties analysis. The relative elevation above the water surface in each zone was measured using a level instrument and combined with the water level recorded on the survey day to calculate the elevation of each zone (Shen et al., 2019).

2.3 Soil processing and analysis

The soil samples were divided into three sub-samples for different analyses. One sub-sample was used to determine soil water content (SW) using fresh soil; one sub-sample was refrigerated at 4°C to determine ammonium nitrogen (NH_4^+ -N) and nitrate nitrogen (NO_3^- -N); and the other sub-sample was freeze-dried, grind, and preserved by passing it through a 0.149-mm nylon sieve to determine total phosphorus (TP), C/N ratio, total nitrogen (TN), soil organic matter (SOM), and pH.

SW was determined using the thermostat drying method: dried at 105°C for 24 hours. pH was measured using a pH meter in a mixture with a soil-water ratio of 1:2.5. $\rm NH_4^+-N$, $\rm NO_3^--N$ and TP were determined by UV/visible spectrophotometer (UV-1900i). TN (%) and C/N ratio were determined with an elemental analyzer (Vario Macro Cube, Germany). SOM was analyzed by the potassium dichromate volumetric method under externally heated conditions (Ji, 2005).

2.4 Data analysis

At the species level, the seasonal variation of the top 30 dominant species were calculated based on the ordering of importance values (*IV*). At the diversity level, assessed by Patrick index (*R*), Shannon-Wiener index (*H*), Simpson Index (*D*), Pielou Evenness index (*E*), and dominance index (λ). The equations for all indices were calculated as follows Equations 1–6:

$$IV = (relative coverage + relative height)$$
 (1)

+ relative biomass + relative frequency)/4

$$R = S \tag{2}$$

$$H = -\sum_{i=1}^{s} P_i ln P_i \tag{3}$$

$$D = 1 - \sum_{i=1}^{s} P_i^{\ 2} \tag{4}$$

$$E = \frac{H}{\ln(S)} \tag{5}$$

$$\lambda = \sum_{i=1}^{s} P_i^2 \tag{6}$$

where *S* is the total number of species (species richness) recorded in each zone and *Pi* represents the relative abundance of *i*th species in each zone.

Plant species niche breadth and littoral widths were calculated using the *Levins* method from package *spaa*. Meanwhile, Generalized Additive Models (GAMs) were constructed to understand the distribution ranges of plants, and to assess plant responses to elevation changes. GAMs are more flexible than generalized linear models, to explore nonlinear relationships between independent and dependent variables, and perform well in spatial prediction (Elith et al., 2006). GAMs were performed using the *mgcv* package, employing a Gaussian distribution and nonlinear fitting of species abundance and elevation through a smoothing function. The smoothing parameter was automatically selected by generalized cross validation (GCV), which obtained a low GCV value, indicating a good fit of the model (Guisan et al., 2002). The *spaa* and *mgcv* packages were both used for analysis in R (version 4.3.2).

Principal component analysis (PCA) was performed to assess correlations between components and identify the main components associated with littoral widths. PCA is an unsupervised method that identifies principal components capturing the maximum variance in the dataset without predefined explanatory variable relationships (Lever et al., 2017). Structural equation modeling (SEM) was employed to explore the relationships among flooding days, soil nutrients, SW, soil pH, plant diversity, plant parameters (R, biomass, coverage), and littoral widths. SEM is a multivariate statistical analysis method that allows for the simultaneous examination of both direct and indirect relationships among multiple observed variables, thereby revealing hidden structural patterns within complex systems. For SEM construction, we ensured the key assumptions of the linearity of relationships among variables and sufficient sample size were met. Model fitting was completed by removing the observed variables based on the modification indices and confirming that the key fit metrics met the thresholds.

All data tested for significance were assessed for variance homogeneity and normal distribution, and data satisfied with normal distribution were tested using the independent sample ttest; otherwise, the Mann-Whitney U-test was used. All significance tests for the data were conducted using IBM SPSS 27.0 software. PCA and mapping were performed using Origin2023b and ArcMap 10.8. SEM was constructed and analyzed using IBM SPSS Amos 28 software.

3 Results

3.1 Changes in species composition and diversity

A total of 110 species belonging to 40 families and 82 genera were recorded in the summer, with the highest species richness in the order of Poaceae (N=23, 20.9%), Asteraceae (N=16, 14.5%), Polygonaceae (N=7, 6.4%), and Cyperaceae (N=6, 5.5%). A total of 71 species belonging to 30 families and 58 genera were recorded in the winter, with the highest species richness in the order of Poaceae (N=18, 25.4%), Asteraceae (N=10, 14.1%), Polygonaceae (N=5, 7.0%), and Fabaceae (N=4, 5.6%). All species surveyed in this study were listed in Appendix 1.

Compared to summer, the importance values (IV) of dominant species showed seasonal differences across the three zones during winter (Figure 2). In the supralittoral, 7 dominant species showed an increase in IV, with *Trifolium repens* exhibiting the highest increase of 416.9%, while 10 species showed a decrease, with *Cynodon dactylon* exhibiting the highest decrease of 31.8%. In the eulittoral, 11 dominant species showed an increase in IV, with *Alternanthera philoxeroides* exhibiting the highest increase of 66.5%, while 13 species showed a decrease, with *Ageratina adenophora* exhibiting the highest decrease of 62.3%. In the infralittoral, both increased and decreased in IV were 11 dominant species, with *Phragmites karka* exhibiting the highest increase of 100% and *Phragmites australis* exhibiting the highest decrease of 40.2%.

Compared to summer, the diversity indices showed seasonal differences across the three zones during winter (Figure 3). Specifically, in the supralittoral, the Evenness index increased significantly by 31.0%. In the eulittoral, the Dominance index and Evenness index increased significantly by 46.3% and 64.5%, respectively, while the Simpson index, Shannon-Wiener index, and species richness decreased significantly by 48.3%, 56.8%, and 67.3%. In the infralittoral, the Shannon-Wiener index and species richness decreased significantly by 40.4% and 50.8%, respectively, while the Evenness index increased significantly by 43.0%. In summary, seasonal differences in diversity indices were most significant in the eulittoral, followed by the infralittoral and supralittoral.

The biomass did not differ seasonally in the supralittoral and infralittoral, but increased significantly by 85.9% in the eulittoral.

The coverage did not differ seasonally in the supralittoral and eulittoral, but decreased significantly by 40.1% in the infralittoral.

3.2 Niche breadth and species response to elevation

Seasonal comparisons of niche breadths showed significant differences among species (Figure 4A). The niche breadth of *Alternanthera philoxeroides* was largest in summer (21.39), but only 9.39 (decreased by 56.1%) in winter. This significant decrease indicates that rising water levels may be limiting the habitat of this species, affecting its dispersal and competitive ability. Similarly, other perennial

herbaceous plants with high niche breadths in summer and significant decreases in winter include *Cynodon dactylon, Phragmites australis, Urtica fissa*, and *Epilobium hirsutum*. However, there was no significant seasonal difference in the niche breadth of the helophytes *Zizania latifolia*. This indicates that the habitat of this species is not limited by changes in water level and that it has strong adaptability. In summary, the mean niche breadth for perennial plants was 5.45 in the summer and 3.03 in the winter, showing a significant decrease of 44.4%. Most annual plants, such as *Solanum nigrum, Polypogon fugax,* and *Rorippa palustris*, showed a 100% decrease in niche breadth during winter.

There were no significant seasonal differences in littoral widths between the supralittoral and infralittoral (Figure 4B), suggesting

that species composition and habitat conditions are relatively stable in both zones. However, the eulittoral exhibited a significant decrease in littoral width of 48.6% during winter (Figure 4B), probably caused by rising water levels that narrowed the habitat range in this zone.

The GAMs fitting was successful for the six dominant species (all P < 0.01, Table 1; Figure 5), exhibiting different elevation response curves. The response curves of *Alternanthera philoxeroides* and *Leersia hexandra* decreased with increasing elevation. Conversely, the response curve of *Cynodon dactylon* increased with increasing elevation. One species (*Zizania latifolia*)

TABLE 1 Statistical parameters of the response curves (GAMs) to elevation for the top 6 species.

