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Bridging technology and
ecology: enhancing
applicability of deep
learning and UAV-based
flower recognition
Marie Schnalke1*, Jonas Funk1 and Andreas Wagner1,2

1Faculty of Management Science and Engineering, Karlsruhe University of Applied Sciences (HKA),
Karlsruhe, Germany, 2Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
The decline of insect biomass, including pollinators, represents a significant

ecological challenge, impacting both biodiversity and ecosystems. Effective

monitoring of pollinator habitats, especially floral resources, is essential for

addressing this issue. This study connects drone and deep learning technologies

to their practical application in ecological research. It focuses on simplifying the

application of these technologies. Updating an object detection toolbox to

TensorFlow (TF) 2 enhanced performance and ensured compatibility with newer

software packages, facilitating access to multiple object recognition models - Faster

Region-based Convolutional Neural Network (Faster R-CNN), Single-Shot-Detector

(SSD), and EfficientDet. The three object detection models were tested on two

datasets of UAV images of flower-rich grasslands, to evaluate their application

potential in practice. A practical guide for biologists to apply flower recognition to

Unmanned Aerial Vehicle (UAV) imagery is also provided. The results showed that

Faster RCNN had the best overall performance with a precision of 89.9% and a recall

of 89%, followed by EfficientDet, which excelled in recall but at a lower precision.

Notably, EfficientDet demonstrated the lowest model complexity, making it a

suitable choice for applications requiring a balance between efficiency and

detection performance. Challenges remain, such as detecting flowers in dense

vegetation and accounting for environmental variability.
KEYWORDS

flower detection, deep learning, unmanned aerial vehicle (UAV), biodiversity,
remote sensing
1 Introduction

The decline of insect biomass, including pollinators, by more than 75% in 27 years

(Hallmann et al., 2017) represents a significant ecological challenge with long-term

implications. Research has shown that this decline is negatively impacting plant

populations, further highlighting the vital role of pollinators in maintaining ecosystem
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2 More information at: https://github.com/gallmann/Phenotator-Toolbox,

accessed on 11.06.2024.

3 More information at: https://github.com/tensorflow/models/blob/

master/research/object_detection/g3doc/tf1_detection_zoo.md, accessed

on 15.08.2024.

4 An Open-Source-Platform for machine learning (More information at:

Schnalke et al. 10.3389/fpls.2025.1498913
stability (Kevan and Viana, 2003; Thomann et al., 2013; Ramos-

Jiliberto et al., 2020). These findings emphasize the urgency of

continued research and consistent monitoring of both pollinator

and plant populations. This study contributes by enhancing the

applicability for monitoring floral resources in grassland ecosystems

using deep learning models and drone technology. Floral resources

and their diversity are pivotal to the composition and abundance of

bee communities (Potts et al., 2003). A diverse floral landscape not

only reduces competition among pollinators, but also

accommodates the unique foraging preferences of different

species, promoting overall ecosystem health (Bergamo et al.,

2020). For example, Torné-Noguera et al. (2014) found that

certain bee species have preferences for specific flower types,

emphasizing the importance of floral diversity for understanding

pollinator distribution. Similarly, Torresani et al. (2024)

demonstrated a positive correlation between increased vegetation

height heterogeneity and higher species diversity in both flowers

and pollinators, using drone imagery. In recent years, the use of

drones, technically referred to as UAVs, to monitor floral resources

has been increasingly explored. A notable example is the work of

Anderson et al. (2024), who used UAVs to quantify flower coverage

by analyzing aerial images. This method proved effective in

accurately determining the percentage of area covered by flowers

in large landscapes, highlighting the growing importance of drone

technology in large-scale floral resource monitoring. While UAVs

and other remote sensing technologies have been widely used in

agricultural research to monitor plant health, yield, and biodiversity

over large areas (Lyu et al., 2022), their application in pollination

ecology remains limited (Willcox et al., 2018).

The BeeVision project1 deals with the decline of pollinators and

develops innovative, non-invasive approaches for monitoring

biodiversity. One central idea of this project is to integrate floral

resources as a variable within geostatistical methods to improve

pollinator abundance interpolation. This approach is similar to the

work of Monfared et al. (2013), where additional variables such as

altitude and temperature were incorporated to improve prediction

accuracy. The geostatistical application requires an accurate and

non-invasive measurement of floral resources over a large area.

Traditionally, environmental data collection, including the

counting of flowers, is done manually. However, this approach

becomes increasingly difficult and inefficient when applied to large

landscapes, as it is both time consuming and resource intensive

(Pettorelli, 2013). As a result, recent developments have focused on

automatic flower detection methods. Such advances are critical to

improve conventional methods of identifying biological objects.

Automating the identification of plants and flowers is a promising

approach to reduce reliance on human experts and increase

accuracy (MacLeod et al., 2010), especially in combination with

drones. Many studies focus on counting a specific type offlower. For

example, Xu et al. (2018) recognized and counted cotton flowers,
1 The BeeVision Project is funded by the Carl-Zeiss-Stiftung (more

information at: https://www.carl-zeiss-stiftung.de/themen-projekte/

uebersicht-projekte/detail/beevision-monitoring-der-bestaeuber-vielfalt-

durch-dynamic-vision, accessed on 02.09.2024).
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while Liang et al. (2018) and Wan et al. (2018) focused on rapeseed

flowers. Petrich et al. (2020) proposed a method to detect and

localize Colchicum autumnale using drone images. Localization is

particularly useful for the development of targeted measures in

agricultural plant monitoring. Other studies extend the focus

beyond a single class to include classification of multiple flower

classes. For example, Sarkar and Kelley (2023) presented an

approach to distinguish between native and invasive plant species

by analyzing 20 native and 18 invasive classes on RGB images

captured with a DJI Air 2S. Gallmann et al. (2022) also classified

different classes of flowers and developed a toolbox2, hereafter

referred to as the Gallmann Phenotator Toolbox, for automatic

detection and classification of flowers using a Faster R-CNN (Ren

et al., 2016) that was trained on drone images of flowers in

grasslands. This tool is based on a detection model from the

Detection Model Zoo3 of the TF4 Object Detection API5. The

corresponding code is well documented to facilitate annotation

and data preparation of images, as well as training, testing, and

evaluation of models. With their Faster R-CNN, they achieved an

overall accuracy of 87% and a recall of 84.2% on test data. In

addition, the study mentioned the applicability of the tool’s

predictions to a larger grassland area by creating orthomosaics.

However, the software packages and dependencies used in this tool

are now obsolete6.

The work of Gallmann et al. (2022) was chosen as a foundation

due to its strong emphasis on usability. Practical applicability is a

priority for the goals of this study, and the use of pre-trained models

simplifies the workflow for biologists, allowing them to make

predictions directly from drone imagery once the Gallmann

Phenotator Toolbox is established. In addition, the study

considered different flower classes, which, as highlighted above,

are essential for maintaining pollinator diversity. Given the outlined

importance of monitoring plants and pollinators, this research

provides the following contributions:
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1. Toolchain Update: We updated the GitHub Code of the

Gallmann Phenotator Toolbox, integrating recent software

packages to ensure compatibility and practical use.

