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Introduction: In the natural harvesting conditions of cherry tomatoes, the

robotic vision for harvesting faces challenges such as lighting, overlapping, and

occlusion among various environmental factors. To ensure accuracy and

efficiency in detecting cherry tomatoes in complex environments, the study

proposes a precise, realtime, and robust target detection algorithm: the CTDA

model, to support robotic harvesting operations in unstructured environments.

Methods: Themodel, based on YOLOv8, introduces a lightweight downsampling

method to restructure the backbone network, incorporating adaptive weights

and receptive field spatial characteristics to ensure that low-dimensional small

target features are not completely lost. By using softpool to replace maxpool in

SPPF, a new SPPFS is constructed, achieving efficient feature utilization and

richer multi-scale feature fusion. Additionally, by incorporating a dynamic head

driven by the attention mechanism, the recognition precision of cherry tomatoes

in complex scenarios is enhanced through more effective feature capture across

different scales.

Results: CTDA demonstrates good adaptability and robustness in complex

scenarios. Its detection accuracy reaches 94.3%, with recall and average

precision of 91.5% and 95.3%, respectively, while achieving a mAP@0.5:0.95 of

76.5% and an FPS of 154.1 frames per second. Compared to YOLOv8, it improves

mAP by 2.9% while maintaining detection speed, with a model size of 6.7M.

Discussion: Experimental results validate the effectiveness of the CTDA model in

cherry tomato detection under complex environments. While improving

detection accuracy, the model also enhances adaptability to lighting variations,

occlusion, and dense small target scenarios, and can be deployed on edge

devices for rapid detection, providing strong support for automated cherry

tomato picking.
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1 Introduction

The cherry tomato is a small tomato known for its rich

nutritional value and wide-spread market demand, making it one

of the important economic crops worldwide (Chen et al., 2021).

Harvesting cherry tomatoes is a critical process in their agricultural

production. Current harvesting methods rely primarily on manual

labor, which presents problems such as high labor costs, low

harvesting efficiency, and other related challenges. In addition,

these methods cannot meet the demands of large-scale production,

which hinders the sustainable development of the cherry tomato

industry (Ishii et al., 2021; Montoya-Cavero et al., 2022). In recent

years, with the advancement of agricultural mechanization and

automation technologies, robotic harvesting has gradually become a

viable alternative. The accuracy, adaptability, and real-time

capabilities of robotic vision systems are the primary technological

supports for reliable robotic harvesting, and they also determine

harvesting efficiency (Magalhães et al., 2022; Li Y. et al., 2024).

Computer vision has a wide range of applications in various fields

(Wang H. et al., 2023; Tang et al., 2024), such as robotic navigation,

3D imaging (Li et al., 2023; Li H. et al., 2024), and remote sensing

(Jamal Jumaah et al., 2024), which are crucial for enhancing the

efficiency and accuracy of agricultural tasks like fruit harvesting.

Currently, most cherry tomatoes are cultivated in greenhouses.

Compared to traditional open-field cultivation, greenhouse

cultivation adopts relatively standardized practices optimized for

mechanized harvesting, such as uniform plant spacing, consistent

plant height, and structured plant arrangement, providing an

agronomic basis for robotic harvesting. However, under greenhouse

conditions, variations in lighting, occlusions caused by the clustering

growth of fruits, the small size of the picking targets, and the

complexity of the background (including background interference

from the intermingling growth of plant branches and leaves, and

changes in the color distribution between fruits and leaves) due to the

coupling effects of multiple factors, increase the difficulty of visual

detection, impacting the precise identification and localization of

fruits. Variations in the height between individual plants, irregularity

in the arrangement of leaves, the uneven distribution of fruits, and

partial or complete occlusion between fruits and leaves are

unstructured characteristics that pose numerous challenges to the

visual detection of picking robots (Zhang et al., 2024).

Traditional target detection methods based on image processing

are classic approaches to fruit detection, which require extracting

target features and learning to classify and recognize them.

Morphological and color-based analysis methods have been

widely applied to fruit detection. Septiarini et al. (2022) proposed

a tomato image segmentation method, applying K-means clustering

for ROI detection, performing RGB to HSV color space conversion

in preprocessing, and using the Canny operator for edge detection,

successfully achieving tomato feature extraction and detection. Li J.

et al. (2024) proposed single and dual-mode image demodulation,

brightness correction, and image segmentation algorithms, utilizing

fast average filtering based on integral images to enhance the

contrast between rotten areas and fruit backgrounds. Their

approach significantly improved the early detection of rotten
Frontiers in Plant Science 02
navel oranges, achieving a recognition accuracy of 97.5% using a

two-phase spiral phase transform (SPT) combined with contrast

adjustment and watershed segmentation. Feature extraction and

classification methods have been widely explored to improve

recognition accuracy. Bai et al. (2023) proposed a tomato

recognition method integrating HOG, LBP, and color histogram

algorithms. By concatenating shape, texture, and color feature

vectors into a combined feature vector and processing it using a

Support Vector Machine (SVM), the model achieved 100%

accuracy under ideal conditions, with a processing time of less

than one second. Liu et al. (2019) introduced a mature tomato

detection algorithm combining HOG features with an SVM

classifier, using a coarse-to-fine scanning approach. The model

was further refined using false color removal (FCR) and non-

maximum suppression (NMS), achieving a recall rate of 90.00%, a

precision of 94.41%, and an F1 score of 92.15%. Chaivivatrakul and

Dailey (2014) proposed a plant green fruit detection technique

based on texture analysis, employing interest point feature

extraction, descriptor calculation, SVM classification, candidate

fruit point mapping, morphological closure, and fruit region

extraction. The model achieved detection rates of 85% and 100%

for single images of pineapple and bitter melon, respectively.

Traditional image recognition techniques often rely on manual

feature design, which achieves fruit recognition in specific scenes,

but lack an understanding of the overall semantics of the image and

are not well adapted to complex and changing unstructured

environments (Qi et al., 2022).