Species	AIC	edf	ref.df	F	Р	R ²	GCV
Alternanthera philoxeroides	671.13	6.501	7.568	13.66	< 0.001	0.37	2.7445
Zizania latifolia	561.07	4.124	5.049	37.73	< 0.001	0.52	1.4565
Leersia hexandra	653.71	4.846	5.865	6.26	< 0.001	0.17	2.4812
Phragmites australis	648.12	7.295	8.247	3.052	< 0.01	0.11	2.4056
Cynodon dactylon	749.13	5.031	6.067	16.44	< 0.001	0.37	4.2938
Ageratina adenophora	543.84	4.802	5.816	5.928	<0.001	0.16	1.3195

AIC, Akaike information criterion; edf, Estimated degree of freedom; ref.df, referenced degree of freedom; F, variance ratio; P, significance; R2, explained variance; GCV, generalized cross validation.

exhibited a monotonically decreasing response curve. Two species (*Phragmites australis* and *Ageratina adenophora*) exhibited symmetrical unimodal response curves.

3.3 Changes in soil physicochemical properties

There were significant seasonal changes in soil physicochemical properties, but the differences varied across zones during winter (Figure 6). Specifically, in the supralittoral, SW, NO_3^- -N, and the C/N ratio increased significantly, while pH and TN decreased significantly, and there were no significant differences in NH₄⁺-N, SOM, and TP. In the eulittoral, SW, NO₃⁻-N, and the C/N ratio increased significantly, while pH, TP, and TN decreased significantly, and there were no significant differences in NH₄⁺-N and SOM. In the infralittoral, SW and NH₄⁺-N increased significantly, while pH decreased significantly, and there were no significant differences in NO₃⁻-N, SOM, TP, TN, and the C/N ratio. In summary, the seasonal differences in soil physico-chemical properties were most significant in the eulittoral, followed by the supralittoral and infralittoral. SW and pH exhibited significant seasonal differences in all three zones.

3.4 Relationship between littoral widths and influencing factors

Principal component analysis determined the relationship among littoral widths, soil physico-chemical properties, flooding

days, plant diversity index, coverage, and biomass (Figure 7). The analysis results showed that the eigenvalues of the first principal component (PC1) and the second principal component (PC2) were 4.60 and 3.21, respectively, explaining 27.0% and 18.9% of the total variability. The eigenvectors of the PC1 in descending order were Shannon-Wiener index (0.43), Simpson index (0.41), species richness (0.40), TP (0.14), TN (0.10), and SOM (0.08), all of which were positively correlated with littoral widths. The eigenvectors of the PC2 in descending order were SW (0.46), FD (0.32), biomass (0.25), *E* (0.23), and NH₄⁺-N (0.15), all of which were negatively correlated with littoral widths.

Structural equation modeling path analyses revealed significant correlations among hydrology, soil, and plant variables, and that each variable was closely related to changes in littoral widths (Figure 8). The flooding days (FD) had a significant positive correlation with soil water content (SW) and pH, indicating that higher FD increased SW and regulated soil pH. FD had a significant negative correlation with plant parameters, indicating that changes in FD may have an important impact on plant productivity, coverage, and species richness. Moreover, plant parameters showed a significant positive correlation with plant diversity. Both soil nutrients and plant diversity exhibited a significant positive correlation with littoral widths, while FD, SW, pH, and plant parameters had no significant impact on littoral widths. In summary, FD directly affects soil (SW and pH) and plant parameters, while littoral widths were directly affected by soil nutrients and plant diversity.

4 Discussion

4.1 Effects of flooding duration on plant communities

Hydrological gradient changes directly determine the composition and range of plant communities across different elevations in the lakeshore zone (Holmquist et al., 2021; Zheng et al., 2019). We found that the importance values of hydrophytes and helophytes increased in the eulittoral and infralittoral under high water levels, while mesophytes decreased (Figure 2). This may be attributed to the frequent alternation of water levels in both zones, causing edge effects and changes in plant community structure and composition. Heterogeneity in lakeshore soil physicochemical properties under low-water conditions promoted microhabitat diversity, and hydrophytes and mesophytes coexisted by reducing direct competition (Zhang et al., 2022). A bigger challenge for these plants is to tolerate anoxic conditions in the substrate and supply oxygen to the roots during the high water. Hydrophytes and helophytes have well-developed root systems that efficiently absorb soil nutrients, allowing them to survive in flooded environments (Yang et al., 2024). Growth and biomass accumulation of the flood- and drought-tolerant invasive Alternanthera philoxeroides were promoted by adequate sunlight and water availability (Peng et al., 2021). This explains its increased importance value and biomass in the eulittoral (Figures 2, 3B), with a mean biomass of 0.33 kg/m² in summer and 0.79 kg/m² in winter.

Significant seasonal differences were observed in diversity indices, biomass, and coverage in both the eulittoral and infralittoral, which are susceptible to water level fluctuations (Figure 3). Longer flooding durations, as an abiotic stressor, inhibit the survival of flood-intolerant species, thereby reducing species richness and diversity (Casanova and Brock, 2000; Huang et al., 2021). Previous studies suggest that rising water levels regulate competition in eulittoral plant communities, favoring flood-tolerant plants and driving species homogenization (Garssen et al., 2017), which is consistent with our findings. Flood-adapted species occupy broader niches, and their increased relative abundance may enhance evenness (Altenfelder et al., 2016). Supralittoral plant communities maintain stable species composition and diversity, possibly because they are unaffected by flooding (Figure 3A).

4.2 Effects of water levels changes on plant niche breadths and littoral widths

Plants adjust their niche to optimize resource use (Carscadden et al., 2020), with niche breadth being positively correlated with their adaptability and tolerance to the environment (Costa et al., 2018). Wetland plants exhibit distinct adaptive strategies across hydrological gradients, with niche breadth variations reflecting species-specific hydrologic responses (Lou et al., 2018). In this study, the niche breadth of dominant species decreased in winter (Figure 4A), suggesting that rising water levels reduced their resource utilization capacity. The invasive *Alternanthera philoxeroides* exhibits the highest niche breadth, suggesting it is a generalist species. However, high water levels can inhibit its

FIGURE 7

Principal component analysis of littoral widths with soil physico-chemical properties, plant diversity index, coverage, biomass, and flooding days (FD). Ellipses indicate 95% confidence intervals. SW, soil water content; NH_4^+ -N, ammonium nitrogen; NO_3^- -N, nitrate nitrogen; SOM, soil organic matter; TP, total phosphorus; TN, total nitrogen; *H*, Shannon-Wiener index; *D*, Simpson Index; *E*, Pielou Evenness index; λ , dominance index; *R*, species richness.

regeneration and dispersal (Zhang et al., 2024). Helophytes such as *Zizania latifolia* are distributed at lower elevations, and their niche breadths are almost unaffected by water level changes (Figures 4A, 5). High seed production and dispersal capacity enable *Cynodon dactylon* to quickly colonize and expand in receding environments (Li et al., 2023). Therefore, rising water levels may narrow its niche breadth.

Littoral width determines plant survival space and resource utilization, and is significantly influenced by water level changes. Rising water levels inundate low-elevation zones, driving vegetation migration upland and reducing primary distribution ranges (Leyer, 2005). Declining water levels expand plant-growing space in the lakeshore zone, increasing habitat diversity and availability (Dai et al., 2019). Our results indicated that rising water levels significantly decreased the eulittoral width but had no effect on the infralittoral and supralittoral (Figure 4B).