Additionally, we extended the toolbox by incorporating

two additional models from the TF2 Model Detection Zoo,

namely EfficientDet (Tan et al., 2020) and SSD (Liu et al.,
://www.tensorflow.org/, accessed on 16.09.2024).

ore information at: https://github.com/tensorflow/models/tree/

er/research/object_detection, accessed on 02.09.2024.

ore information at: https://www.tensorflow.org/guide/migrate,

ssed on 30.08.2024.
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Fron
2016) , to fur ther enhance compat ib i l i ty wi th

further models.

2. Comparative Analysis of Models: We performed a

comparative analysis of three different object detection

models from the TF 2 Model Detection Zoo (EfficientDet,

Faster R-CNN and SSD) presenting differences in

detection performance.

3. Practical Guidelines for Biologists: We developed practical

guidelines for biologists to facilitate flower detection in

grasslands, bridging the gap between machine learning

and fieldwork.
With these contributions, this study aims to improve the

applicability of UAV-based methods for automatic flower

detection in species-rich grasslands. In order to achieve these

goals, this paper is structured as follows. Section 2 outlines the

methodology, starting with a literature review on flower recognition

and classification, followed by a discussion on the use and

limitations of UAVs in remote sensing. This section also covers

the training and testing of the three object recognition models, and

the development of practical, field-ready guidelines for biologists.

Section 3 presents the results of the model comparison, highlighting

the most efficient model. Section 4 discusses the results in terms of

the strengths and weaknesses of the models, highlights challenges,

and suggests future extensions. Section 5 concludes the

main findings.
7 Local shape/texture, edge shape, spatial distribution of flowers, and color.
2 Materials and methods

2.1 Literature review

To contextualize and understand the progress and challenges in

UAV-based flower detection and classification, it is important to

examine how flower detection methods have evolved over time.

Initially, these methods were based on classic computer vision

techniques that focused on analyzing and extracting image

features such as color and texture using simple mathematical

approaches. For example, Adamsen et al. (2000) developed a fully

automated system for non-destructive flower counting using digital

camera images and the Euler method, which resulted in a time

savings of 92% per image compared to manual counting. Also

threshold analysis emerged as an effective technique for separating

peach (Horton et al., 2017) or canola (Zhang et al., 2021) flowers

from the background. In a different approach, Hsu et al. (2011)

developed an interactive flower recognition system that allows the

user to define an area of interest in which the flower is located. The

area is segmented and the extracted features - such as color and

shape - are statistically analyzed and compared to a database of

flower images. The flower class is identified based on the smallest

Euclidean distance between its features and those of the input

image. As the field progressed, machine learning algorithms were

introduced to further enhance the process of classification. For

instance, Nilsback and Zisserman (2008) improved flower

recognition by combining multiple feature extraction techniques

with a support vector machine (SVM), leading to a significant boost
tiers in Plant Science 03
in accuracy. They explored the importance of different features for

distinguishing between several similar classes of flowers and

achieved a 12.7% increase in accuracy by combining four distinct

features7 compared to using a single one. Siraj et al. (2010)

compared the performance of a logistic regression model for

feature extraction with that of a neural network. The neural

network outperformed the logistic regression, achieving 41.83%

higher accuracy in classifying flower images. Building on the

foundational work of early neural networks, recent advances in

deep learning, particularly through the use of convolutional neural

networks (CNNs) (O’Shea and Nash, 2015), have revolutionized

image processing (Ye, 2024). Unlike traditional neural networks,

CNNs are specifically designed to recognize and process spatial

patterns in images. Their architecture of local connections and

parameter partitioning not only increases efficiency, but also

minimizes computational requirements (O’Shea and Nash, 2015).

These models have significantly enhanced the capabilities of flower

recognition, delivering very good results. For example, Xu et al.

(2018) reported an accuracy of more than 97% when applied to

cotton flowers and the best CNN model from Sarkar and Kelley

(2023) achieved an accuracy of 94%. Further extending CNN

capabilities, models like Faster R-CNN have been adapted for

real-time applications in various environments. Patel (2023)

employed this model with a ResNet50 backbone to accurately

recognize the flowering stages of marigolds in real-time field

scenarios. Additionally, Abbas et al. (2022) compared different

backbones for Faster R-CNN against SSD for flower detection

and classification using digital camera images. Their findings

revealed that the Inception V2 backbone demonstrated the best

performance with a mean Average Precision (mAP) of 91.3%.

Beyond these applications, John et al. (2024) explored YOLO,

RetinaNet, and Mask Region-Based Convolutional Neural

Network (Mask R-CNN) to determine the biodiversity of

mountain meadows. Furthermore, Basavegowda et al. (2024) used

EfficientDet, trained on data from greenhouses and grasslands, to

detect High Nature Value (HNV) indicator plants in semi-natural

grasslands. This model was specifically trained with nadir

perspective data to facilitate future research, including studies

using UAVs.

The advances in flower detection and classification have greatly

improved the accuracy of these methods. To apply them to larger

and difficult-to-access areas, innovative monitoring and data

collection approaches, such as UAVs, are necessary (Pettorelli,

2013; Wan et al., 2018). Capture devices for flower detection

range from smartphones (Wu et al., 2020; Shang et al., 2023; John

et al., 2024) to digital cameras on ground vehicles (Ozcan et al.,

2020). For large-scale analysis, remote sensing technologies such as

satellite imagery (Landmann et al., 2015), manned vehicles

(Barnsley et al., 2022), and UAVs (Wan et al., 2018; Xu et al.,

2018; Zhang et al., 2021) are becoming increasingly important. In

particular, UAVs enable efficient and large-scale data collection that

is faster (Xu et al., 2018) and less resource-intensive than traditional,

error-prone methods (MacLeod et al., 2010; Pettorelli, 2013).
frontiersin.org
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Furthermore, UAVs offer a standardized setup for automatic data

collection, allowing for repeated measurements at the same location

with minimal effort (Duro et al., 2007). Through their physical

distance from the ground, UAVs also provide a non-invasive way to

collect data (Xu et al., 2018). In addition, they offer a cost-effective

alternative for environmental monitoring (Huang et al., 2013;

Anderson et al., 2024), helping to alleviate the high costs typically

associated with automated flower detection systems - a burden

typically shouldered by public institutions (Gaston and O’Neill,

2004). By expanding the capabilities of automated detection and

classification applications, UAVs are now being applied to a broad

range of targets. These include fruit detection (Chen et al., 2017;

Bellocchio et al., 2019; Akiva et al., 2020; Zhao et al., 2024), tree

flower detection and quantification (Carl et al., 2017; Horton et al.,

2017; Zhang et al., 2023; Shang et al., 2023), as well as flower

identification, monitoring, and counting in grasslands (Petrich et al.,

2020; Gallmann et al., 2022). Xu et al. (2018) were the first to

introduce flower counting using UAV imagery. Despite its

advantages, using UAVs for flower counting presents challenges,

particularly in detecting smaller or obscured flowers due to the

lower resolution compared to ground-based imagery. Even with

manual counting in drone imagery, these issues persist, although the

risk of human error, such as overlooking or double-counting

(MacLeod et al., 2010) flowers, is reduced (Gallmann et al., 2022).