Compared to traditional image processing methods, deep

learning employs deep neural networks to automatically extract

hierarchical features, reducing reliance on manual feature

engineering. Through large-scale data training, it optimizes

feature representation, enhances robustness to noise and defects,

and improves detection stability (Banerjee et al., 2023; Kasani et al.,

2023; Zeng et al., 2023). In fruit detection, deep learning models

have been widely used due to their superior feature representation

capabilities and increased detection accuracy over conventional

image processing techniques (Chen S. et al., 2023; Meng et al.,

2023; Tang et al., 2023b). Lawal (2021) proposed the YOLO-

Tomato model for detecting tomatoes under complex

environmental conditions by applying the LWYS method with

spatial pyramid pooling as well as Mish activation function and

integrating the dense architecture into YOLOv3. The mAP reaches

more than 98% on small resolution datasets and the detection time

is less than 50ms. Zheng et al. (2022) developed an enhanced

method for recognizing cherry tomatoes by improving the

YOLOx model. This approach integrates an attention mechanism

within the dense network’s backbone to enhance overall recognition

performance. While these methods enhance detection performance

by incorporating additional modules or modifying existing

components, they also result in a larger and more complex

model. This increased complexity poses challenges for

deployment and utilization on edge devices. Therefore, to solve

the challenges associated with implementing complex models on

edge devices for robotic harvesting, researchers are paying more

attention to balancing accuracy and model complexity while
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enhancing model performance. For instance, Gao et al. (2024)

proposed LACTA, a lightweight high-precision sage fruit

detection algorithm with a model size of only 2.88 M, which can

be better deployed to selective harvesting robots. Yang et al. (2023)

proposed an automatic tomato detection method based on an

improved YOLOv8s model. The mAP of the enhanced model was

increased by 1.5%, and the model size was significantly reduced

from 22 M to 16 M. At the same time, a detection speed of 138.8

FPS was achieved, which is a better balance between the model size

and detection accuracy. However, most of the lightweight

algorithms proposed currently target tomatoes with distinct close-

range features, are set in relatively simple background environments

and do not consider the environmental impacts experienced by

robots during actual harvesting operations, often resulting in

somewhat singular data samples (Zhang et al., 2023). Therefore,

further research into cherry tomato detection algorithms in actual

working environments, ensuring that deployment on edge devices

still maintains satisfactory real-time performance and accuracy,

remains a highly challenging issue.

To realize accurate and efficient cherry tomato recognition in

complex environments, this paper proposes an accurate lightweight,

real-time, and efficient saint fruit detection algorithm. Firstly, to

enhance the detection model’s adaptability to the diversity of fruit

features, lighting conditions, and background environments, this

study employs a multi-source dataset augmentation strategy,

selectively expanding the original dataset and establishing

targeted datasets. Secondly, to further optimize and balance the

detection efficiency and the capability to extract small target features

under complex lighting conditions, the backbone network of the

YOLOv8 model is reconstructed. The LAWDarknet53 network is

introduced to replace the CBSDarknet53, allowing the model to

retain more details while reducing redundant computations when

extracting image features from shallow to deep layers. Considering

the issues of occlusions, overlaps, and density that occur during the

actual harvesting process, the SPPS network is proposed to better

capture subtle feature changes caused by environmental variations.

The introduction of a dynamic head detection head focuses on

capturing valuable details, enhancing the model’s understanding

and detection accuracy in complex environments. This algorithm

adapts well to unstructured environments under natural conditions,

possessing good generalization and robustness, capable of being

deployed on edge devices to efficiently and effectively complete

detection tasks while ensuring performance.
2 Materials and methods

2.1 Data acquisition

Data on cherry tomatoes were collected at the Changji

Agricultural Expo Park planting base in Xinjiang. To ensure the

consistency of the growing environment and the quality of the fruit,

the planting base uses a uniform vertical planting system. In this

study, data on cherry tomatoes was collected using a handheld
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portable camera with a resolution of 1920 × 1080. To ensure data

diversity and broad coverage, images were collected under various

lighting and occlusion conditions to simulate different actual planting

environments, such as direct sunlight, shadows, fruit overlap, and

occlusions. During the image collection process, the study captured

images from multiple angles, including frontal, overhead, oblique,

and upward angles, to capture features such as the shape, color, and

texture of the cherry tomatoes, and conducted image collection at

close, medium, and long distances to obtain fruit images at different

scales. During the data collection period, the cherry tomatoes were in

the ripening stage, with some of the fruits fully matured and meeting

harvesting standards. A total of 2500 images of both mature and

immature cherry tomatoes were collected, as shown in Figure 1.
2.2 Data preprocessing

By increasing the amount and variety of data, data

augmentation can simulate different planting environments,

including different lighting and occlusion conditions, as well as

different shooting angles and distances, improving the robustness of

the algorithm and the model’s ability to generalize (Tang et al.,

2023a). This study used a combination of offline and online data

augmentation to selectively expand the original dataset; offline data

augmentation is a preprocessing method applied to the original

dataset before training, involving random combinations of

brightness adjustment, rotation, translation, and noise to expand

the dataset. Considering that excessive offline augmentation might

introduce too much noise or inconsistency, potentially degrading

model performance, only 500 new training samples are expanded

using offline methods. Online data augmentation is the real-time

enhancement of the original data during model training, which

enhances model diversity while reducing storage resource

requirements. During training, techniques such as noise, HSV

adjustments, random rotations, scaling, and perspective

transformations are used to enhance the training samples, with

each method being applied with a 1% probability. It also turns off

data augmentation in the last 10 epochs, allowing it to focus on

learning from the original data, optimizing and complicating the

details of the features (Ge et al., 2021). The effects of the

enhancement are shown in Figure 2.

In the data labeling process, the study used the labeling tool to

process the cherry tomato dataset “https://github.com/HumanSignal/

labelimg”. During the data labeling process, the smallest enclosing

rectangle of the cherry tomato was used as the true detection frame

to minimize the interference of background information with the

true detection frame. The samples were categorized into two groups:

“Immature,” representing unripe cherry tomatoes, and “Mature,”

indicating ripe cherry tomatoes. Table 1 provides detailed

information about the dataset. During the model training process,

the training set used 80% of the dataset, the validation set used 10%,

and the test set used 10%, guaranteeing that the test set is created

using only the original photos and does not include any

enhanced images.
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2.3 CTDA model

YOLO (You Only Look Once) was released in 2015 as a fast,

accurate, and widely applied real-time object detection algorithm.

