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Plant stem and leaf
segmentation and phenotypic
parameter extraction using
neural radiance fields and
lightweight point cloud
segmentation networks
Gaofei Qiao, Zhibin Zhang*, Bin Niu, Sijia Han and Enhui Yang

Key Laboratory of Wireless Networks and Mobile Computing, School of Computer Science, Inner
Mongolia University, Hohhot, China
High-quality 3D reconstruction and accurate 3D organ segmentation of plants

are crucial prerequisites for automatically extracting phenotypic traits. In this

study, we first extract a dense point cloud from implicit representations, which

derives from reconstructing the maize plants in 3D by using the Nerfacto neural

radiance field model. Second, we propose a lightweight point cloud

segmentation network (PointSegNet) specifically for stem and leaf

segmentation. This network includes a Global-Local Set Abstraction (GLSA)

module to integrate local and global features and an Edge-Aware Feature

Propagation (EAFP) module to enhance edge-awareness. Experimental results

show that our PointSegNet achieves impressive performance compared to five

other state-of-the-art deep learning networks, reaching 93.73%, 97.25%, 96.21%,

and 96.73% in terms of mean Intersection over Union (mIoU), precision, recall,

and F1-score, respectively. Even when dealing with tomato and soybean plants,

with complex structures, our PointSegNet also achieves the best metrics.

Meanwhile, based on the principal component analysis (PCA), we further

optimize the method to obtain the parameters such as leaf length and leaf

width by using PCA principal vectors. Finally, the maize stem thickness, stem

height, leaf length, and leaf width obtained from our measurements are

compared with the manual test results, yielding R2 values of 0.99, 0.84, 0.94,

and 0.87, respectively. These results indicate that our method has high accuracy

and reliability for phenotypic parameter extraction. This study throughout the

entire process from 3D reconstruction of maize plants to point cloud

segmentation and phenotypic parameter extraction, provides a reliable and

objective method for acquiring plant phenotypic parameters and will boost

plant phenotypic development in smart agriculture.
KEYWORDS

three-dimensional point cloud, plant phenotype, neural radiance fields, point cloud
segmentation, lightweight network
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1 Introduction

Plant phenotyping involves the systematic measurement and

evaluation of various observable characteristics exhibited of plants

during their growth and development. Corn, as a globally important

grain crop, serves as a major food source for humans and livestock and

plays a crucial role in industrial and biofuel production. In the process

of breeding high-yield, disease-resistant, and high-quality corn

varieties, the measurement and analysis of plant traits are essential

(Wu et al., 2024). Traditional methods for extracting stem and leaf

phenotypic traits primarily rely onmanual operations, resulting in high

labor costs, low efficiency, and potential sample damage (Tardieu et al.,

2017). Additionally, manual operations have limited applicability, and

cannot meet the demands of large-scale and diverse researches due to

being prone to errors. In recent years, computer vision technology has

made significant advances in plant phenotyping. These technologies

provide automated and precise methods for data acquisition and

analysis, significantly improving the efficiency and quality of plant

phenotypic data collection (Rawat et al., 2022).

In previous research, 2D image-based segmentation and

detection techniques have been extensively developed. Due to the

relatively simple acquisition and processing of 2D images, they are

suitable for large-scale data collection and high-throughput analysis

and have thus been widely applied in many plant phenotyping

studies (Li et al., 2020). For instance, (Zhang et al., 2024) proposed

the DSBEAN framework, which combines soybean breeding

technology with deep learning algorithms to predict pod counts

through primary node detection and pod area identification. (Shi

et al., 2022) developed a high-throughput pipeline for maize ear

phenotyping, capable of extracting the number of kernels, the

number of rows, and the number of kernels per row from images.

(Xu et al., 2023) proposed a deep learning-based semantic

segmentation model, GlandSegNet, for extracting cotton pigment

gland areas. (Du et al., 2020) introduced a convolutional neural

network (CNN)-based approach for object detection, semantic

segmentation, and phenotypic analysis to extract the geometric

and color traits of lettuce varieties. However, 2D image technology

is limited by perspective constraints and the lack of depth

information, leading to measurement errors, occlusion, and

overlapping issues, making it difficult to accurately reflect the

three-dimensional structure of plants (Qiao et al., 2023),

especially the actual morphology, and characteristics of organs

such as corn stems and leaves.