Overall, the cited studies show that deep learning models,

especially when combined with UAV technology, are powerful

and reliable tools for efficient evaluation of flower resources.

Given the growing adoption of these methods for flower detection

and classification, the Gallmann Phenotator Toolbox has been

updated and extended by integrating two additional deep learning

models and performing a comparative analysis of their accuracy on

drone imagery. The extension allows expanding compatibility of the

Gallmann Phenotator Toolbox with a wider range of models of the

TF model zoo.
8 More information at: https://www.dji.com/de/air-3/specs, accessed

on 24.01.2025.

9 More information at: https://eur-lex.europa.eu/eli/reg_impl/2019/947/

oj, accessed on 16.09.2024.

10 More information at: https://www.tensorflow.org/install/source#gpu,

accessed on 30.08.2024.

11 More information at: https://www.tensorflow.org/guide/gpu, accessed

on 10.09.2024.
2.2 Resources

Given the proven effectiveness of drones for large-scale, non-

invasive data collection, a drone was used to collect additional test

data. As mentioned above, UAVs are particularly advantageous in

areas that are difficult or inaccessible to humans (Feng et al., 2021).

The use of the drone in the test field proved to be extremely useful,

as the tall grass poses a challenge for ground-based flower counting

methods - treading on the vegetation flattens it, which can affect the

accuracy of the survey. The drone allowed us to collect data without

disturbing the natural state of the field. However, it was necessary to

maintain a certain altitude, as the wind generated by the drone can

cause movement in the grass, resulting in visual noise in the images

(Stojnić et al., 2021). For this study, the DJI Air 3 (see Figure 1) was

chosen as the primary tool for capturing images from the drone.

This easily maneuverable rotary-wing UAV allows for efficient

flower collection as it does not require a launch or landing site

and can take off directly in the field. It also has an automatic return

function. The drone can take high-resolution images while hovering

over the area at low altitude. However, the short battery life, which
Frontiers in Plant Science 04
requires frequent recharging, limits the efficiency and range of data

collection (Shi et al., 2019). Under optimal conditions, the DJI Air 3

offers a maximum flight time of 46 minutes and a maximum flight

distance of 32 km. Its internal memory is 8 GB and can be expanded

with an SD card. A key reason for choosing this drone was its dual

camera system, consisting of a 1/3-inch CMOS 48 MP wide-angle

and a medium telephoto camera8. This combination makes it

possible to capture both wide-angle and detailed close-up images

of flowering areas for more accurate and efficient automated flower

detection. UAVs with RGB sensors provide images that can quickly

cover large areas and are easy to operate, making them a cost-

effective method for monitoring grasslands (Sweet et al., 2022). At

720 grams, the DJI Air 3 qualifies for the “open” category under EU

Regulation 2019/9479. This category is designed for low-risk

operations, provided the pilot completes online training and

passes a basic theory test. This minimal certification process

makes drone technology widely accessible and encourages wider

adoption for environmental monitoring.

While the UAV facilitated efficient data collection in the field,

the training of the three models was performed using a machine

learning hardware. It was equipped with two AMD EPYC 7742

central processing units (CPUs, 64 cores each), eight NVIDIA RTX

A6000 graphics processing units (GPUs, 48 GB VRAM per GPU)

connected via NVLink, and 768 GB of random access memory

(RAM). As part of this work, the code base was updated to TF 2,

following the official recommendations from the TF developers.

Specifically, TF 2.15 was selected to ensure compatibility with

CUDA 12.2 and cuDNN 8, as specified in the official TF table10.

This combination of software versions was installed on the available

server, allowing the integration and use of GPU resources for

training and running the models11.
2.3 Updating the Gallmann
Phenotator Toolbox

The Gallmann Phenotator Toolbox is based on TF 1, a powerful

framework for machine learning. It was designed to enable scalable

and efficient computations in heterogeneous environments by

optimally allocating computational resources and managing the

state of variables (Abadi et al., 2016). However, with the evolution of

machine learning technologies, TF 2 has introduced several

enhancements offering a more intuitive, adaptable, and robust
frontiersin.org
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framework. The improvements over its predecessor include

the following12:
12

20-is

13

graph

14

on 0

15

mast

on 15

16

on 10

17

traini

Fron
• Eager Execution: Eager execution, enabled by default,

optimizes model development and debugging by allowing

operations to be evaluated immediately, rather than

building computational graphs13.

• Enhanced GPU Performance: TF 2 offers improved GPU

performance, making it more compatible with modern

hardware setups.

• Integration of Newer APIs: TF 2 introduces several major

APIs. The Keras library is fully integrated as a high-level

API14, providing a more intuitive interface that simplifies

the development and training of deep learning models. The

updated Object Detection API provides access to state-of-

the-art models with various backbone architectures from

the detection model zoo15. In addition, TF 2 offers

improved performance for handling large datasets16 and

optimizes the use of multiple GPUs.17
More information at: https://blog.tensorflow.org/2019/09/tensorflow-

-now-available.html, accessed on 02.09.2024.

More information at: https://www.tensorflow.org/guide/intro_to_

s, accessed on 16.09.2024.

More information at: https://www.tensorflow.org/guide/keras, accessed

2.09.2024.

More information at: https://github.com/tensorflow/models/blob/

er/research/object_detection/g3doc/tf2_detection_zoo.md, accessed

.08.2024.

More information at: https://www.tensorflow.org/guide/data, accessed

.09.2024.

More information at: https://www.tensorflow.org/guide/distributed_

ng, accessed on 10.09.2024.

tiers in Plant Science 05
To take advantage of these new features and optimizations and

to ensure compatibility with the latest software packages, the

migration of the Gallmann Phenotator Toolbox code base to the

newer TF version was required. TF 2 eases migration by providing

comprehensive guides, documentation, and tools specifically

designed to help developers transition from TF 1 to TF 218. The

migration involved identifying incompatible code sections,

particularly deprecated functions and outdated APIs, and

updating them to their TF 2 counterparts to ensure full

compatibility with the new framework. In addition to updating

the Gallmann Phenotator Toolbox with newer software, the code

was extended to support not only Faster R-CNN, but also

EfficientDet and SSD models. Their differences and advantages

are further outlined in Section 2.6 (Model Training).