The basic idea is to treat the target detection task as a regression
Frontiers in Plant Science 04
problem and make predictions in an end-to-end manner. YOLOv8,

the latest real-time object detector released in early 2023 as part of

the YOLO series, establishes new technical standards for instance

segmentation and object detection “https://github.com/ultralytics/

ultralytics”. Figure 3 illustrates the architectural model of YOLOv8,
FIGURE 1

Images of cherry tomatoes captured in a complex greenhouse environment under various conditions: (a) natural lighting, (b) intense lighting, (c) dim
lighting, (d) shaded areas, (e) overlapping clusters, and (f) small targets positioned at a relatively greater distance.
FIGURE 2

The original data is expanded using several techniques for data augmentation: (a) original data, (b) brightness, (c) translation, (d) noise, (e) horizontal
flipping, (f) HSV, (g) scaling, (h) blurring, and their random combinations.
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which includes a backbone network, neck, and detection head.

Compared to previous generations, the backbone employs

CBSDarknet53 for four times subsampling to extract features,

utilizing SPPF for multi-scale feature extraction, which improves

the model’s ability to identify targets of varying sizes by capturing

object and scene information at multiple scales. The neck uses FPN-

PANet to merge and aggregate feature maps from different levels for

a more global and semantically rich feature representation. The

head section uses a decoupled head that separates classification and

regression tasks, which effectively reduces the number of model

parameters and computational complexity, improving model

generalization and robustness.

CBSDarknet53 experiences feature information loss, particularly

with clustering, occlusion, and distant small targets, which reduces

the model’s detection accuracy. SPPF, which builds residual networks

through maxpool at different levels, increases the risk of feature

information loss during downsampling, thereby raising the likelihood

of missing detections of partially occluded cherry tomatoes.

Decoupled head, focusing on separating the classification and

localization tasks, tends to overlook the relationships between
Frontiers in Plant Science 05
targets and local context information, potentially causing false or

missed detections in scenarios with dense targets or occlusions. This

article improves the structure of the YOLO8 network model and

introduces a new networkmodel to address these issues. Firstly, a new

downsampling method, LAWDS, incorporates adaptive weights and

receptive field spatial features to preserve important features better

and enhance feature representation; it maintains spatial information

continuity and avoids disrupting spatial relationships between

adjacent pixels. Secondly, softpool replaces maxpool in SPPF; while

maxpool activates features by selecting the maximum value, which is

simple and efficient, it may lose important information. Softpool uses

a weighted sum of softmax activations within the kernel area to

optimize activation downsampling, preserving more background

information and feature details, thus enhancing feature

representation. Finally, the study introduces a dynamic head with

attention mechanisms, using a unified attention mechanism for scale

perception, spatial awareness, and task awareness within a single

structure to enhance object detection performance, effectively

improving the representational capability of the detection head.

The model structure is shown in Figure 4.
FIGURE 3

YOLOv8 model architecture diagram.
TABLE 1 Differences between the offline enhanced dataset and the original dataset.

Category Parameter Training Validation Test Total

Original dataset

Number of images 2000 250 250 2500

Instances

Immature 7261 1052 974

mature 6790 956 851

All 14051 2008 1825 17884

Augmented dataset

Number of images 2400 300 300 3000

Instances

Immature 8834 1321 1241

mature 8286 1196 1142

All 17120 2517 2383 22020
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2.3.1 LAWDarknet53
In natural harvesting conditions, cherry tomatoes to be

harvested by robots may be at a distance, presenting fewer

features in images, it makes it particularly important to improve

the model’s ability to detect small, distant targets. Additionally, real-

world production involves issues such as bright or dim lighting,

necessitating improvements in the model’s adaptability to different

lighting conditions to ensure detection accuracy. In the entire

detection network model, the backbone network is a crucial
Frontiers in Plant Science 06
component for feature extraction; its performance directly affects

the model’s ability to detect and locate targets. Therefore, improving

the feature extraction capability of the backbone network is

necessary to adapt to the diversity of cherry tomatoes at different

distances, sizes, and lighting conditions.

In this application context, CBSDarknet53 exhibits certain

limitations; it uses the CBS module for feature extraction and

fixed convolution for downsampling, where convolution

operations depend on common parameters and are insensitive to
FIGURE 4

CTDA model structure diagram.
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changes in position that cause variations in information. Different

lighting conditions alter the features of cherry tomato images, and

the CBS module fails to effectively adjust its feature extraction

strategy, leading to the loss of crucial features. Furthermore, fixed

convolution sampling can miss some small target features, and the

convolution operations might disrupt spatial relationships between

adjacent pixels, resulting in discontinuities in spatial information.

To address these issues, the research introduces a new

downsampling method called light adaptive weight downsampling

(LAWDS). LAWDS incorporates adaptive weights and receptive

field spatial features, better preserving essential features and

enhancing the representation of features for distant small targets.

The formula for its calculation is as shown in Equation 1:

xoutput =o
4

i=1
(Conv(x)i � Softmax(AvgPool2d(x) � Conv(x))i) (1)

Where xoutput is the output of the module, Conv(x)i represents

the ith feature map obtained through the downsampling

convolution operation, and Softmax(AvgPool2d(x) � Conv(x))i
represents the ith attention map channel processed by the

softmax function.

The LAWDS module initially employs average pooling

operations to extract local features and gather global information.

It then utilizes 1 × 1 convolution for inter-channel information

exchange and feature transformation to further enhance the feature

map’s expressive capacity. To improve the model’s focus on crucial

features, a softmax function normalizes the attention map.