In 3D reconstruction, sensors are crucial for obtaining high-

quality three-dimensional data. Various sensors, including

monocular cameras, RGB-D cameras, LiDAR, and laser scanners,

offer diverse functionalities and advantages to address different

needs (Yu et al., 2024). Alongside active reconstruction methods,

passive methods use RGB cameras to capture images and extract

depth information, such as multiple view stereo algorithm (MVS)

(Furukawa and Ponce, 2009) and structure from motion algorithm

(SFM) (Moulon et al., 2013). Recent advancements in deep learning

have led to the widespread application of neural networks in 3D

reconstruction. MVSNet (Yao et al., 2018) enhances reconstruction

accuracy by converting traditional MVS problems into deep
Frontiers in Plant Science 02
learning tasks through an end-to-end network that generates

depth maps from multi-view images. NeRF (Neural Radiance

Fields) (Mildenhall et al., 2021) introduces a novel approach by

using a fully connected neural network to learn implicit scene

representations from multi-view images, achieving high-fidelity

view synthesis and 3D reconstruction. (Thapa et al., 2018)

employed a LiDAR-based sensing system to reconstruct the leaf

surfaces of corn and sorghum, obtaining features such as leaf area

and leaf inclination. (Hu et al., 2018) used the Kinect v2 structured

light camera to measure key growth parameters of lettuce. (Wu

et al., 2022) applied MVS algorithms to extract wheat point clouds

and calculate parameters like leaf count, plant height, and leaf

length. (Huang et al., 2024) proposed a neural distance field-based

method to extract geometric parameters of walnut shells from

multi-view image sequences.

Accurate phenotypic measurement requires high-quality 3D

reconstruction and fast, reliable 3D segmentation methods to

achieve automated extraction. Traditional point cloud

segmentation methods are straightforward to implement, require

minimal computational resources, allow real-time processing, and

offer strong interpretability. For instance, (Miao et al., 2022) utilized

TLS technology to capture point cloud data of bananas and

achieved segmentation of individual banana plants using a

combination of Euclidean clustering and K-means. (Wang et al.,

2020) proposed a dynamic view-based adaptive K-means algorithm

for segmenting and measuring the size of wheat spikes. Although

these traditional methods perform well in specific scenarios, they

typically involve extensive manual operation and complex

parameter settings, which limits their scalability for large-scale

applications. Recently, deep learning methods have been

extensively applied to point cloud processing and analysis. (Yang

et al., 2024b) developed a 3D semantic segmentation network for

corn ears based on MVS technology to detect infected areas. (Luo

et al., 2024) proposed a semantic segmentation model that

combines Mask R-CNN with an improved version of PointNet++

to achieve precise segmentation of grape clusters, flower stems, and

leaves. (Yan et al., 2024) developed a lightweight 3D deep learning

network that accurately extracts the segmentation and phenotypic

traits of corn organs.

Through these advanced methods, the potential of 3D

reconstruction and point cloud segmentation technologies for

agricultural phenotypic analysis has been significantly enhanced.

However, practical applications still face challenges including

irregular terrain, diverse crop types, and varying lighting

conditions. While LiDAR devices offer high precision, they are

expensive and affected by weather conditions; on the other hand,

Kinect devices are cost-effective but have low point cloud resolution

and are influenced by lighting conditions (Yang et al., 2024a).

Compared to expensive equipment such as LiDAR, Nerfacto

(Tancik et al., 2023) achieves high-quality reconstruction using

only images captured by ordinary cameras, significantly reducing

hardware costs. In agricultural scenarios, Nerfacto effectively

addresses occlusion issues between plant leaves. Furthermore, this

method requires only a small number of input images to generate

high-fidelity 3D models, further enhancing data utilization
frontiersin.org
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efficiency. To enhance point cloud segmentation accuracy, previous

research has developed complex feature extraction modules and

deeper network architectures, which inevitably increase model

parameters and computational demands. Due to the scarcity of

high-quality plant point cloud datasets, data augmentation

techniques are necessary to create more diverse training samples.

To address these challenges, we first employed the 3D

reconstruction method, Nerfacto, which generates high-quality

plant models from a limited number of images and adapts to

complex environments. Secondly, we proposed a lightweight

point cloud segmentation model based on PointNet++ (Qi et al.,

2017) that redesigns the encoder and decoder to significantly reduce

computational complexity while maintaining accuracy. Finally, we

refined the methods for calculating leaf length and width to better

accommodate the curvature and complex morphology of leaves.