Littoral width differences are explained by seasonal variations in flooding days (Figure 1C): (1) Eulittoral plants are highly sensitive to periodic flooding and exposure, and prolonged inundation leads to the disappearance of flood-intolerant species (Garssen et al., 2015; Ye et al., 2020), while combined low-temperature and flooding stress restricts growth and niche breadth. (2) The supralittoral at higher elevations is less sensitive to water level fluctuations, providing stable conditions for plant survival and growth. (3) The aerenchyma and specialized leaves of helophytes and floating plants facilitate survival in hypoxic and fluctuating aquatic environments (Björn et al., 2022; Chen et al., 2002; Venter et al., 2017). Stable niche breadths were maintained by infralittoral plants despite increased flooding days, with growth likely constrained by water nutrients, water exchange, and sunlight conditions (Jin et al., 2024; Wu et al., 2023).

4.3 Interactive effects of flooding days, soil and plant variables on littoral widths

Seasonal variations in flooding duration caused significant changes in plants, soils, and littoral widths in the lakeshore zone. We observed that plant diversity indices were positively correlated with littoral widths (Figures 7, 8), suggesting that higher plant diversity contributes to expanding niche breadth. Plant communities with high diversity reduce interspecific competition through niche differentiation, promoting efficient resource partitioning and enhancing community stability (McKane et al., 2002). Littoral width is a metric for predicting range size and is positively correlated with environmental tolerance breadth (Slatyer et al., 2013). A broader width indicates that plant communities can adapt to a wider range of environmental conditions, with high ecological resilience and competitiveness.

Subtle water level fluctuations alter wetland plant distribution and ecological processes (Liu et al., 2020; Qin et al., 2017), and similarly impact habitat conditions such as soil redox potential, microbial activity, and oxygen availability, which in turn influence plant growth and community composition (Hájek et al., 2013;

Structural equation modeling (SEM) reveals the relationship of flooding days, soil (water content, pH, nutrients), and plants (parameters, diversity) to littoral widths. Solid red arrows and dashed black arrows indicate significant and nonsignificant effects, respectively. The numbers beside the arrows represent standardized path coefficients; *P < 0.05, **P < 0.01, ***P < 0.001 indicate varying levels of significance. R² values indicate the total variance explained for each variable. NH₄⁺-N, ammonium nitrogen; SOM, soil organic matter; TN, total nitrogen; TP, total phosphorus.

Huang et al., 2023). Nutrient availability gradients alter plant diversity and productivity, influencing habitat ranges for different vegetation types (Zhang et al., 2022). For example, organic-rich soils foster aquatic plant growth (Silveira and Thomaz, 2015), while xerophytes dominate in low-nutrient soils (Fan et al., 2019). Therefore, flood duration influences littoral width by altering soil properties, plant diversity and niche breadth, and promoting plant community environmental adaptations.

4.4 Management implications

Our results suggest that high water levels reduced the niche breadth of most dominant perennial plants and narrowed the eulittoral width, while littoral widths were positively correlated with plant diversity and soil nutrients. Based on our findings and management needs, we recommend: 1) Regulate water levels to stabilize eulittoral habitat and promote plant diversity; 2) Optimize plant community vertical structure across elevation gradients to maintain plant diversity under water level fluctuations; 3) Develop appropriate water level thresholds to avoid extreme drought-flood events that threaten lakeshore plants.

5 Conclusions

Water level fluctuations not only shape the vertical structure of wetland plants, but are also a crucial factor influencing plant community composition and diversity. We investigated the seasonal variations in plant diversity, coverage, aboveground biomass, and soil physicochemical properties across three elevation ranges in the Erhai lakeshore zone, and explored the influence of hydrological gradient changes on littoral widths as well as the potential relationships. We found that the most significant seasonal differences in diversity indices, biomass, littoral widths, and soil physicochemical properties were observed in the eulittoral, followed by the infralittoral and supralittoral. Soil nutrients and plant diversity are the main influences on littoral widths. In addition, species response curves provide further insight into the elevation range of plant distribution in the lakeshore zone, which helps to capture the response of plant niche breadth to changes in the hydrologic gradient. These findings deepen our understanding that seasonal hydrologic changes affect plant communities and littoral widths in the lakeshore zone, and provide crucial guidance for developing effective wetland water level management in response to extreme drought events.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding authors.

Author contributions

FZ: Conceptualization, Formal Analysis, Investigation, Writing – original draft, Writing – review & editing. JY: Conceptualization, Investigation, Writing – review & editing. ZH: Investigation, Methodology, Software, Writing – review & editing. XG: Investigation, Resources, Writing – review & editing. WL: Data curation, Investigation, Writing – review & editing. SY: Formal Analysis, Validation, Writing – review & editing. ZC: Conceptualization, Funding acquisition, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by the Basic Scientific Research Service Funds of Central Level Public Welfare Research Institutes, 2024YSKY-18.

Acknowledgments

We thank the staff of Erhai Administration Bureau for coordination of field work; Renxin Xu for help in the field investigation; Qiu Yu, and Bei Du for their assistance in the field work.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Altenfelder, S., Schmitz, M., Poschlod, P., Kollmann, J., and Albrecht, H. (2016). Managing plant species diversity under fluctuating wetland conditions: The case of temporarily flooded depressions. *Wetl Ecol. Manage.* 24, 597–608. doi: 10.1007/s11273-016-9490-2

Baschuk, M. S., Ervin, M. D., Clark, W. R., Armstrong, L. M., Wrubleski, D. A., and Goldsborough, G. L. (2012). Using satellite imagery to assess macrophyte response to water-level manipulations in the saskatchewan river delta, manitoba. *Wetlands* 32, 1091–1102. doi: 10.1007/s13157-012-0339-z

Björn, L. O., Middleton, B. A., Germ, M., and Gaberscik, A. (2022). Ventilation systems in wetland plant species. *Diversity-Basel* 14. doi: 10.3390/d14070517

Carscadden, K. A., Emery, N. C., Arnillas, C. A., Cadotte, M. W., Afkhami, M. E., Gravel, D., et al. (2020). Niche breadth: Causes and consequences for ecology, evolution, and conservation. *Q Rev Biol.* 95, 179–214. doi: 10.1086/710388

Casanova, M. T., and Brock, M. A. (2000). How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? *Plant Ecol.* 147, 237–250. doi: 10.1023/a:1009875226637

Chapin, D. M., and Paige, D. K. (2013). Response of delta vegetation to water level changes in a regulated mountain lake, washington state, USA. *Wetlands* 33, 431–444. doi: 10.1007/s13157-013-0401-5

Chen, H. J., Qualls, R. G., and Miller, G. C. (2002). Adaptive responses of lepidium latifolium to soil flooding: Biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. *Environ. Exp. Bot.* 48, 119–128. doi: 10.1016/ s0098-8472(02)00018-7

Chen, Y. S., Stagg, C. L., Cai, Y. J., Lü, X. T., Wang, X. L., Shen, R. C., et al. (2020). Scaling responses of leaf nutrient stoichiometry to the lakeshore flooding duration gradient across different organizational levels. *Sci. Total Environ.* 740. doi: 10.1016/ j.scitotenv.2020.139740

Costa, D. S., Gerschlauer, F., Kiese, R., Fischer, M., Kleyer, M., and Hemp, A. (2018). Plant niche breadths along environmental gradients and their relationship to plant functional traits. *Divers. Distrib.* 24, 1869–1882. doi: 10.1111/ddi.12815

Dai, X., Wan, R. R., Yang, G. S., Wang, X. L., Xu, L. G., Li, Y. Y., et al. (2019). Impact of seasonal water-level fluctuations on autumn vegetation in poyang lake wetland, China. *Front. Earth Sci.* 13, 398–409. doi: 10.1007/s11707-018-0731-y Dali Bai Autonomous Prefecture People's Government (DBAPPG) (2023).Proposal for deliberation on the minimum operating water level of Erhai Lake in the special year. Available online at: https://www.dali.gov.cn/dlrmzf/c101530/202306/03cfc4fc80c6435ab5e7343e6c9e3cf0.shtml (Accessed (accessed 2 June 2023)).