Additionally, small targets, which typically have smaller sizes and

lower pixel densities, can lose detailed information in traditional

convolution operations. Compared to the Focus module in

YOLOv5 (Zhao et al., 2022), grouped convolution in LAWDS
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offers similar effects but is more computationally efficient. This

method splits the input feature map into several groups and

performs independent convolution operations on each group,

enabling quick and efficient extraction of receptive field spatial

features, enhancing the perception of small targets, and reducing

computational complexity. Finally, the LAWDS module

implements weighted fusion and spatial weighting of features,

thereby further improving the model’s focus on key features and

increasing its performance and robustness. The structure of this

module is shown in Figure 5.

2.3.2 SPPFS
SPPF uses multiple pooling kernels to separate the most

prominent feature information, and achieve optimal detection

results by merging local and global features at the feature map

level. However, in natural harvesting conditions, with fruits of

different maturities varying in size and overlapping each other,

the maxpool operation in SPPF leads to the loss of target feature

information under dense occlusion, increasing the likelihood of

missed detections of partially occluded cherry tomatoes. Therefore,

the study proposes replacing the original SPPF network with the

SPPFS network, as shown in Figure 6. This network uses softpool

instead of maxpool, preserving more background information and

feature details, enabling more efficient feature utilization and richer

multi-scale feature fusion, reducing the limitations of maxpool in

complex scenes, and better recognizing and differentiating tightly

packed or partially occluded fruits, thereby enhancing overall

detection performance (Stergiou et al., 2021). Furthermore,

softpool, by more finely processing the activation maps, better

captures and preserves subtle feature changes caused by these

environmental variations. It strengthens the model’s resilience to
FIGURE 5

LAWDS structure diagram.
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environmental changes and increases the model’s accuracy in

identifying cherry tomatoes, ensuring its stability and reliability in

practical application scenarios.

In maxpool, discarding most activations carries the risk of losing

important information. Conversely, in avgpool, the equal

contribution of activations can significantly reduce the overall

intensity of area features. Compared to maxpool and avgpool,

softpool adopts an activation method within the kernel that uses

softmax exponential weighting. This approach is designed to

maintain the functionality of the pooling layer while minimizing

information loss during the pooling process, as illustrated in Figure 7.

Softpool uses the maximum approximation of the activation

region R. Each activation that has an index is given a weight that is

calculated as the ratio of the natural index of that activation to the

sum of the natural indices of all activations in the neighborhood R.

The weight calculation formula is shown in Equation 2:

wi =
eai

oj∈Re
aj (2)

A nonlinear transformation uses the weights and the

corresponding activation values. Larger activations are more

common than smaller ones. Selecting the maximum value, which

is the result of a standard summation of all weighted activations in

the kernel neighborhood R, is not a balanced approach because

most pooling operations are performed in high-dimensional feature

spaces. Rather, it is better to highlight activations with greater effect.

Its calculation formula is shown in Equation 3:
Frontiers in Plant Science 08
~a = o
i∈R

wi*ai (3)
2.3.3 Dynamic head
YOLOv8 employs a decoupled head as its detection head,

enabling the model to independently handle object classification

and localization tasks. This design aims to increase processing speed

and reduce interference between tasks, while simultaneously

maintaining high efficiency and enhancing detection accuracy

(Xiao et al., 2024). In the context of cherry tomato detection,

where the fruits vary in size and density and may be clustered or

partially obscured due to their growth characteristics, the decoupled

head tends to overlook the relationships between targets and local

context information in tasks involving multiple targets. This

oversight can impact the detection effectiveness of cherry

tomatoes in dense scenes.

Therefore, this study improves the head part of the original

network with dynamic head, which introduces a scale-aware

attention mechanism that more effectively captures target

features, enabling precise detection of cherry tomatoes of varying

scales, shapes, and densities (Dai et al., 2021). Especially in complex

backgrounds with dense and highly overlapping targets, this

mechanism aids in the model’s focus on key information,

reducing the interference from background noise. The use of

spatial awareness attention enhances the model’s comprehension

of the spatial position of target objects, reducing errors in bounding

box localization. Unlike the decoupled head, the dynamic head

introduces a task-aware attention mechanism that dynamically

adjusts its internal structure, including feature extraction and

decision layers, based on the features of the input image. This

dynamism allows the model to more flexibly handle various

detection scenarios, enhancing the model’s generalization

capability and accuracy.

The scale-aware attention module, which fuses features of

different scales based on their semantic importance, is calculated

as shown in Equations 4, 5:

pL(F ) � F = s f
1

S� CoS,C
F

 ! !
� F ,   S = H �W (4)
FIGURE 7

Schematic diagram of three pooling activation methods: (a)
maxpool, (b) avgpool, (c) softpool.
FIGURE 6

Using softpool to replace maxpool to build SPPFS: (a) SPPF structure diagram, (b) SPPFS structure diagram.
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(x) = max 0,min 1,
x + 1
2

� �� �
(5)

where s (x) is a hard sigmoid function, f ( · ) is a linear function

approximated by 1 × 1 convolutional layers, and H, W, and C

signify the height, width, and number of channels in the

intermediate hierarchy, respectively. The feature tensor is

represented by F .

The spatially-aware attention module focuses on the

discriminative power of different spatial locations; given the high

latitude of S, the module needs to be decoupled in two steps: first

learning sparsification using variability convolution (Dai et al.,

2017), and then aggregating features across levels at the same

spatial location. Its calculation formula is shown in Equation 6:

pS(F ) � F =
1
Lo

L

l=1
o
K

k=1

wl,k � F (l; pk + Dpk; c) � Dmk (6)

Where L is the number of layers of the scaled feature pyramid, k

is the number of sparsely sampled locations, pk + Dpk is the location
shifted by the self-learned spatial offset Dpk to focus on a

discriminative region. Dmk is the self-learned importance scalar at

location pk, both learned from the mid-level input feature F .