After successfully updating and extending the Gallmann

Phenotator Toolbox for better and extended performance and

compatibility with modern hardware, the source code was made

available in a GitHub repository19. The next step in the application

was to compile a comprehensive dataset. The datasets used serve as

the basis for training and evaluation of the models. In the following

section, the datasets are presented in detail to provide a basis for the

following analyses.
2.4 Datasets

For this study, two datasets were utilized. To train and evaluate

the models, the dataset from Gallmann et al. (2022) was selected. It

consists of drone images of 1 m2 test squares captured from a height

of 19 meters. A different drone and camera were used compared to

the setup of this study. The dataset contains several flower classes
FIGURE 1

DJI Air 3: Drone used for capturing new aerial imagery for testing purposes.
18 More information at: https://www.tensorflow.org/guide/migrate,

accessed on 30.08.2024.

19 More information at: https://github.com/marieschnalke/Phenotator-

Toolbox-TF2.
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(see Table 1), with some classes combined due to their visual

similarity. It is thoroughly annotated with these flower classes.

To obtain additional test data, the Hohenheim Dataset, an

experiment was conducted. The data collection took place at the

Hohenheim Gardens of the University of Hohenheim in Baden

Wuerttemberg, Germany (coordinates: 48°42’29.6”N, 9°12’50.1”E)

(see Figure 2) on July 16, 2024, between 13:35 p.m. and 16:05 p.m.

The weather was sunny to cloudy with an average temperature of

31.6°C, an average global radiation of 800W/m2 and an average

wind speed of 12 km/h, which is within the endurance range of the

drone. The grass of the test site was tall and dry. The light

conditions varied slightly due to intermittent cloud cover. Care

was taken to ensure that the drone’s shadow is not visible within the

test field. The test site had a biodiversity of 17 different flower

classes, nine of which match the flower classes of the Gallmann

Dataset (see Table 1). The experiment was designed as follows. In an

area of 18.400 m2 (1.84 ha), 50 smaller plots of 1 m2 each were

marked out. Due to the use of the wide angle camera for some

images, where no flowers could be identified, only 36 plots

remained for analysis (see Figure 2). Each plot was marked using

wooden stakes to ensure minimal environmental impact. Ground

truth data were collected manually by observers at each plot, where

all flower species were identified and counted. This step allowed us

to verify the accuracy of the drone data with field observations,

using standardized data sheets to ensure consistency. In addition to

the number of instances of each flower class counted, the number of

insects flying to the flowers were counted. Results show that the

collected flower classes are attractive to pollinators. Subsequently,

drone images of each test plot were captured. To maximize

detection accuracy, it is crucial that the image quality is high

enough to clearly identify the flowers. This requires sufficient

image resolution to clearly capture the fine features of the flowers

(Xu et al., 2018). As described in Gallmann et al. (2022), the ground

sampling distance (GSD) for flower recognition should be a

maximum of 5 mm/pixel, as up to this value the prediction

performance only changes slightly. Ideally, the images used for

analysis should maintain a GSD similar to that of the training

images to ensure consistent flower sizes. The images of the

Gallmann Dataset, including training images, have a GSD of

approximately 1.5 mm per pixel, while the images acquired for

the Hohenheim Dataset have a GSD of approximately 1 mm per
TABLE 1 Flower species comparison: comparison of the presence of
flower species in the Gallmann and Hohenheim Datasets.

Flower Species Gallmann
Dataset

Hohenheim
Dataset

Agrimonia eupatoria ×

Anthyllis vulneraria ⊗

Centaurea jacea ⊗ ×

Centaurea jacea ×

Lychnis flos cuculi ×

Cerastium caespitosum ×

Cirsium arvense ×

Convolvulus arvensis ×

Crepis biennis ⊗

Leontodon hispidus ×

Picris hieracioides ×

Tragopogon pratensis ×

Dianthus carthusianorum ⊗

Galium mollugo ⊗ ×

Achillea millefolium × ×

Carum carvi ×

Daucus carota ×

Galium mollugo ×

Geranium dissectum ×

Geranium palustre ×

Geranium pratense ×

Knautia arvensis ⊗

Leucanthemum vulgare ⊗

Lotus corniculatus ⊗ ×

Lathyrus pratensis × ×

Lotus corniculatus × ×

Medicago lupulina ×

Onobrychis viciifolia ⊗

Orchis species ×

Plantago lanceolata × ×

Plantago major × ×

Prunella vulgaris ⊗

Ranunculus ⊗

Ranunculus acris ×

Ranunculus bulbosus ×

Ranunculus friesianus ×

Rhinanthus alectorolophus ⊗

Salvia pratensis ⊗

(Continued)
TABLE 1 Continued

Flower Species Gallmann
Dataset

Hohenheim
Dataset

Senecio spec. ×

Trifolium pratense ⊗

Trifolium repens ×

Veronica chamaedrys ×

Vicia sativa × ×

Vicia sepium × ×
The circles indicate the classes on which the models were trained. In addition, the three classes
that were included in the model training that are also present in the Hohenheim Dataset are
highlighted in bold.
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pixel. In addition to the images, videos of the test site were recorded

with the goal of creating an orthomosaic. For this purpose, a

predefined route was set in the included DJI Fly app. The drone

flew over the site at the same altitude used for image acquisition,

maintaining a speed of 1.9 m/s, as specified in the study by Li et al.

(2023). The wide angle camera was used for video recording to

cover as much of the area as possible. As a result, the resolution is

lower, at 3840 x 2160 pixels. An orthomosaic was created usingWeb

Open Drone Map (WebODM)21.
2.5 Image preprocessing

To prepare the images for model training, the Gallmann Dataset

was deterministically divided into 70% training data, 10% validation

data, and 20% test data. To ensure sufficient representation of each

class in the training set, any class with fewer than 50 instances was

excluded, following the approach of Gallmann et al. (2022).

Additionally, in this study the image preprocessing script was

modified to exclude any class with zero instances in the training

set, ensuring that only classes present in the training data were used.

This resulted in 14 classes left for training (see Table 1). Gallmann

et al. (2022) originally resized the input images into 450 x 450 pixel

tiles, which were then upscaled to 900 x 900 pixels. This method is
20 More information at: https://www.openstreetmap.org, accessed

on 04.09.2024.