Duval, T. P., Waddington, J. M., and Branfireun, B. A. (2012). Hydrological and biogeochemical controls on plant species distribution within calcareous fens. *Ecohydrology* 5, 73–89. doi: 10.1002/eco.202

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. *Ecography* 29, 129–151. doi: 10.1111/j.2006.0906-7590.04596.x

Fan, H. X., Xu, L. G., Wang, X. L., Jiang, J. H., Feng, W. J., and You, H. L. (2019). Relationship between vegetation community distribution patterns and environmental factors in typical wetlands of Poyang lake, China. *Wetlands* 39, S75–S87. doi: 10.1007/ s13157-017-0903-7

Feng, W. J., Santonja, M., Bragazza, L., and Buttler, A. (2020). Shift in plant-soil interactions along a lakeshore hydrological gradient. *Sci. Total Environ.* 742. doi: 10.1016/j.scitotenv.2020.140254

Fu, H., Lou, Q., Dai, T. T., Yuan, G. X., Huang, Z. R., Ge, D. B., et al. (2018). Hydrological gradients and functional diversity of plants drive ecosystem processes in Poyang lake wetland. *Ecohydrology* 11. doi: 10.1002/eco.1950

Gaberscik, A., Grasic, M., Abram, D., and Zelnik, I. (2020). Water level fluctuations and air temperatures affect common reed habitus and productivity in an intermittent wetland ecosystem. *Water* 12. doi: 10.3390/w12102806

Gaberscik, A., Krek, J. L., and Zelnik, I. (2018). Habitat diversity along a hydrological gradient in a complex wetland results in high plant species diversity. *Ecol. Eng.* 118, 84–92. doi: 10.1016/j.ecoleng.2018.04.017

Garssen, A. G., Baattrup-Pedersen, A., Riis, T., Raven, B. M., Hoffman, C. C., Verhoeven, J. T. A., et al. (2017). Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. *Glob. Chang. Biol.* 23, 3052–3063. doi: 10.1111/gcb.13687

Garssen, A. G., Baattrup-Pedersen, A., Voesenek, L., Verhoeven, J. T. A., and Soons, M. B. (2015). Riparian plant community responses to increased flooding: A metaanalysis. *Glob. Chang. Biol.* 21, 2881–2890. doi: 10.1111/gcb.12921 Gathman, J. P., Albert, D. A., and Burton, T. M. (2005). Rapid plant community response to a water level peak in northern lake huron coastal wetlands. *J. Gt Lakes Res.* 31, 160–170. doi: 10.1016/s0380-1330(05)70296-3

Gong, F., Luo, L., Li, H., Chen, L., Zhang, R., Wu, G., et al. (2023). Quantitative assessment of water quality improvement by reducing external loadings at lake Erhai, southwest China. *Int. J. Environ. Res. Public Health* 20. doi: 10.3390/ijerph20065038

Guisan, A., Edwards, T. C., and Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene. *Ecol. Model.* 157, 89–100. doi: 10.1016/s0304-3800(02)00204-1

Hájek, M., Hájková, P., Kocí, M., Jirousek, M., Mikulásková, E., and Kintrová, K. (2013). Do we need soil moisture measurements in the vegetation-environment studies in wetlands? *J. Veg. Sci.* 24, 127–137. doi: 10.1111/j.1654-1103.2012.01440.x

Holmquist, J. R., SChile-Beers, L., Buffington, K., Lu, M., Mozdzer, T. J., Riera, J., et al. (2021). Scalability and performance tradeoffs in quantifying relationships between elevation and tidal wetland plant communities. *Mar. Ecol. Prog. Ser.* 666, 57–72. doi: 10.3354/meps13683

Hu, J. Y., Xie, Y. H., Tang, Y., Li, F., and Zou, Y. A. (2018). Changes of vegetation distribution in the east Dongting lake after the operation of the three Gorges dam, China. *Front. Plant Sci.* 9. doi: 10.3389/fpls.2018.00582

Huang, Y., Chen, X. S., Li, F., Hou, Z. Y., Li, X., Zeng, J., et al. (2021). Community trait responses of three dominant macrophytes to variations in flooding during 2011-2019 in a yangtze river-connected floodplain wetland (Dongting lake, China). *Front. Plant Sci.* 12. doi: 10.3389/fpls.2021.604677

Huang, X. Y., Li, Y. X., Lin, H. Y., Wen, X. T., Liu, J., Yuan, Z. F., et al. (2023). Flooding dominates soil microbial carbon and phosphorus limitations in Poyang lake wetland, China. *Catena* 232. doi: 10.1016/j.catena.2023.107468

Hutchinson, G. E. (1957). Population studies: Animal ecology and demography. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. doi: 10.1101/sqb.1957.022.01.039

Ji, T. (2005). Comparison on determining the organic matter contents in the soils by different heating methods in the potassium dichromate-volumetric method. *Acta Agricult. Zhejiangensis.* 17, 311–313.

Jin, L., Wu, Q. H., Xie, S. J., Chen, W. W., Duan, C. Q., Sun, C. Q., et al. (2024). Phosphorus stoichiometric homeostasis of submerged macrophytes and associations with interspecific interactions and community stability in Erhai lake, China. *Water Res.* 256. doi: 10.1016/j.watres.2024.121575

Lever, J., Krzywinski, M., and Atman, N. (2017). Points of significance: Principal component analysis. *Nat. Meth.* 14, 641-642. doi: 10.1038/nmeth.4346

Leyer, I. (2005). Predicting plant species' responses to river regulation: The role of water level fluctuations. *J. Appl. Ecol.* 42, 239–250. doi: 10.1111/j.1365-2664.2005.01009.x

Li, J. H., Bai, Y., and Alatalo, J. M. (2020). Impacts of rural tourism-driven land use change on ecosystems services provision in erhai lake basin, China. *Ecosyst. Serv.* 42. doi: 10.1016/j.ecoser.2020.101081

Li, D., Chu, Z. S., Huang, M. S., and Zheng, B. H. (2019). Multiphasic assessment of effects of design configuration on nutrient removal in storing multiple-pond constructed wetlands. *Bioresour. Technol.* 290. doi: 10.1016/j.biortech.2019.121748

Li, X. L., Li, S. Z., Xie, Y. W., Wei, Z. H., and Li, Z. L. (2023). What drives the morphological traits of stress-tolerant plant cynodon dactylon in a riparian zone of the three gorges reservoir, China. *Water* 15. doi: 10.3390/w15183183

Liu, Q., Liu, J. L., Liu, H. F., Liang, L. Q., Cai, Y. P., Wang, X., et al. (2020). Vegetation dynamics under water-level fluctuations: Implications for wetland restoration. *J. Hydrol.* 581. doi: 10.1016/j.jhydrol.2019.124418

Lou, Y. J., Gao, C. Y., Pan, Y. W., Xue, Z. S., Liu, Y., Tang, Z. H., et al. (2018). Niche modelling of marsh plants based on occurrence and abundance data. *Sci. Total Environ.* 616, 198–207. doi: 10.1016/j.scitotenv.2017.10.300

McKane, R. B., Johnson, L. C., Shaver, G. R., Nadelhoffer, K. J., Rastetter, E. B., Fry, B., et al. (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. *Nature* 415, 68–71. doi: 10.1038/415068a

Ojdanic, N., Holcar, M., Golob, A., and Gaberscik, A. (2023). Environmental extremes affect productivity and habitus of common reed in intermittent wetland. *Ecol. Eng.* 189. doi: 10.1016/j.ecoleng.2023.106911

Ostendorp, W. (2004). New approaches to integrated quality assessment of lakeshores. *Limnologica* 34, 160–166. doi: 10.1016/s0075-9511(04)80036-7

Peng, X. M., Yang, Y. F., Yan, X. M., and Li, H. Y. (2021). The effects of water control on the survival and growth of alternanthera philoxeroides in the vegetative reproduction and seedling stages. *Sci. Rep.* 11. doi: 10.1038/s41598-021-92674-2

Pollock, M. M., Naiman, R. J., and Hanley, T. A. (1998). Plant species richness in riparian wetlands - a test of biodiversity theory. *Ecology* 79, 94–105.