The task-aware attention module facilitates collaborative

learning and helps generalize different object representations, and

it selects different tasks by dynamically turning feature channels on

and off. Its calculation formula is shown in Equation 7:

pC(F ) � F = max(a1(F ) � F c + b1(F ),a2(F ) � F c + b2(F )) (7)

where ½a1,a2, b1, b2�T = q( · ) is a hyperfunction that learns to

adjust the activation thresholds, and F c is the feature slice of the cth

channel. q( · ) is used in a manner similar to dynamic relu (Chen

et al., 2020). To reduce dimensionality, it first performs global mean

pooling on the L� S dimension. Then it uses two fully connected

layers and a normalization layer, and finally it applies a shifted

sigmoid function to normalize the output.

Dynamic head achieves the unification and synergistic effect of

three types of attention mechanisms by sequentially applying scale-

aware, spatial-aware, and task-aware attention modules. Additionally,
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YOLOv8 employs an anchor-free method, complicating the

construction of specific task branches by attaching center or

keypoint predictions to the classification or regression branches. In

contrast, dynamic head simplifies the model structure and enables

dynamic adjustments by merely attaching various types of

predictions to the end of the head, as depicted in Figure 8.
2.4 Experimental environment and model
evaluation indicators

All experiments in this study were conducted on a server

equipped with an NVIDIA GeForce RTX 4090 GPU and an Intel

(R) Xeon(R) Platinum 8375C CPU. The operating system was

Ubuntu 20.04, and the experiments utilized CUDA version 11.8,

python 3.8, and pytorch 2.0.0. The key hyperparameters used

during the training process are outlined in Table 2. To verify the

feasibility and effectiveness of the proposed improvements,

experiments were carried out on the model. It is crucial to

mention that these experiments were conducted using a baseline

model, concentrating exclusively on validating the enhanced

structure without incorporating pretrained weights.

The study evaluates the model performance of CTDA using

precision (P), recall (R), mean average precision (mAP), F1 score,

and GFLOPs. In object detection tasks, predictions are classified as

positive samples when their intersection with the ground truth

labels exceeds a certain threshold. Otherwise, they are identified as

negative samples. The formulas for calculating precision and recall

are shown in Equations 8, 9:

P =
TP

TP + FP
� 100% (8)

R =
TP

TP + FN
� 100% (9)

The mean Average Precision (mAP) represents the mean of the

Average Precision (AP) values across multiple categories, and the

AP formula is shown in Equation 10:
FIGURE 8

Schematic diagram of the decoupled head and dynamic head structures.
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AP =
Z 1

0
p(r)dr (10)

mAP@0.5:0.95 refers to the average of the average precision

calculated using different IoU thresholds between 0.5 and 0.95 in

object detection.

The F1 score is a reconciled average of precision and recall, which is

used to comprehensively evaluate the model performance, ranging

from 0 to 1, with higher values indicating better performance. Its

calculation formula is shown in Equation 11:

F1 = 2 � Precision � Recall
Precision + Recall

(11)

GFLOP refers to one billion floating point operations per

second, which is used to evaluate the computational performance

of the model.
3 Experimental results

3.1 The impact of augmented data
on CTDA

Experiments were performed on three datasets to examine the

effects of data augmentation techniques on CTDA performance: the
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original dataset, an offline-augmented dataset, and a dataset

utilizing both offline and online augmentation. With the

exception of the training dataset, the experimental conditions

remained unchanged. The results presented in Table 3 show that

the offline augmented dataset increased precision by 0.7%, recall by

1.3%, and an average precision increase of 1.1% over the original

dataset. The combined offline and online augmentation strategy

further improved precision to 92.2%, recall to 86.7%, and mAP to

92.4%, indicating enhancements across all metrics. Thus, the data

augmentation strategy combining offline and online approaches

effectively improved the detection performance of CTDA.
3.2 Comparison between different
enhancement mechanisms of CTDA

To improve the model’s ability to detect cherry tomatoes in

occluded environments, softpool was used to replace maxpool in the

SPPF, enhancing the detection of occluded sections. The effectiveness

of softpool was assessed by applying maxpool, avgpool, and softpool

treatments to the upper input feature maps of SPPF. As observed in

Figure 9, maxpool led to the loss of critical features, which is

particularly problematic for cherry tomatoes that inherently have

fewer features, resulting in missed detections. While avgpool

maintained important features, it reduced the intensity of the

overall feature area, weakening of the model’s feature recognition

ability. In comparison, softpool has significantly optimized this

processing procedure, not only effectively preserving key features

but also ensuring the overall intensity of the feature areas, which

significantly increases the expressiveness of the features, and

improves the model’s performance in the cherry tomato

detection task.

To improve the model’s detection ability for densely packed and

highly overlapping cherry tomatoes in complex backgrounds, a

dynamic head equipped with an attention mechanism was used to

improve the head part of the original network. Both decoupled head

and dynamic head were tested in dense cherry tomato scenes.
TABLE 2 CTDA model training key hyperparameters.

Parameters Values

Image Size 640×640

Epoch 200

Batch 16

Optimizer SGD

Initial learning rate 0.01

Momentum 0.937

Weight decay 0.0005
TABLE 3 Data augmentation ablation experiment results.

original Offline Enhancement Online Enhancement P(%) R(%) mAP(%) mAP@0.5:0.95(%)

✓ × × 91.9 85.2 90.9 69.5

✓ ✓ × 92.6 86.5 92.0 69.9

✓ ✓ ✓ 92.2 86.7 92.4 70.5
TABLE 4 Model improvement ablation experiment results.

