Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.

Sec. Sustainable and Intelligent Phytoprotection

Volume 16 - 2025 | doi: 10.3389/fpls.2025.1500571

This article is part of the Research Topic Precision Information Identification and Integrated Control: Pest Identification, Crop Health Monitoring, and Field Management View all 13 articles

Fine-grained Crop Pest Classification based on Multi-scale Feature Fusion and Mixed Attention Mechanisms

Provisionally accepted
  • Jiangnan University, Wuxi, China

The final, formatted version of the article will be published soon.

    Pests are a major cause of crop loss globally, and accurate pest identification is crucial for effective prevention and control strategies. This paper proposes a novel deep-learning architecture for crop pest classification, addressing the limitations of existing methods that struggle with distinguishing the fine details of pests and background interference. The proposed model is designed to balance fine-grained feature extraction with deep semantic understanding, utilizing a parallel structure composed of two main components: the Feature Fusion Module (FFM) and the Mixed Attention Module (MAM). FFM focuses on extracting key fine-grained features and fusing them across multiple scales, while MAM leverages an attention mechanism to model long-range dependencies within the channel domain, further enhancing feature representation. Additionally, a Transformer block is integrated to overcome the limitations of traditional convolutional approaches in capturing global contextual information. The proposed architecture is evaluated on three benchmark datasets-IP102, D0, and Li-demonstrating its superior performance over state-of-the-art methods. The model achieves accuracies of 75.74% on IP102, 99.82% on D0, and 98.77% on Li, highlighting its robustness and effectiveness in complex crop pest recognition tasks. These results indicate that the proposed method excels in multi-scale feature fusion and long-range dependency modeling, offering a new competitive approach to pest classification in agricultural settings.

    Keywords: Crop pest classification, deep learning, Attention, Multi-scale feature fusion, Convolutional Neural Network

    Received: 23 Sep 2024; Accepted: 06 Mar 2025.

    Copyright: © 2025 Qian, Xiao and Deng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Zhiyong Xiao, Jiangnan University, Wuxi, China
    Zhaohong Deng, Jiangnan University, Wuxi, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more