Qin, L., Jiang, M., Tian, W., Zhang, J., and Zhu, W. H. (2017). Effects of wetland vegetation on soil microbial composition: A case study in Tumen river basin, northeast China. *Chin. Geogr. Sci.* 27, 239–247. doi: 10.1007/s11769-017-0853-2

Shen, R. C., Lan, Z. C., Chen, Y. S., Leng, F., Jin, B. S., Fang, C. M., et al. (2019). The effects of flooding regimes and soil nutrients on lakeshore plant diversity in a pristine lake and a human managed lake in subtropical China. *J. Freshw. Ecol.* 34, 757–769. doi: 10.1080/02705060.2019.1687340

Shen, R. C., Lan, Z. C., Huang, X. Y., Chen, Y. S., Hu, Q. W., Fang, C. M., et al. (2020). Soil and plant characteristics during two hydrologically contrasting years at the lakeshore wetland of Poyang lake, China. *J. Soils Sediments.* 20, 3368–3379. doi: 10.1007/s11368-020-02638-8

Silveira, M. J., and Thomaz, S. M. (2015). Growth of a native versus an invasive submerged aquatic macrophyte differs in relation to mud and organic matter concentrations in sediment. *Aquat. Bot.* 124, 85–91. doi: 10.1016/j.aquabot.2015.03.004

Slatyer, R. A., Hirst, M., and Sexton, J. P. (2013). Niche breadth predicts geographical range size: A general ecological pattern. *Ecol. Lett.* 16, 1104–1114. doi: 10.1111/ ele.12140

Stroh, C. L., De Steven, D., and Guntenspergen, G. R. (2008). Effect of climate fluctuations on long-term vegetation dynamics in Carolina bay wetlands. *Wetlands* 28, 17–27. doi: 10.1672/06-117.1

Venter, N., Cowie, B. W., Witkowski, E. T. F., Snow, G. C., and Byrne, M. J. (2017). The amphibious invader: Rooted water hyacinth's morphological and physiological strategy to survive stranding and drought events. *Aquat. Bot.* 143, 41–48. doi: 10.1016/j.aquabot.2017.09.004

Wang, Z. J., Gong, H. L., and Zhang, J. (2015). Receding water line and interspecific competition determines plant community composition and diversity in wetlands in Beijing. *PloS One* 10. doi: 10.1371/journal.pone.0124156

Wang, J., Song, Y. H., Ge, B. C., and Zhou, Y. (2023). Dynamic spatiotemporal land use evolution in China's plateau lake basins in response to landscape ecological sensitivity. *Sustainability* 15. doi: 10.3390/su152015020

Wang, X., Wang, H. L., Wang, H. Y., Guo, W. X., Zhai, H. Y., and Zhang, X. K. (2022). Responses of lakeshore herbaceous plant guilds to altered water level fluctuations in Yangtze floodplain lakes, China. *Ecol. Indic.* 145. doi: 10.1016/j.ecolind.2022.109714

Wassens, S., Ning, N., Hardwick, L., Bino, G., and Maguire, J. (2017). Long-term changes in freshwater aquatic plant communities following extreme drought. *Hydrobiologia* 799, 233–247. doi: 10.1007/s10750-017-3219-y

Wen, J. H., Li, B. Y., Xiao, H. Y., Gong, C. Y., Gao, A. G., Wang, Y. H., et al. (2023). Floating mat formation makes zizania latifolia more competitive under the conditions of continuous significant water level rise. *Plants-Basel* 12. doi: 10.3390/plants12051193

Wen, Z. H., Ma, Y. W., Wang, H., Cao, Y., Yuan, C. B., Ren, W. J., et al. (2021). Water level regulation for eco-social services under climate change in Erhai lake over the past 68 years in China. *Front. Environ. Sci.* 9. doi: 10.3389/fenvs.2021.697694

Wu, Q. H., Xie, M. L., Jin, L., Dong, H. J., Yuan, D. Y., Yang, T. M., et al. (2023). Water exchange unevenness alters the species dominance and community composition of submerged macrophytes in Erhai lake and the potential mechanisms revealed by laboratory experiment. *Sci. Total Environ.* 882. doi: 10.1016/j.scitotenv.2023.163624

Yang, S. L., Yuan, Z., Ye, B. B., Zhu, F., Chu, Z. S., and Liu, X. W. (2024). Impacts of landscape pattern on plants diversity and richness of 20 restored wetlands in Chaohu lakeside of China. *Sci. Total Environ.* 906. doi: 10.1016/j.scitotenv.2023.167649

Ye, C., Butler, O. M., Chen, C. R., Liu, W. Z., Du, M., and Zhang, Q. F. (2020). Shifts in characteristics of the plant-soil system associated with flooding and revegetation in the riparian zone of three gorges reservoir, China. *Geoderma* 361. doi: 10.1016/j.geoderma.2019.114015

You, H. L., Xu, L. G., Liu, G. L., Wang, X. L., Wu, Y. M., and Jiang, J. H. (2015). Effects of inter-annual water level fluctuations on vegetation evolution in typical wetlands of Poyang lake, China. *Wetlands* 35, 931–943. doi: 10.1007/s13157-015-0684-9

Zhang, H. J., Huang, B., Huang, Y. T., and Liu, J. (2024). High water levels and low light co-inhibit colonization of fragments from the clonal invader alternanthera philoxeroides. *Aquat. Bot.* 192. doi: 10.1016/j.aquabot.2024.103749

Zhang, X. K., Liu, X. Q., and Wang, H. Z. (2015). Effects of water level fluctuations on lakeshore vegetation of three subtropical floodplain lakes, China. *Hydrobiologia* 747, 43–52. doi: 10.1007/s10750-014-2121-0

Zhang, Q. J., Wang, Z. S., Xia, S. X., Zhang, G. S., Li, S. X., Yu, D. K., et al. (2022). Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones. *Sci. Total Environ.* 822. doi: 10.1016/j.scitotenv.2022.153512

Zhang, S. Q., Zhang, P. Y., Pan, B. H., Zou, Y., Xie, Y. H., Zhu, F., et al. (2021). Wetland restoration in the east Dongting lake effectively increased waterbird diversity by improving habitat quality. *Glob. Ecol. Conserv.* 27. doi: 10.1016/j.gecco.2021.e01535

Zhao, Y. T., Wang, G. D., Zhao, M. L., Wang, M., Xue, Z. S., Liu, B., et al. (2021). Seed limitation and saline-alkaline stress restrict wetland restoration potential in the Songnen plain, Northeastern China. *Ecol. Indic.* 129. doi: 10.1016/j.ecolind.2021.107998

Zheng, X. J., Fu, J., Ramamonjisoa, N., Zhu, W. H., He, C. G., and Lu, C. Y. (2019). Relationship between wetland plant communities and environmental factors in the tumen river basin in northeast China. *Sustainability* 11. doi: 10.3390/su11061559

Zheng, P. R., Li, C. H., Ye, C., Wang, H., Wei, W. W., Zheng, Y., et al. (2022). Characteristic and affecting factors of wetland herbs' distribution in the radiant belt toward land of lake-terrestrial ecotone in Tibet, China. *Environ. Sci. Eur.* 34. doi: 10.1186/s12302-022-00593-4

Zhu, G. R., Yuan, C. B., Di, G. L., Zhang, M., Ni, L. Y., Cao, T., et al. (2018). Morphological and biomechanical response to eutrophication and hydrodynamic stresses. *Sci. Total Environ.* 622, 421–435. doi: 10.1016/j.scitotenv.2017.11.322

Appendix 1 Total list of plant surveys in the Erhai lakeshore zone during 2023.