21 More information at: https://github.com/OpenDroneMap/WebODM,

accessed on 04.09.2024.
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consistent with the recommendations of Hu and Ramanan

(2017), who advocates dividing images into smaller sections and

upscaling them when detecting small objects. In contrast, this study

applied a resizing strategy using larger dimensions. For example,

Liu et al. (2016) emphasize the importance of input size for small

object detection, showing that larger input sizes improve detection

performance compared to smaller ones. Their experiments showed

that increasing the input size from 300 x 300 pixels to 512 x 512

pixels improved mAP by 2.5%. Based on these results, an input size

of 512 x 512 pixels was chosen. To further increase the resolution

and detail of the images, especially for recognizing very small

flowers, for this study, the input images were scaled to 1024 x

1024 pixels before training. This additional scaling aims to improve

the detection of finer details.
2.6 Model training

All three models relevant for model comparison were trained on

the annotated data of the Gallmann Dataset. The Faster R-CNN

model from the TF 1 Model Zoo used a manual learning rate by

default, which was adopted by Gallmann et al. (2022). However, a

cosine decay learning rate of 0.08 was chosen for this work. This

learning rate adapts automatically during the training process,

allowing for dynamic adaptation. In general, the default

configurations of the models were used, with a few adjustments

made to improve performance. Specifically, the maximum number

of detections per class and the total number of detections were both

increased to 300, and gradient clipping by norm was applied with a

value of 10.0 to stabilize training. The models were trained with a

batch size of 4 for at least 200,000 steps22. Performance was
FIGURE 2

Location of data collection for the Hohenheim Dataset: The left image shows the location in Germany, and the right image shows the locations of
the test quadrants. The map was created using geodata from OpenStreetMap20.
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evaluated every 2,500 steps. EfficientDet required an additional

50,000 steps due to the learning rate not converging earlier. The

model that achieved the highest F1-Score was saved separately in a

designated folder for further analysis. The results of the analysis are

detailed further in Section 3 (Results). The TF 2 Detection Model

Zoo is a comprehensive collection of pre-trained object detection

models based on the Common Objects in Context (COCO) 2017

dataset (Lin et al., 2014). Each model is available with different

backbones, making them versatile tools not only for inference on

new data, but also as starting points for training on new datasets.

The model zoo contains a variety of models, including the

aforementioned Faster R-CNN, SSD, EfficientDet, CenterNet

(Duan et al., 2019) and Mask R-CNN (He et al., 2018), each of

which offers different trade-offs between accuracy and speed23. The

first model analyzed is Faster R-CNN, which was also used in the

study of Gallmann et al. (2022). The model is a two-stage detector

that performs object detection in two steps. Its region proposal

network (RPN) scans the input images of any size to generate region

proposals, which are areas in the image where potential objects

might be located. In a second step, the model classifies the objects

within these proposed regions (Ren et al., 2016). The Faster R-CNN

available in the TF 2 Model Zoo differs slightly from the TF 1

configuration used by Gallmann et al. (2022). The following data

augmentation techniques were used in this study:
22

upda

23

mast

on 15

24

the in

Fron
• Random horizontal and vertical flip

• Random brightness, contrast, hue and saturation adjustment

• Random crop and scale

• Random jitter boxes
Liu et al. (2016) emphasizes the importance of data

augmentation in detecting small objects especially for SSD

models. Compared to the Faster R-CNN, a SSD combines object

localization and classification into a single step. Instead of using a

region proposal network that adjusts anchor boxes to suggest

possible object regions, the SSD model uses predefined default

boxes with different aspect ratios and sizes that are placed on the

feature map24. For each of these default boxes, the model computes

probability scores for all object classes, indicating how likely it is

that an object of a given class is located within the box. These

default boxes are then refined by applying calculated offsets to

generate the final bounding boxes that more accurately enclose the

detected objects (Liu et al., 2016). SSD outperformed Faster R-CNN

on the PASCAL VOC 2007 dataset (Everingham et al., 2010),

delivering better accuracy and faster processing times (Liu et al.,

2016). The third model in the comparison, EfficientDet, is also a
A step refers to the processing of a batch of images, with the model

ting its parameters after each step (Abadi et al., 2016).

More information at: https://github.com/tensorflow/models/blob/

er/research/object_detection/g3doc/tf2_detection_zoo.md, accessed

.09.2024.

The output of a convolutional layer in a CNN, highlighting key features in

put image (O’Shea and Nash, 2015).

tiers in Plant Science 08
single-stage detector designed for high efficiency and accuracy. Its

key innovation, the Weighted Bi-directional Feature Pyramid

Network (BiFPN), dynamically adjusts the importance of different

features during training, allowing the model to focus on the most

relevant information. By tightening connections and eliminating

unnecessary paths, EfficientDet optimizes both computational

power and accuracy. This makes it ideal for real-time analysis

and resource-constrained applications (Tan et al., 2020).

Once the models are trained, the next step is to ensure their

effective use in the field. Hodgson and Koh (2016) highlight the

need for clear, actionable guidelines for UAV use in research.

Building on the documentation in the Gallmann Phenotator

Toolbox, step-by-step instructions are provided to help users

accurately identify flower classes and numbers in meadows,

ensuring ease of use in field studies.
2.7 Practical guidelines for UAV-based
flower detection

In this section, the key steps for using UAVs in flower detection

are outlined, including pre-flight setup, flight execution, and post-

flight data processing. These guidelines ensure transparency,

reproducibility and enable integration with machine learning

models for flower classification in Germany. Before conducting

drone operations, certain resources are required. These include a

drone, such as the DJI Air 3, equipped with the necessary cameras,

as well as a server for data storage, model training and evaluation.

Additionally, operators must comply with the above mentioned EU

Regulation 2019/947, which outlines requirements such as

registration and certification for drone pilots. In addition,

national regulations, including Germany’s Air Traffic Regulations

(LuftVO)25 and the German Air Traffic Act (LuftVG)26, mandate

requirements such as liability insurance. Drones in the ‘open’

category require operator registration and a pilot’s license. In

addition, operators should check geographic restrictions such as

no-fly zones or altitude restrictions27. Once all legal requirements

have been met and a flight area has been selected, safety must be

ensured by avoiding bystanders and strictly following regulations.

During pre-flight preparations, camera settings must be configured

to capture essential metadata, including GPS coordinates, altitude,

speed, and timestamps for each image or video frame, the subtitle

feature should be enabled in the drone’s camera settings, generating

an SRT file during video recording (DJI, 2023). This metadata is

essential for subsequent georeferencing and accurate orthomosaic

creation. To enhance the accuracy of the georeferencing process, the

use of ground control points (GCPs) should be considered
25 More information at: https://www.gesetze-im-internet.de/luftvo_2015/,

accessed on 14.09.2024.

26 More information at: https://www.gesetze-im-internet.de/luftvg/,

accessed on 14.09.2024.