Model Baseline LAWDarknet53 SPPFS Dyhead P R mAP@0.5 mAP@0.5:0.95 Size/M FPS

A ✓ × × × 92.2 86.7 92.4 70.5 6.0 155.8

B ✓ ✓ × × 92.8 88.3 93.5 74.9 5.4 154.9

C ✓ ✓ ✓ × 93.7 90.2 94.6 75.9 6.2 156.3

CTDA ✓ ✓ ✓ ✓ 94.3 91.5 95.3 76.5 6.7 154.1
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Figure 10 shows the heatmap generated using Grad-CAM,

highlighting that CTDA primarily focuses on leaves and cherry

tomatoes, with the background impacting detection. The study

emphasizes distinguishing between foreground and background

to focus solely on cherry tomatoes in the foreground. The

heatmap indicates various detection heads’ differing attentiveness

to dense cherry tomatoes. Dynamic head precisely targets these

areas, reducing background interference. Experimental results show

that CTDA based on dynamic head more effectively distinguishes

and focuses on cherry tomatoes in dense areas, significantly

improving foreground-background differentiation.
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3.3 Ablation experiment

To further test the validity of the proposed strategies for

improvement, this study incrementally tested the performance

enhancements of the model. The testing process and results of the

ablation experiment are shown in Table 4. Ablation testing showed

that the B model, featuring the LAWDarknet53 structure, slightly

exceeded baseline precision and recall, reducing the detection model

size from 6.0 M to 5.4 M. Building on the B model, the C model

incorporated the SPPFS network, significantly improving precision,

recall, mAP@0.5, and mAP@0.5:0.95, with a slight increase in
FIGURE 9

Visualization results of feature maps processed using different pooling mechanisms: (a) original image, (b) input feature map, (c) maxpool result,
(d) avgpool result, (e) softpool result.
FIGURE 10

Visualization of different detection heads: (a) original image, (b) decoupled head detection effect, (c) dynamic head detection effect.
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parameters. Integrating the dynamic head module into the CTDA

model, which builds on the C model, resulted in a slight reduction in

detection speed but notably enhanced precision, mAP, and mAP@

0.5:0.95. Compared to the baseline model (A), the proposed CTDA

model increased precision, recall, mAP@0.5, and mAP@0.5:0.95 by

2.1%, 5.2%, 2.9%, and 6.0%, respectively, achieving values of 94.3%,

91.5%, 95.3%, and 76.5%. Furthermore, the model size and FPS, at

6.7M and 154.1 respectively, only decreased by 1.1%, confirming that

the model sustains high efficiency and real-time performance while

notably improving accuracy. The results underscored the effectiveness

of the improvement strategies, particularly in improving detection

accuracy, where the LAWDS structure, SPPS component, and

dynamic head module had significant impacts on computational

parameters, recall, and precision, respectively.
3.4 CTDA network model training
and testing

The study conducted training of the CTDA model for 200

epochs on the enhanced dataset, with results depicted in Figure 11.
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YOLOv8’s loss computation includes classification loss (VFL) and

regression loss (CIoU loss plus Distribution Focal Loss (DFL)), all

weighted according to specific ratios. The formulas for these

calculations are shown in Equations 12–15:

VFL(p, q) =
−q(q(log(p) + (1 − q)log(1 − p)) q > 0

−apg log(1 − p) q = 0

(
(12)

LCIoU = 1 − IoU +
r2(b, bgt)

c2
+ av (13)

DFL(Si, Si+1) = −((yi+1 − y)log(Si) + (y − yi)log(Si+1)) (14)

Si =
yi+1 − y
yy+1 − yi

,   Si+1 =
y − yi

yy+1 − yi
(15)

where q stands for the label; IoU for the intersection over union;

b and bgt for the center points of the two rectangular boxes; p for the

Euclidean distance between them; c for the diagonal distance of the

enclosed region of the boxes; v for the consistency of their relative

proportions; a for the weighting coefficient; y for the total

distribution value; and i for the number of entries.
FIGURE 11

Training results for the CTDA model: (a) variations in loss during training, (b) comparison of average precision curves between CTDA and YOLOv8
during training at IoU thresholds of 0.5 and 0.5:0.95, (c) P-R curve, (d) confusion matrix.
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Figure 11 displays the loss function curve, mAP curve, P-R curve,

and confusion matrix of the CTDAmodel. According to Figure 11a, as

training epochs rise, all three loss values progressively drop until

stabilizing. Figure 11b shows significant improvements in mAP

values for the CTDA model compared to the original YOLOv8 at

IoU thresholds of 0.5 and 0.5:0.95. Figure 11c shows the precision-

recall curves for Mature, Immature, and all categories during the

training process. The Figure indicates that the area under the

precision-recall curve for Mature is larger than that for Immature,

indicating that the model performs better in identifying mature cherry

tomatoes. This is because immature cherry tomatoes have a color

similar to the plant, which interferes with their detection, whereas

mature fruits have a clear contrast with the background environment,

making them easier to accurately identify.

Figure 11d presents the confusion matrix for the CTDA model,

with the vertical axis indicating the predicted labels and the

horizontal axis displaying the actual labels. The color of each item

represents the likelihood of that entry. Every category’s likelihood of

being correctly classified is represented by the values along the

major diagonal. It can be observed that both mature and immature

cherry tomatoes have a classification probability of 92%. Values

deviating from the main diagonal indicate model misclassifications.

For this experimental result, the frequency of misclassifications is

relatively low. Misclassifications mainly occur when the background

is recognized as mature (44%) or immature (56%) cherry tomatoes.
3.5 Performance Test of CTDA

The CTDA model’s performance under various lighting

conditions, as depicted in Figure 12, includes natural lighting,

intense lighting, dim lighting, and shaded areas. The detection

results clearly show that the CTDA model can precisely identify

mature and immature cherry tomatoes under these complex

lighting conditions, highlighted with red and orange boxes
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respectively. This demonstrates the model’s high adaptability and

robustness to complex lighting variations, essential for cherry

tomato picking robots to efficiently and stably perform in

unstructured natural environments. Additionally, detection

experiments were conducted on cherry tomatoes at near and far

distances under four lighting conditions, where the model typically

captures larger, more detailed images at closer ranges. However, at

greater distances, recognition becomes more challenging due to

smaller target images, increased noise, and less distinct features.

Thus, the proposed model effectively handles different scales of

recognition, maintaining the ability to effectively recognize cherry

tomatoes and accurately assess their maturity at long distances, with

detection accuracy nearly equal to that of close-range detection.