	Species	Families	Genera	
1	Viola prionantha	Violaceae	Viola	
2	Mazus pumilus	Mazaceae	Mazus	
3	Veronica anagallis-aquatica	Plantaginaceae	Veronica	
4	Plantago major	Plantaginaceae	Plantago	
5	Mentha canadensis	Lamiaceae	Mentha	
6	Clinopodium chinense	Lamiaceae	Clinopodium	
7	Juncus effusus	Juncaceae	Juncus	
8	Trifolium repens	Fabaceae	Trifolium	
9	Medicago lupulina	Fabaceae	Medicago	
10	Vicia sepium	Fabaceae	Vicia	
11	Vicia sativa	Fabaceae	Vicia	
12	Melilotus albus	Fabaceae	Melilotus	
13	Impatiens balsamina	Balsaminaceae	Impatiens	
14	Echinochloa crus-galli	Poaceae	Echinochloa	
15	Polypogon fugax	Poaceae	Polypogon	
16	Bromus catharticus	Poaceae	Bromus	
17	Elymus kamoji	Poaceae	Elymus	
18	Cynodon dactylon	Poaceae	Cynodon	
19	Zizania latifolia	Poaceae	Zizania	
20	Lolium perenne	Poaceae	Lolium	
21	Eulalia speciosa	Poaceae	Eulalia	
22	Arthraxon hispidus	Poaceae	Arthraxon	
23	Phragmites karka	Poaceae	Phragmites	
24	Phragmites australis	Poaceae	Phragmites	
25	Leersia hexandra	Poaceae	Leersia	
26	Paspalum dilatatum	Poaceae	Paspalum	
27	Paspalum distichum	Poaceae	Paspalum	
28	Hemarthria altissima	Poaceae	Hemarthria	
29	Rottboellia cochinchinensis	Poaceae	Rottboellia	
30	Coix lacryma-jobi	Poaceae	Coix	
31	Poa annua	Poaceae	Poa	
32	Setaria palmifolia	Poaceae	Setaria	
33	Setaria pumila	Poaceae	Setaria	
34	Setaria faberi	Poaceae	Setaria	
35	Chloris virgata	Poaceae	Chloris	

Continued

	Species	Families	Genera	
36	Capillipedium parviflorum	Poaceae	Capillipedium	
37	Actinostemma tenerum	Cucurbitaceae	Actinostemma	
38	Zehneria bodinieri	Cucurbitaceae	Zehneria	
39	Azolla pinnata subsp. asiatica	Salviniaceae	Azolla	
40	Malva verticillate var. crispa	Malvaceae	Malva	
41	Sida acuta	Malvaceae	Sida	
42	Artemisia argyi	Asteraceae	Artemisia	
43	Artemisia selengensis	Asteraceae	Artemisia	
44	Lactuca indica	Asteraceae	Lactuca	
45	Bidens pilosa	Asteraceae	Bidens	
46	Bidens tripartita	Asteraceae	Bidens	
47	Erigeron canadensis	Asteraceae	Erigeron	
48	Sonchus oleraceus	Asteraceae	Sonchus	
49	Galinsoga parviflora	Asteraceae	Galinsoga	
50	Taraxacum mongolicum	Asteraceae	Taraxacum	
51	Senecio scandens	Asteraceae	Senecio	
52	Pseudognaphalium affine	Asteraceae	Pseudognaphalium	
53	Erigeron sumatrensis	Asteraceae	Erigeron	
54	Artemisia indica	Asteraceae	Artemisia	
55	Crassocephalum crepidioides	Asteraceae	Crassocephalum	
56	Ageratina adenophora	Asteraceae	Ageratina	
57	Symphyotrichum subulatum	Asteraceae	Symphyotrichum	
58	Sonchus asper	Asteraceae	Sonchus	
59	Youngia japonica	Asteraceae	Youngia	
60	Asystasia gangetica	Acanthaceae	Asystasia	
61	Hypoestes triflora	Acanthaceae	Hypoestes	
62	Nelumbo nucifera	Nelumbonaceae	Nelumbo	
63	Persicaria japonica	Polygonaceae	Persicaria	
64	Persicaria perfoliata	Polygonaceae	Persicaria	
65	Persicaria amphibia	Polygonaceae	Persicaria	
66	Persicaria hydropiper	Polygonaceae	Persicaria	
67	Persicaria lapathifolia	Polygonaceae	Persicaria	
68	Persicaria longiseta	Polygonaceae	Persicaria	
69	Rumex acetosa	Polygonaceae	Rumex	
70	Rumex dentatus	Polygonaceae	Rumex	
71	Rumex hastatus	Polygonaceae	Rumex	
72	Oenothera rosea	Onagraceae	Oenothera	
73	Epilobium hirsutum	Onagraceae	Epilobium	

(Continued)

(Continued)