27 More information at: https://www.dipul.de/homepage/de/, accessed

on 04.09.2024.
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(Gallmann et al., 2022; Sweet et al., 2022; Zhang et al., 2023;

Torresani et al., 2024). Flight height should be carefully

determined based on the size of the objects to be detected, the

acceptable wind generated by the UAV, and the area to be covered

(Stojnić et al., 2021). Minimizing environmental disturbance is also

critical to reduce the impact on wildlife and the surrounding

ecosystem, as recommended by Hodgson and Koh (2016). For

flower imaging with the DJI Air 3, a height of 15 meters has proven

effective for capturing images. Since video footage has a lower

resolution than still images, a lower altitude is recommended. To

increase efficiency and conserve battery power, it is advisable to use

waypoints. These can be planned before the flight, enabling the

drone to automatically follow a predefined route, or set at specific

positions during the flight (DJI, 2023). Other tools, such as

DroneDeploy28, offer waypoint planning with integrated

orthomosaic generation. Finally, automatic settings for altitude,

gimbal angle, and speed should be used to ensure consistent

image quality. These parameters can be configured in the DJI Fly

app before the flight, with the gimbal set to - 90° to provide a vertical

view of the terrain. After completing pre-flight preparations, the

drone will autonomously follow the predetermined flight path. It is

important to make sure that the battery is fully charged and the

weather conditions are stable before taking off (DJI, 2023). During

flight, the drone’s status is monitored by the controller, allowing

intervention if unexpected situations arise. Once the flight is

complete, the captured data - including images, video, and

metadata - should be transferred from the SD card to secure

storage. It is recommended to back up the data in multiple

locations to avoid potential loss. While the creation of an

orthomosaic is optional, it can greatly assist in post-flight analysis

for large areas. Tools like WebODM, a free and open-source

solution, offer reliable alternatives to expensive commercial

software for photogrammetry processing (Vacca, 2020). Creating

orthomosaics is a standard practice in many UAV-based studies,

with several researchers using commercial software solutions such

as Agisoft Metashape (Gallmann et al., 2022; Zhang et al., 2023;

Torresani et al., 2024), Pix4D (Zhang et al., 2021; Anderson et al.,

2024), and DroneDeploy (Horton et al., 2017). In contrast, this

study uses WebODM, which offers photogrammetric processing

capabilities comparable to the commercial options, providing

reliable photogrammetric processing on low-cost drone imagery

(Vacca, 2020). In order to identify flowers on the created

orthomosaic, it may be necessary to divide the large image into

smaller sections if the maximum number of 178,956,970 pixels to be

processed by the Phenotator Toolbox TF2 is exceeded. For analysis,

regions of interest (ROIs) can be selected using the Gallmann

Phenotator Toolbox. If adequate resources are available, custom

models can be trained; otherwise, pre-trained models can be used.

Ideally, when custom models are trained, they should be tailored to

the specific flower species present in the meadow being analyzed.

Predictions can be made on the orthomosaic or on selected ROIs

(Gallmann et al., 2022). The results can then be visualized in a
28 More information at: https://www.dronedeploy.com/, accessed

on 10.09.2024.
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dashboard, which is introduced as a new feature in the Phenotator

Toolbox TF2, offering a clear overview of detected flower classes,

facilitating interpretation of results and supporting decision making

in ecological studies.
3 Results

This section presents the key findings of the model comparison.

The performance of the three deep learning models is evaluated on

both presented datasets in Section 2.4 (Datasets). This study focuses

on the same evaluation metrics that are originally implemented in

the Gallmann Phenotator Toolbox. These are precision, recall, mAP

and F1-Score. Since the model decision in the Gallmann Phenotator

Toolbox can be based on either the mAP or the F1-Score and since

the application of this study is concerned with minimizing both

false-positive and false-negative predictions, the F1-Score provides

a reliable metric for evaluating the overall performance of the

models. As described in Section 2.6 (Model Training), training,

validation and test data were extracted from the Gallmann Dataset.

In the following, results of the models on validation and test data are

presented. During the training process, we monitored the validation

data to identify the optimal model on the basis of the highest F1-

Score for a given number of training steps. Table 2 presents the

model that achieved the highest F1-Score on validation data, along

with the corresponding number of training steps in which this

performance was achieved. Figure 3 visualizes those resultson

validation data. The obtained model is later evaluated on the test

datasets. For validation data, Faster R-CNN demonstrated the best

overall performance, achieving the highest precision (83.4%), F1-

Score (82.3%), and mAP (61.2%). EfficientDet, which required the

most training steps, achieved the highest recall at 83.7%, reflecting

robust detection capabilities, though with a slight trade-off in

precision. The SSD model, which was trained for the fewest steps,

exhibited the lowest performance across all metrics.

All models performed better on test data than on validation data

of the Gallmann Dataset. The test data results (see Table 3; Figure 4)

align with the trends observed in the validation phase. Faster R-CNN

outperformed the other models, achieving a precision of 89.9%, a

mAP of 73.6% and a F1-Score of 89.5%. EfficientDet also performed

well. Again, it had the highest recall with 90.9%. The SSD model

showed lower precision (81.7%) but maintained a high recall of

89.1%. The Faster R-CNN results on the Gallmann Dataset test data

outperform those reported by Gallmann et al. (2022), who achieved

an overall precision of 87%, a recall of 84.2%, a mAP of 39.8% and a

F1-Score of 85.5% on test data. This improvement reflects the updates

and optimizations made in the training process, highlighting the

effectiveness of the Toolchain update. Table 4 shows the confusion

matrix for the best model, Faster R-CNN, on test data from the

Gallmann Dataset. The matrix provides an overview of the model’s

performance in correctly classifying each flower species. It also

highlights potential misclassifications.

In addition to the evaluation on the Gallmann Dataset, the three

models were tested on the Hohenheim Dataset. The model

predictions on the drone images were compared with the

manually counted flower data collected in the field. In this case, a
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correct prediction was not based on the overlap of bounding boxes

but on whether the detected flowers occurred in the test quadrants

where the flower data was collected. Table 5 shows the class

performance of the three models on the three flower classes -

Centaurea jacea Galium mollugo and Lotus corniculatus - that were

present in both the training and Hohenheim Dataset (see Figure 1).

Notably, Centaurea jacea, which stands out visually, achieved high

recall values across all models, with SSD reaching 100% recall.

However, the precision was lower, especially for SSD (50%),

indicating a high number of false positives. This suggests the

models frequently misclassified other, unseen species. Often, the

model predicted those unseen flowers as background. In some cases,

unseen flower classes were classified as visually similar flower

classes from training data. For example Geranium pratense was

classified as Centaurea jacea. Another example is the unseen flower

class Galium palustre which was often classified as Knautia arvensis.

This suggests that the models largely rely on visual similarities

between species, supporting the approach of Gallmann et al. (2022)

of grouping visually similar flowers into broader classes (see

Table 1). For Galium mollugo, all models performed poorly,

particularly in terms of recall. Although Faster R-CNN achieved

perfect precision (100%), its recall was extremely low (0.7%),

leading to an F1-Score of only 1.4%. This indicates that the

model only identified a very small number of actual Galium

mollugo instances, even though when it did make a prediction, it

was correct. This is also due to the fact that Galium mollugo was the
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most represented class in the manually counted data. The other

models showed a similar trend, with EfficientDet and SSD also

having high precision (93.8% and 92.6%, respectively) but very low

recall values (1.5% and 3%), highlighting the challenge of detecting

Galium mollugo in new environments, where variations in visual

features or environmental conditions may have impacted the

model’s performance. The reasons for these results will be further

discussed in Section 4 (Discussion). In the case of Lotus

corniculatus, the performance was better compared to Galium

mollugo, but the recall remained relatively low across all models.