Due to cherry tomatoes growing in clusters and the limited

spatial range of the robot’s visual sensor, there is a high occurrence

of overlapping and small, distant targets during harvesting, which

significantly impacts the model’s detection capabilities. The model

is designed for efficient target detection in constrained operational

spaces, ensuring it can differentiate between cherry tomatoes in the

foreground and background, even when the targets are small or

overlapping. Figure 13 illustrates the CTDA model’s detection

results in scenarios involving multiple overlaps and distant small

targets, demonstrating the model’s ability to precisely detect and

individually identify and locate each cherry tomato in overlapping

situations. Furthermore, under other background disturbances like

reflective mulching, the CTDA model continues to show

outstanding detection performance, effectively distinguishing

cherry tomatoes from complex backgrounds.

To evaluate the CTDA model’s detection capabilities in

complex scenarios, this study developed a multi-scenario dataset,

capturing images in greenhouses under various visual conditions

including strong light, weak light, occlusion, and dense settings. The

performance tests of the model included detecting both mature and

immature cherry tomatoes, as well as determining the overall

detection ability for all cherry tomatoes.
FIGURE 12

Effects of model detection in different illumination conditions: (a) natural lighting, (b) intense lighting, (c) dim lighting, (d) shaded areas.
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The study uses precision, recall, mAP and F1 score to evaluate

the performance in different scenarios. As shown in Table 5, the

model exhibited its best performance in detecting all cherry

tomatoes under low light conditions, achieving the highest

precision of 94.1% and an F1 score of 92.7. In the occlusion
Frontiers in Plant Science 14
scenario, it achieved the highest recall rate of 92.9% and an mAP

of 95.9%. In low-light and obscured conditions, the model

performed better than in circumstances with high and dense

light. Further analysis reveals that the model excels in detecting

mature cherry tomatoes compared to immature ones. The CTDA

model shows good detection ability in scenarios with strong light,

low light, occlusion, and thick surroundings; nevertheless, strong

light and dense circumstances significantly affect its performance.
3.6 Robustness evaluation of CTDA in
various contexts

In the actual cherry tomato picking process, image quality can

be severely impacted by environmental noises such as poor lighting

(either insufficient or excessive) and blurring due to movement,

thereby reducing the performance of target detection algorithms.

To thoroughly evaluate the robustness and adaptability of the

proposed CTDA model under different greenhouse conditions,

four test datasets were created representing normal lighting, dim

lighting, excessive lighting, and blurred images. These datasets,

constructed by adjusting the brightness and adding blur to images

from the normal lighting dataset, maintain consistency in image

count, size, and annotations, with identical categorizations of the

targets within each image. The model’s performance was visually

assessed through visualization of the detection results in these
TABLE 5 Detection results in complex scenarios.

Dataset Classes Instances P
(%)

R
(%)

mAP
(%)

F1
(%)

Strong
light

Immature 244 92.9 93.2 96.4 93.0

mature 210 88.6 86.6 92.8 87.6

Total 454 90.8 89.9 94.6 90.3

Weak light

Immature 271 95.9 87.6 94.8 91.6

mature 224 92.3 95.2 96.4 93.7

Total 495 94.1 91.4 95.6 92.7

Occlusion

Immature 406 87.3 92.2 95.1 89.7

mature 336 94.3 93.6 96.7 93.9

Total 742 90.8 92.9 95.9 91.8

Density

Immature 305 86.5 88.2 91.9 87.3

mature 223 93.5 90.7 95.3 92.1

Total 528 90.0 89.5 93.6 89.7
FIGURE 13

CTDA detection effect in different environments: (a) overlapping clusters, (b) small targets positioned at a relatively greater distance.
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scenarios, as illustrated in Figure 14, using green bounding boxes

for correct detections, blue for incorrect ones, and red for misses.

Despite some errors and omissions, the CTDA model generally

excels in recognizing cherry tomato targets under different

conditions. Because research divides detection targets into mature

and immature categories, misclassification of mature as immature

results in both a missed detection and an incorrect detection,

leading to overlapping bounding boxes in the visual results.

As demonstrated in Figure 14, the CTDA model exhibits

substantial stability and detection capabilities under variable

lighting conditions, retaining high accuracy with minimal errors

and misses under strong lighting, and showing even better

performance in weak lighting. However, the model’s performance

declines in blurred scenarios, with an increased rate of missed

detections and a significant drop in detection accuracy, indicating a
Frontiers in Plant Science 15
need for further enhancement in handling such conditions. The

study observed that camera movement during the robotic picking

process could cause image blurring due to external disturbances.

Consequently, the research will focus on enhancing the model’s

resistance to disturbances in blurred scenarios by augmenting the

dataset with more images from such conditions, aiming to boost the

model’s overall robustness.
3.7 Comparison of CTDA with the latest
detection algorithms

In this study, the CTDA model is evaluated against both

classical and state-of-the-art object detection models to further

validate the effectiveness of the proposed algorithm, as presented
FIGURE 14

Visualization of cherry tomato detection outcomes in various settings: (a) under natural lighting, (b) intense lighting conditions, (c) low-light
environments, and (d) blurred scenes. Green boxes represent accurate detections, blue boxes represent faulty detections, and red boxes indicate
missing detections.
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in Table 6. These comparisons included models like Faster R-CNN

(Ren et al., 2017), RetinaNet (Lin et al., 2017), EfficientDet (Tan

et al., 2020), YOLOv5n, YOLOx-s (Ge et al., 2021), YOLOv7 (Wang

C. Y. et al., 2023), Fasternet (Chen J. et al., 2023), Swin transformer

(Liu et al., 2021) and RT-DETR (Zhao et al., 2023), encompassing

high-precision, lightweight models, and representative detection

algorithms. CTDA achieved the highest mAP of 95.3%, surpassing

newly released models like YOLOv7 and Swin transformer by

significantly reducing parameter counts by 91.1% and 88.1%

respectively and increasing mAP by 3.4% and 4.9%. When

compared to lightweight models like EfficientDet and YOLOv5n,

CTDA showed a slight increase in parameters but far superior

accuracy, outperforming them by 23.5% and 4.4% in mAP,

respectively. Additionally, against models known for their fast

detection speed, like Fasternet, CTDA not only improved mAP

by 5.1% but also managed to reduce parameter count and increase

FPS by 5.9% to 154.1, striking a good balance between speed and

accuracy. This demonstrates CTDA ’s exceptional overall

performance, particularly in real-time capabilities, parameter

efficiency, and accuracy, making it well-suited for deployment on

edge devices with limited computing resources, thereby supporting

efficient, precise, and real-time detection tasks.
4 Discussion

In unstructured environments, varying lighting conditions,

complex backgrounds, and fruit overlap and occlusion pose

challenges to the visual detection of picking robots. This study

focuses on developing a detection algorithm tailored for use in

picking robots. However, during the operation of the picking robot,

there will be cherry tomato picking targets at a distance, which have

fewer feature information in the image, making it difficult for cherry

tomatoes to be effectively detected. Therefore, in response to these

issues, the research proposes a precise, lightweight, and real-time

efficient cherry tomato detection algorithm. By using LAWDS to

reconstruct the backbone network, capturing more detailed features
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improves detection accuracy, making the model more effectively