Continued

Continued

74Verbena officinalisVerbenaceaeVerbena75Geranium wilfordiiGeraniaceaeGeranium76Clematis floridaRanunculaceaeClematis77Canna × generalisCannaceaeCanna78Canna indicaCannaceaeEquisetum79Equisetum arwosisimumEquisetaceaeEquisetum80Equisetum arwenseeEquisetaceaeRubia81Rubia cordifoliaRubiaceaeRubia82Potentilla reptansRosaceaeOlanum83Duchesnea indicaSolanaceaeSolanum84Solanum nigrumSolanaceaeSolanum85Solanum americanumApiaceaeCyperus86Cyperus fuscusCyperaceaeCyperus90Cyperus fuscusCyperaceaeGyperus91Cyperus nichelianusCyperaceaeSolaripa92Fimbristylis dichotomaCyperaceaeRorippa93Morippa palustrisPhytolaccaceaeRorippa94Rorippa palustrisBrassicaceaeRorippa95Korippa palustrisBrassicaceaeSolaria96Nymphoides peltataMenyanthaceaSolaria97Colocasia antiquorumMarcaceaeApiaceae98Stellaria aquaticaSirascaceaeRorippa99Nymphoides peltataMenyanthaceaSiralia91Colocasia antiquorumAraceaeAmaranthus92Stellaria antius bitumMarcaceaeAm		Species	Families	Genera	
75Geranium wilfordiiGeraniaceaeGeranium76Clematis floridaRanunculaceaeClematis77Canna x generalisCannaceaeCanna78Canna indicaCannaceaeCanna79Equisetum ramosissimumEquisetaceaeEquisetum80Equisetum arvenseEquisetaeaeRubia81Rubia cordifoliaRubaceaePotentilla82Potentilla reptansRosaceaePotentilla83Duchesnea indicaSolanaceaeSolanum84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeCyperus86Torilis scabraApiaceaeCyperus87Oenanthe javanicaCyperaceaeCyperus88Cyperus fuscusCyperaceaeCyperus90Cyperus nichelianusCyperaceaeCyperus91Gyperus nichelianusCyperaceaeFimbristylis92Fimbristylis dichotomaCyperaceaeRorippa93Phytolacca acinosaPhytolaccaeeRorippa94Rorippa palustrisBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Nymphoides peltataMenyanthaceaeColocasia97Colocasia antiquorumAraceaeColocasia98Stellaria aquaticaAraceaeColocasia99Nymphoides peltataMenyanthaceaeColocasia91Colocasia antiquorumAraceaeCol	74	Verbena officinalis	Verbenaceae	Verbena	
76Clematis floridaRanunculaceaeClematis77Canna × generalisCannaceaeCanna78Canna indicaCannaceaeCanna79Equisetum ramosissimumEquisetaceaeEquisetum80Equisetum arvenseEquisetaeaeRubia81Rubia cordifoliaRubiaceaeRubia82Potentilla reptansRosaceaePotentilla83Duchesnea indicaSolanaceaeSolanum84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeCyperus87Oenanthe javanicaApiaceaeCyperus88Cyperus ninvolucratusCyperaceaeCyperus90Cyperus nichelianusCyperaceaeCyperus91Cyperus michelianusCyperaceaeRorippa92Fimbristylis dichotomaBrassicaceaeRorippa93Phytolacca acinosaBrassicaceaeRorippa94Rorippa palustrisBrassicaceaeRorippa95Rorippa palustrisBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaStellaria97Calpesla bursa-pastorisBrassicaceaeColocasia98Stellaria aquaticaMenyanthaceaeColocasia99Nymphoides peltataMenyanthaceaeColocasia91Colocasia antiquorumAraceaeColocasia92Stellaria aquaticaKenyoph	75	Geranium wilfordii	Geraniaceae	Geranium	
77Canna × generalisCannaceaeCanna78Canna indicaCannaceaeCanna79Equisetum ramosissimumEquisetaceaeEquisetum80Equisetum arvenseEquisetaceaeEquisetum81Rubia cordifoliaRubiaceaeRubia82Potentilla reptansRosaceaePotentilla83Duchesnea indicaRosaceaeDuchesnea84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeCyperus87Oenanthe javanicaApiaceaeCyperus88Cyperus fuscusCyperaceaeCyperus90Cyperus rotundusCyperaceaeCyperus91Cyperus nichelianusCyperaceaeRorippa92Fimbristylis dichotomaCyperaceaeRorippa93Phytolacca acinosaPhytolaccaeaeRorippa94Rorippa palustrisBrassicaceaeRorippa95Rorippa palustrisBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeCapsella97Capsella bursa-pastorisBrassicaceaeStellaria98Stellaria aquaticaCaryophyllaceaStellaria99Nymphoides peltataMenyanthaceaeColocasia91Lemna minorAraceaeColocasia92Amaranthus blitumAraceaeColocasia93Chenopodium albumAracathaceaeColocasia	76	Clematis florida	Ranunculaceae	Clematis	
78Canna indicaCannaceaeCanna79Equisetum ramosissimumEquisetaceaeEquisetum80Equisetum arvenseEquisetaceaeEquisetum81Rubia cordifoliaRubiaceaeRubia82Potentilla reptansRosaceaePotentilla83Duchesnea indicaRosaceaeDuchesnea84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeCyperus87Oenanthe javanicaApiaceaeCyperus89Cyperus involucratusCyperaceaeCyperus90Cyperus fuscusCyperaceaeCyperus91Cyperus michelianusCyperaceaeFimbristylis92Fimbristylis dichotomaCyperaceaeRorippa93Phytolacca acinosaPhytolaccaeaeRorippa94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaeStellaria97Capsella bursa-pastorisBrassicaceaeRorippa98Stellaria aquaticaCaryophyllaceaeItemna99Nymphoides peltataMenyanthaceaeAmaranthus91Colocasia antiquorumAraceaeItemna92Stellaria aquaticaCaryophyllaceaeItemna93Stellaria aquaticaCaryophyllaceaeItemna94Stellaria aquaticaCar	77	Canna × generalis	Cannaceae	Canna	
79Equisetum ramosissimumEquisetaceaeEquisetum80Equisetum arvenseEquisetaceaeEquisetum81Rubia cordifoliaRubiaceaeRubia82Potentilla reptansRosaceaePotentilla83Duchesnea indicaRosaceaeDuchesnea84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeCoenanthe87Oenanthe javanicaApiaceaeCyperus88Cyperus involucratusCyperaceaeCyperus90Cyperus fuscusCyperaceaeCyperus91Cyperus michelianusCyperaceaePhytolacca92Fimbristylis dichotomaCyperaceaeRorippa93Phytolacca acinosaPhytolaccaeeRorippa94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaeStellaria97Capsella bursa-pastorisBrassicaceaeRorippa98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeAmaranthus91Colocasia antiquorumAraceaeIcemna92Stellaria aquaticaCaryophyllaceaeStellaria93Stellaria aquaticaCaryophyllaceaeIcemna94Stellaria aquaticaAraceaeIcemna95Stellaria aquatica </td <td>78</td> <td>Canna indica</td> <td>Cannaceae</td> <td>Canna</td>	78	Canna indica	Cannaceae	Canna	
80Equisetum arvenseEquisetaceaeEquisetum81Rubia cordifoliaRubiaceaeRubia82Potentilla reptansRosaceaePotentilla83Duchesnea indicaRosaceaeDuchesnea84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeConanthe87Oenanthe javanicaApiaceaeCyperus88Cyperus involucratusCyperaceaeCyperus90Cyperus fuscusCyperaceaeCyperus91Cyperus nichelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeRorippa93Phytolacca acinosaPhytolaccaeeRorippa94Rorippa globosaBrassicaceaeRorippa95Rorippa plustrisBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaStellaria97Capsella bursa-pastorisBrassicaceaeRorippa98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides91Colocasia antiquorumAraceaeColocasia92Itemna minorAraceaeAmaranthus	79	Equisetum ramosissimum	Equisetaceae	Equisetum	
81Rubia cordifoliaRubiaceaeRubia82Potentilla reptansRosaceaePotentilla83Duchesnea indicaRosaceaeDuchesnea84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeTorilis87Oenanthe javanicaApiaceaeOenanthe88Cyperus involucratusCyperaceaeCyperus90Cyperus fuscusCyperaceaeCyperus91Cyperus nichelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaeStellaria97Capsella bursa-pastorisBrassicaceaeRorippa98Stellaria aquaticaMenyanthaceaeNymphoides99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeLemna101Lemna minorAraceaeColocasia102Amaranthus blitumAmaranthaceaeChenopodium	80	Equisetum arvense	Equisetaceae	Equisetum	
82Potentilla reptansRosaceaePotentilla83Duchesnea indicaRosaceaeDuchesnea84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeTorilis87Oenanthe javanicaApiaceaeCyperus88Cyperus involucratusCyperaceaeCyperus90Cyperus fuscusCyperaceaeCyperus91Cyperus rotundusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaePhytolacca93Phytolacca acinosaPhytolaccaceaeRorippa94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaeStellaria97Capsella bursa-pastorisBrassicaceaeRorippa98Stellaria antiquorumAraceaeNymphoides99Nymphoides peltataMenyanthaceaeNymphoides90Colocasia antiquorumAraceaeColocasia91Colocasia antiquorumAraceaeColocasia92Stellaria antiquorumAraceaeColocasia93Stellaria biltumAmaranthaceaeAmaranthus	81	Rubia cordifolia	Rubiaceae	Rubia	
83Duchesnea indicaRosaceaeDuchesnea84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeTorilis87Oenanthe javanicaApiaceaeOenanthe88Cyperus involucratusCyperaceaeCyperus90Cyperus fuscusCyperaceaeCyperus91Cyperus notundusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaePhytolacca93Phytolacca acinosaPhytolaccaeaeRorippa94Rorippa globosaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaeStellaria97Capsella bursa-pastorisBrassicaceaeNymphoides98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeChenopodium102Amaranthus blitumAmaranthaceaeAmaranthus	82	Potentilla reptans	Rosaceae	Potentilla	
84Solanum nigrumSolanaceaeSolanum85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeTorilis87Oenanthe javanicaApiaceaeOenanthe88Cyperus involucratusCyperaceaeCyperus89Cyperus fuscusCyperaceaeCyperus90Cyperus rotundusCyperaceaeCyperus91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaceaeRorippa94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Stellaria aquaticaCaryophyllaceaStellaria97Capsella bursa-pastorisBrassicaceaeNymphoides98Stellaria anuticaAnaranthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeAmaranthus102Amaranthus blitumAmaranthaceaeAmaranthus	83	Duchesnea indica	Rosaceae	Duchesnea	
85Solanum americanumSolanaceaeSolanum86Torilis scabraApiaceaeTorilis87Oenanthe javanicaApiaceaeOenanthe88Cyperus involucratusCyperaceaeCyperus89Cyperus fuscusCyperaceaeCyperus90Cyperus rotundusCyperaceaeCyperus91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaeaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeCapsella97Capsella bursa-pastorisBrassicaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeChenopodium album	84	Solanum nigrum	Solanaceae	Solanum	
86Torilis scabraApiaceaeTorilis87Oenanthe javanicaApiaceaeOenanthe88Cyperus involucratusCyperaceaeCyperus89Cyperus fuscusCyperaceaeCyperus90Cyperus rotundusCyperaceaeCyperus91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaeaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeCapsella97Capsella bursa-pastorisBrassicaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeAmaranthus102Amaranthus blitumAmaranthaceaeChenopodium album	85	Solanum americanum	Solanaceae	Solanum	
87Oenanthe javanicaApiaceaeOenanthe88Cyperus involucratusCyperaceaeCyperus89Cyperus fuscusCyperaceaeCyperus90Cyperus rotundusCyperaceaeCyperus91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaeaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeCapsella97Capsella bursa-pastorisBrassicaceaeNymphoides99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeLemna101Lemna minorAraceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	86	Torilis scabra	Apiaceae	Torilis	
88Cyperus involucratusCyperaceaeCyperus89Cyperus fuscusCyperaceaeCyperus90Cyperus rotundusCyperaceaeCyperus91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaeaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeCapsella97Capsella bursa-pastorisBrassicaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides101Lemna minorAraceaeLemna102Amaranthus bitumAmaranthaceaeChenopodium album	87	Oenanthe javanica	Apiaceae	Oenanthe	
89Cyperus fuscusCyperaceaeCyperus90Cyperus rotundusCyperaceaeCyperus91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaeaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeChenopodium album	88	Cyperus involucratus	Cyperaceae	Cyperus	
90Cyperus rotundusCyperaceaeCyperus91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaeaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeCapsella97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeChenopodium album	89	Cyperus fuscus	Cyperaceae	Cyperus	
91Cyperus michelianusCyperaceaeCyperus92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaeaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeRorippa97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeLemna101Lemna minorAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	90	Cyperus rotundus	Cyperaceae	Cyperus	
92Fimbristylis dichotomaCyperaceaeFimbristylis93Phytolacca acinosaPhytolaccaceaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeRorippa97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeChenopodium album	91	Cyperus michelianus	Cyperaceae	Cyperus	
93Phytolacca acinosaPhytolaccaceaePhytolacca94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeRorippa97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeChenopodium	92	Fimbristylis dichotoma	Cyperaceae	Fimbristylis	
94Rorippa indicaBrassicaceaeRorippa95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeRorippa97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeChenopodium	93	Phytolacca acinosa	Phytolaccaceae	Phytolacca	
95Rorippa globosaBrassicaceaeRorippa96Rorippa palustrisBrassicaceaeRorippa97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeChenopodium	94	Rorippa indica	Brassicaceae	Rorippa	
96Rorippa palustrisBrassicaceaeRorippa97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	95	Rorippa globosa	Brassicaceae	Rorippa	
97Capsella bursa-pastorisBrassicaceaeCapsella98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	96	Rorippa palustris	Brassicaceae	Rorippa	
98Stellaria aquaticaCaryophyllaceaeStellaria99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	97	Capsella bursa-pastoris	Brassicaceae	Capsella	
99Nymphoides peltataMenyanthaceaeNymphoides100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	98	Stellaria aquatica	Caryophyllaceae	Stellaria	
100Colocasia antiquorumAraceaeColocasia101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	99	Nymphoides peltata	Menyanthaceae	Nymphoides	
101Lemna minorAraceaeLemna102Amaranthus blitumAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	100	Colocasia antiquorum	Araceae	Colocasia	
102Amaranthus blitumAmaranthaceaeAmaranthus103Chenopodium albumAmaranthaceaeChenopodium	101	Lemna minor	Araceae	Lemna	
103 Chenopodium album Amaranthaceae Chenopodium	102	Amaranthus blitum	Amaranthaceae	Amaranthus	
	103	Chenopodium album	Amaranthaceae	Chenopodium	
104 <i>Alternanthera philoxeroides</i> Amaranthaceae Alternanthera	104	Alternanthera philoxeroides	Amaranthaceae	Alternanthera	
105 <i>Typha latifolia</i> Typhaceae Typha	105	Typha latifolia	Typhaceae	Typha	
106 <i>Typha angustifolia</i> Typhaceae Typha	106	Typha angustifolia	Typhaceae	Typha	
107 Typha orientalis Typhaceae Typha	107	Typha orientalis	Typhaceae	Typha	
108 <i>Myriophyllum aquaticum</i> Haloragaceae Myriophyllum	108	Myriophyllum aquaticum	Haloragaceae	Myriophyllum	
109 <i>Myriophyllum spicatum</i> Haloragaceae Myriophyllum	109	Myriophyllum spicatum	Haloragaceae	Myriophyllum	
110 Ceratophyllum demersum Ceratophyllaceae Ceratophyllum	110	Ceratophyllum demersum	Ceratophyllaceae	Ceratophyllum	
111 Calystegia hederacea Convolvulaceae Calystegi	111	Calystegia hederacea	Convolvulaceae	Calystegi	