SSD performed best, achieving the highest F1-Score (42.7%) with a

recall of 27.6% and precision of 94.7%. While the models could

more reliably identify Lotus corniculatus compared to Galium

mollugo, the lower recall suggests that a significant number of

flowers were still missed during detection, pointing to potential

limitations in generalization across environments.

Table 6 shows a comparison of the model complexities in terms

of the required resources. For this purpose, the storage

requirements and Floating Point Operations per Second (FLOPs)

of the different models were calculated. The FLOPs were calculated

using the TensorFlow Profiling API. EfficientDet is the least

complex in terms of both model size and FLOPs, while SSD is the

most complex. These results are consistent with Tan and Le (2019),

who demonstrated that EfficientDet achieves superior

computational efficiency, with models requiring significantly

fewer floating-point operations compared to previous object
FIGURE 3

Performance comparison on Gallmann Dataset validation data.
TABLE 2 Model performances on Gallmann Dataset validation data.

Model Steps Precision (%) Recall (%) mAP (%) F1-Score (%)

EfficientDet D0 242.500 80.2 83.7 60.5 81.9

Faster R-CNN ResNet101 130.000 83.4 81.2 61.2 82.3

SSD ResNet101 92.500 75.0 79.0 55.1 77.0
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detection architectures. These differences illustrate the efficiency of

the models in terms of memory and computation, which is

important when choosing for specific applications.
4 Discussion

With these results in hand, the focus shifts to a deeper analysis

of their implications and the comparative strengths and weaknesses

of the different models. The comparison of Faster R-CNN, SSD, and

EfficientDet highlights how their architectural model differences

influence detection performance, particularly in the context of

flower detection. Faster R-CNN, with its two-stage architecture,

excels in precision and F1-Score on the Gallmann Dataset, making

it the most accurate model for detecting flower structures. This step-

by-step process allows for more accurate localization, especially in

complex environments with dense vegetation. However, it is still

limited in its use in real-time fieldwork (Ren et al., 2016).

EfficientDet, on the other hand, based on the BiFPN architecture,

strikes a balance between model complexity and performance on

test data. Its weighted feature pyramid network optimizes both

processing power and detection accuracy (Tan et al., 2020).

Compared to SSD, EfficientDet provides more efficient feature

extraction, resulting in higher recall rates without compromising

precision. This makes it ideal for applications where efficient and
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accurate detection is critical. The extension of the Gallmann

Phenotator Toolbox to support additional models increases its

compatibility and flexibility of use. In addition to the models

from the comparison, the TF-based code provides a solid

foundation for integrating additional models from the model

detection zoo, such as Mask R-CNN and CenterNet. Future work

could explore model optimization, including hyperparameter

tuning (Bergstra et al., 2013; Yang and Shami, 2020) or the use of

different backbones, to fur- ther improve detection results. Another

important direction for development involves models specifically

optimized for real-time analysis, which will become increasingly

relevant in agricultural applications (Chen et al., 2020). In order to

efficiently apply deep learning to real-time recognition, model

complexity must be reduced. A simplified model architecture

enables faster processing times and better scalability (Li et al.,

2022). Models such as EfficientDet from the comparative analysis

are, as mentioned above, particularly well suited for this. Another

promising model for real-time detection is You Only Look Once

(YOLO) (Redmon et al., 2016), which despite its speed has

historically struggled to accurately detect small objects due to its

grid-based architecture. Recent developments, such as the

optimized YOLOv3 by Liu et al. (2020), specifically address this

problem and improve the detection of small targets, such as flowers

in UAV images, by refining the model architecture and the feature

extraction processes.
FIGURE 4

Performance comparison on Gallmann Dataset test data.
TABLE 3 Model performances on Gallmann Dataset test data.

Model Precision (%) Recall (%) mAP (%) F1-Score (%)

Faster R-CNN ResNet 101 (TF1) 87.0 84.2 39.8 85.5

EfficientDet D0 84.8 90.9 71.8 87.7

Faster R-CNN ResNet101 89.9 89.0 73.6 89.5

SSD ResNet101 81.7 89.1 65.0 85.2
frontiersin.org

https://doi.org/10.3389/fpls.2025.1498913
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


29 More information at: https://blog.tensorflow.org/2022/10/building-

the-future-of-tensorflow.html, accessed on 06.09.2024.

Schnalke et al. 10.3389/fpls.2025.1498913
The toolchain update has improved the applicability of the

Gallmann Phenotator Toolbox by ensuring compatibility with

recent software. Maintaining the long-term performance and

compatibility of the Phenotator Toolbox TF2 will require

continuous software updates. According to Lehman (1996),

software systems that interact with real-world environments must

continually adapt to changing requirements to remain effective.

Without regular maintenance and updates, the software’s

performance will degrade as its environment changes. For scientific

advancement, updating the Gallmann Phenotator Toolbox was

critical (Howison et al., 2015), as it depends on components such

as the Object Detection API and third-party libraries, which regularly

release new versions with bug fixes and performance enhancements

(Kula et al., 2018). This makes timely software updates essential. The

presented practical guidelines ensure that the software is seamlessly

integrated into a workflow, reducing complexity, especially in the

interaction between biologists as end users and the software used

(Howison et al., 2015). Although current software updates are a
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short-term solution, the Phenotator Toolbox TF2 will benefit from

TF’s planned future developments, which promise backward

compatibility and optimizations in performance and scalability29.

While these technical adjustments have improved applicability

and model performance, environmental factors remain critical

challenges. The perspective of the drone is a significant limitation,

especially when trying to see hidden flowers. Although drones such

as the DJI Air 3 can capture high-resolution images, the view of

flowers is often blocked by dense vegetation or tall grass. This

occlusion makes detection more difficult, as drone imagery has a

limited lateral view and cannot capture flowers that are obscured by

grass. In the test environment of this study and already mentioned

by Gallmann et al. (2022), this resulted in many flowers not being

detected in dense grasslands, leading to misclassifications. This
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Anthyllis vulneraria – – – – – – – – – – – – – – – –

Centaurea jacea – 234 – – – – – – – 1 – – – – 27 28

Crepis biennis – – 15 – – – – 4 – – – – – – 5 9

Dianthus
carthusianorum

– 1 – 13 – – – – – – – – – – – 1

Galium mollugo – – – – 92 – – – – – – – – – 17 17

Knautia arvensis – 1 – – – 165 – – – – – – – 1 8 10

Leucanthemum
vulgare

– – – – – – 539 – – – – – 1 – 35 36

Lotus corniculatus – – 1 – – – – 569 – – 6 – – – 81 88

Onobrychis
viciifolia

– – – – – – – – 10 – – – – – 3 3

Prunella vulgaris – 1 – – – – – – – 7 – – – – 1 2

Ranunculus – – – – – – – 10 – – 159 – – – 9 19

Rhinanthus
alectorolophus

– – – – – – – – – – – – – – – –

Salvia pratensis – 1 – – – – – – – – – – 38 – 5 6

Trifolium pratense – 2 – – – – – – 2 – – – – 8 5 9

Background – 20 2 4 19 7 20 90 5 2 3 – 2 2 – –

False Positives – 26 3 4 19 7 20 104 7 3 9 – 3 3 – –
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observation is consistent with previous studies showing that small,

dense, and overlapping objects are difficult to detect in UAV

imagery (Zhang et al., 2019). To address this issue, Tian et al.