retain small target features. Secondly, the model introduces the

SPPFS network, achieving more efficient feature utilization and

richer multi-scale feature fusion, better identifying and

distinguishing closely arranged or partially occluded fruits. The

model applies the dynamic head detection head to more effectively

capture target features, achieving accurate detection of cherry

tomatoes of different scales, shapes, and densities. Additionally,

the CTDA has significantly improved in accuracy, computational

complexity, and detection speed while ensuring the model size,

making it more suitable for deployment on resource-limited

edge devices.

In model testing, an offline and online combined data

augmentation strategy was utilized to selectively expand the

original dataset, enhancing the model’s generalization capabilities.

The study tested cherry tomato scenes under various lighting

conditions, demonstrating the model’s adaptability to changes in

lighting and its ability to accurately detect cherry tomatoes in

scenarios involving overlap and distant small targets, effectively

identifying each fruit even in overlapping states. The CTDA model

also excelled in other background disturbances such as reflective

mulching, effectively distinguishing foreground cherry tomatoes

from complex backgrounds. A quantitative analysis showed

minimal errors and missed detections under strong lighting, with

better performance under weak lighting. However, blurred

scenarios increased missed detections, significantly impacting

accuracy, indicating room for improvement in the model’s

handling of blurred images. External disturbances can cause

image blurring during robotic harvesting in greenhouses,

negatively impacting detection. Future work will explore

optimizing the model to resist dynamic image blurring, possibly

through attention mechanisms tailored for blurred target detection

or image preprocessing techniques. Additionally, the current

dataset primarily includes images of ripe and unripe cherry

tomatoes, which limits the model’s comprehensive understanding

of all growth stages. To improve the model’s detection capabilities

and develop a more accurate automated picking system, the
TABLE 6 Comparative experiment of CTDA with other advanced models.

Model P R mAP@0.5 mAP@0.5:0.95 GFLOPs FPS

Faster R-CNN 78.8 80.7 84.1 58.5 369.7 22.6

RetinaNet 86.8 85.3 88.9 59.4 145.7 41.5

EfficientDet 78.7 67.1 71.8 48.9 4.7 23.8

YOLOv5n 92.8 84.1 90.9 69.4 7.1 144.6

YOLOx-s 93.3 86.4 88.7 68.4 26.76 81.2

YOLOv7 93.1 84.3 91.9 68.1 105.1 80.2

Fasternet 93.0 83.9 90.2 67.8 10.7 145.5

Swin transformer 92.6 83.2 90.4 67.7 79.1 46.6

RT-DETR 92.1 86.5 91.6 72.1 56.9 50.8

CTDA 94.3 91.5 95.3 76.5 9.4 154.1
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research will collect more data on cherry tomatoes of varying

ripeness and growth stages. By analyzing the impact of different

growth stages on model performance, more effective picking

strategies can be devised, enhancing efficiency and reducing fruit

loss due to incorrect picking.

In conclusion, while the CTDA model has its limitations, it has

significantly contributed to improving cherry tomato detection

technologies in greenhouse settings, providing essential technical

support for the advancement of agricultural automation and

intelligent development of harvesting robots. With continuous

enhancements, this model is poised for wider future applications.

Additionally, due to its adjustability and adaptability to various

object features, the CTDA model’s framework and methodology

could be adapted for other agricultural settings, particularly for fruit

harvesting in complex environments, offering substantial technical

support for robotic harvesting in unstructured settings. Further

studies will also test the model across different crops and growing

conditions to assess its utility and performance in a broader range of

agricultural applications.
5 Conclusions

To enhance the detection capabilities for cherry tomatoes in

complex environments, the study developed the CTDA model

based on YOLOv8, tailored for unstructured settings. This model

introduces a new downsampling method, LAWDS, to construct the

LAWDarknet53 network, enhancing feature extraction capabilities.

It also includes the SPPS network to improve feature fusion,

addressing uneven detection issues in tomato occlusion scenarios.

Additionally, the dynamic head with an attention mechanism was

integrated to boost detection performance by harmonizing scale-

aware, space-aware, and task-aware attention mechanisms within a

single structure. The improved CTDA model achieved a 95.3%

mAP, a 2.9% increase over the original, with significant

improvements in recall and precision rates to 91.5% and 94.3%,

respectively. To evaluate the effectiveness of the CTDA model in

complex situations, datasets were generated that included strong,

weak, occlusion, and density condition. The results showed

accuracies of 94.8% and 95.1% in strong and weak illumination,

respectively. The CTDA model demonstrates good stability under

varying lighting conditions, but the miss rate increases in blurry

scenes, affecting detection accuracy. The CTDA model was also

compared with the latest detection networks, showing excellent

performance in mAP, parameter count, and speed. Weighing 6.7M

with a 95.3% mAP and 154.1 FPS, it meets the real-time detection

requirements for cherry tomatoes in unstructured environments.

Future research will integrate the CTDA model into cherry tomato

harvesting robots to facilitate automated picking in greenhouses.

Given mechanical vibrations can blur images during picking,

reducing detection efficacy, ongoing research will aim to boost the

model’s interference resistance, enhancing performance in

disturbed environments and ensuring reliable visual support for

cherry tomato harvesting robots.
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