112Ipomoea nilConvolvulaceaeIpomoea113Convolvulus arvensisConvolvulaceaeConvolvulus114Urtica atrichocaulisUrticaceaeUrtica115Urtica fissaUrticaceaeUrtica116Commelina communisCommelinaceaeCommelina117Potamogeton wrightiiPotamogetonaceaePotamogeton118Potamogeton maackianusPotamogetonaceaePotamogeton119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeEuphorbia		Species	Families	Genera
113Convolvulus arvensisConvolvulaceaeConvolvulus114Urtica atrichocaulisUrticaceaeUrtica115Urtica fissaUrticaceaeUrtica116Commelina communisCommelinaceaeCommelina117Potamogeton wrightiiPotamogetonaceaePotamogeton118Potamogeton maackianusPotamogetonaceaePotamogeton119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	112	Ipomoea nil	Convolvulaceae	Ipomoea
114Urtica atrichocaulisUrticaceaeUrtica115Urtica fissaUrticaceaeUrtica116Commelina communisCommelinaceaeCommelina117Potamogeton wrightiiPotamogetonaceaePotamogeton118Potamogeton maackianusPotamogetonaceaePotamogeton119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	113	Convolvulus arvensis	Convolvulaceae	Convolvulus
115Urtica fissaUrticaceaeUrtica116Commelina communisCommelinaceaeCommelina117Potamogeton wrightiiPotamogetonaceaePotamogeton118Potamogeton maackianusPotamogetonaceaePotamogeton119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	114	Urtica atrichocaulis	Urticaceae	Urtica
116Commelina communisCommelinaceaeCommelina117Potamogeton wrightiiPotamogetonaceaePotamogeton118Potamogeton maackianusPotamogetonaceaePotamogeton119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	115	Urtica fissa	Urticaceae	Urtica
117Potamogeton wrightiiPotamogetonaceaePotamogeton118Potamogeton maackianusPotamogetonaceaePotamogeton119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	116	Commelina communis	Commelinaceae	Commelina
118Potamogeton maackianusPotamogetonaceaePotamogeton119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	117	Potamogeton wrightii	Potamogetonaceae	Potamogeton
119Thalia dealbataMarantaceaeThalia120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	118	Potamogeton maackianus	Potamogetonaceae	Potamogeton
120Oxalis corniculataOxalidaceaeOxalis121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	119	Thalia dealbata	Marantaceae	Thalia
121Sagittaria trifoliaAlismataceaeSagittaria122Vallisneria natansHydrocharitaceaeVallisneria123Euphorbia esulaEuphorbiaceaeEuphorbia	120	Oxalis corniculata	Oxalidaceae	Oxalis
122 Vallisneria natans Hydrocharitaceae Vallisneria 123 Euphorbia esula Euphorbiaceae Euphorbia	121	Sagittaria trifolia	Alismataceae	Sagittaria
123 Euphorbia esula Euphorbiaceae Euphorbia	122	Vallisneria natans	Hydrocharitaceae	Vallisneria
L L L L	123	Euphorbia esula	Euphorbiaceae	Euphorbia
124 <i>Pontederia crassipes</i> Pontederiaceae Pontederia	124	Pontederia crassipes	Pontederiaceae	Pontederia

(Continued)