(2021) extended SSD based models to include a second detection

step that examines potentially missed areas and specifically

identifies hard-to-see objects. Although this approach has not

been specifically tested on flowers, it may be a promising

extension of the models to further improve the detection of

flowers obscured by vegetation in dense grasslands. In the

Hohenheim Dataset, the grass was dry and therefore less

intensely green than in the training dataset, which can lead the

model to incorrectly classify the background as a flower. Also

external environmental conditions can affect detection

performance. Weather conditions like rain, noise, or image blur

can degrade the quality of UAV captured images (Munir et al.,

2024), while different lighting conditions can impact detection

performance when detecting flowers (Lin et al., 2022). A notable

finding in the results was the poorer class recognition in the

Hohenheim Dataset, which was constrained by the availability of

annotated training data (Gallmann et al., 2022). This limits the

model’s ability to detect flower species that were not part of the

training set. Expanding the dataset to include a wider variety of

flower species is necessary to improve the generalizability of the

model. The Hohenheim Dataset contains several flower species that

were not present in the Gallmann Dataset training data. Including

these new classes in future training sessions would allow the model

to recognize a broader range of species, thus improving accuracy

and extending its applicability to diverse ecological settings. In

addition to new flower classes, future training datasets should

include flowers in different growth stages and under different

seasonal and climatic conditions (Katal et al., 2022), since the

Hohenheim Dataset includes vegetation in dry periods. Currently,

the approach focuses on detecting and classifying different classes of

flowers. However, for applications where only the total number of

flowers is of interest, it may be more efficient to consider binary

classification - distinguishing between ‘flower’ and ‘non-flower’ – to
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simplify the task. Similar to the work of Ayhan et al. (2020), who

effectively used binary classification for vegetation detection, this

approach could reduce model complexity and enhance efficiency by

focusing solely on flower presence. The manually collected data

showed that some test plots contained Galium Mollugo flowers that

were not in bloom at the time of capture, making recognition by

deep learning models difficult. These models were mainly trained

on plants in full bloom recorded between May 23 and July 3

(Gallmann et al., 2022), which affects their performance in

detecting plants at other stages of development, such as in the

Hohenheim Dataset recorded in mid-July. As outlined in Section

2.1 (Literature Review) features play a key role in object detection. If

these characteristics, such as fully opened flower, are not present, it

is difficult for the model to correctly recognize the object. Another

factor contributing to the poor recognition of Galium Mollugo is

that the models were trained to recognize inflorescences rather than

individual flowers (Gallmann et al., 2022). In contrast, the manual

data collection for the ground truth in the Hohenheim Dataset

involved counting individual flowers instead of inflorescences.

Therefore, this mismatch between what the model was trained to
TABLE 5 Model performances on Hohenheim Dataset.

Model Centaurea jacea Galium mollugo Lotus corniculatus

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Preci-
sion
(%)

Recall
(%)

F1-Score
(%)

EfficientDet DO 60.3 89.7 72.2 93.8 1.5 0.3 93.9 23.5 37.6

Faster R-CNN ResNet101 57.1 92.3 70.6 100 0.7 1.4 86.7 26.5 40.6

SSD ResNet101 50.0 100.0 66.7 92.6 3.0 5.8 94.7 27.6 42.7
TABLE 6 Comparison of model complexity.

Model Model Size (MB) FLOPs (billion)

EfficientDet 34.8 18.81

Faster R-CNN 189.0 469.71

SSD 205.0 578.27
FIGURE 5

Galium Mollugo inflorescences: Prediction example of inflorescences of
Galium Mollugo in the Hohenheim Dataset, illustrating the varying
number of blossoms within each inflorescence.
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detect and what was counted during ground truth data collection

introduces a significant source of error. When the model attempts

to detect entire inflorescences (see Figure 5), but the manual

annotations reflect individual flowers, the predictions are

misaligned with the ground truth.

Expanding and adapting training data would also enable the

Phenotator Toolbox TF2 to be applied to more specific scenarios,

such as the detection of invasive species (De Sá et al., 2018; Bakacsy

et al., 2023; Sarkar and Kelley, 2023). Additionally, incorporating

multisensor data, such as hyperspectral images, alongside standard

RGB data, could further enhance the system’s capabilities.

Hyperspectral data, for example, have shown promising results in

flower recognition (Landmann et al., 2015; Yao et al., 2023) by

providing a richer environmental context, potentially improving

detection accuracy in complex ecosystems. Beyond dataset

expansion, transfer learning is increasingly applied in remote

sensing and could therefore improve the applicability of the

Phenotator Toolbox TF2 to different environmental contexts. It

reduces the need to generate large amounts of newly labeled data,

which is often a challenge in large scale applications. Model fine-

tuning is the most commonly used transfer learning application in

biodiversity assessment. Its success is limited by reduced real-time

performance. Unsupervised Domain Adaptation, another transfer

learning approach, provides the ability to adapt images to different

weather or lighting conditions (Ma et al., 2024).
5 Conclusion

In summary, this work successfully updated and extended the

Gallmann Phenotator Toolbox to the Phenotator Toolbox TF2 by

integrating up-to-date software and different models, improving

applicability and flexibility in application. The migration to TF 2

enabled the use of recent software packages and significantly

improved model training, enhancing both usability and

performance. The planned updates of TF regarding backward

compatibility are promising for the continued use of Phenotator

Toolbox TF2. The comparative analysis showed that Faster R-CNN,

with its high precision, was the most reliable model for flower

detection in grasslands. EfficientDet had the best recall, making it

ideal for maximizing detection rates. Its reduced complexity also

enhances its suitability for efficient flower detection tasks. However,

SSD lagged behind in both precision and recall, indicating that it is

less suitable for environments where detection accuracy is critical.

Despite the technical advances, several challenges remain. Detection

performance was lower in dense vegetation and among non-

flowering plants, suggesting that improvements in occlusion

handling and inclusion of more seasonal and climatic as well as

flower class variations in the dataset are necessary. Furthermore,

incorporating more flower species into the training data will help

generalize the model’s applicability to diverse ecological settings.

The provided guidelines offer actionable steps for biologists and

ecologists, bridging the gap between machine learning techniques

and real-world conservation efforts. The introduction of new flower

classes and different environmental conditions of the Hohenheim

Dataset highlighted the need for further refinement. These results
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underscore the potential of integrating UAVs and machine learning

to transform large-scale biodiversity monitoring, offering a scalable

solution to the urgent challenge of pollinator decline.
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