In summary, the contributions of this paper are as follows:
Fron
1. We applied the 3D reconstruction method Nerfacto to

plant 3D reconstruction and explored methods for

extracting point clouds from implicit neural radiance

fields (NeRF). Leveraging Nerfacto technology, we

developed a 3D point cloud dataset for maize stalks and

leaves, including segmentation and related phenotypic data

for 20 plants.

2. We designed a lightweight plant point cloud segmentation

model with only 1.33 M parameters. We introduced a novel

Global-Local Set Abstraction (GLSA) module to integrate

local and global information and an Edge-Aware Feature

Propagation (EAFP) module to enhance the handling of

deep-edge features. Experimental results show that our

proposed model while maintaining the smallest

parameter count, achieves competitive accuracy

compared to the latest segmentation networks across

multiple datasets (maize, tomato, soybean).

3. We proposed an optimized method for better obtaining

parameters such as leaf length and leaf width by segmenting

the PCA principal vectors. This approach generates curves

that accurately reflect leaf curvature, allowing for a more

precise measurement of leaf length and width. This method

provides robust support for the measurement of plant

phenotypic parameters.
2 Materials and methods

2.1 Overview

The overall workflow is illustrated in Figure 1 and is divided

into four parts: data acquisition, a 3D reconstruction based on

neural radiance fields, a lightweight plant point cloud stem and leaf

segmentation model, and plant phenotypic data measurement.

Firstly, in part (A), a smartphone is used as the image acquisition

device, and it is handheld and slowly moved counterclockwise

around the maize plant to ensure the capture of clear and
tiers in Plant Science 03
complete coverage videos of the entire plant. Several image

frames were extracted from the videos, and COLMAP is used to

compute the poses of the camera to determine its position and

orientation in space. To accelerate the convergence speed of the

neural radiance fields and improve the reconstruction quality, these

images and their associated camera poses and parameters are

converted into Local Light Field Fusion (LLFF) format

(Mildenhall et al., 2019). Secondly, in the part (B), a neural

radiance field (NeRF) is trained by using the transformed data, in

which NeRF can capture rich 3D structural information by

computing depth estimations of the plant surface from each

viewpoint. Repeating these steps generates a dense point cloud so

that the point cloud of entire maize plant is obtained, and then

processed using statistical filtering and farthest point sampling

(FPS). Thirdly, in the part (C), the processed point cloud is fed

into the proposed lightweight stem-leaf point cloud segmentation

model to obtain segmentation results of them. Experiments are also

conducted on the tomato and soybean datasets to further validate

the proposed segmentation model performance across various plant

types. Finally, key four maize phenotypic traits including the stem

height, stem diameter, leaf width, and leaf length are extracted from

the segmented point clouds in the part (D).
2.2 Experimental materials and
data collection

2.2.1 Maize point cloud collection and annotation
We randomly selected 20 maize plants from the experimental

field at Inner Mongolia University and transplanted them indoors

for data acquisition. During the acquisition process, we ensured

adequate lighting and wind-free conditions to minimize the impact

of lighting and wind on data quality. A Xiaomi 14 smartphone was

handheld and moved counterclockwise around the plants to capture

video. The capture time for each maize plant was set to 40-50

seconds, ensuring comprehensive coverage from all angles.

Ultimately, 60 to 80 key image frames were extracted from the

videos. Next, we used COLMAP to process these image frames and

calculate the camera poses, i.e., the position and orientation of the

camera in space. To support subsequent 3D reconstruction and

analysis, we converted the images and their associated camera poses

and parameters into the Local Light Field Fusion (LLFF) format.

We then used Nerfacto for 3D reconstruction to obtain dense point

cloud data (detailed in section 2.3).

To validate the model’s applicability across different datasets

and further expand the dataset, we combined the collected point

cloud data with a publicly available maize dataset (Yang et al.,

2024c), and constructed a new dataset with 448 point cloud

samples. To ensure consistency in format, data quality, and

annotations between the newly collected maize point cloud data

and the publ ic maize datase t , we implemented the

following measures:
1. Color Threshold Segmentation: We used color threshold

segmentation to distinguish between the ground and maize
frontiersin.org
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plants. First, we calculated the histogram of the color values

and then applied Otsu’s method to determine the optimal

threshold for effectively segmenting the non-ground areas

from the ground.

2. Statistical Filtering for Denoising: We used statistical

filtering to remove noise by calculating the distance of

each point within its neighborhood, then removed the noise

points that exceeded this threshold. This method effectively

eliminates isolated points and random noise while

preserving the main structure.

3. FPS Downsampling: We applied the Farthest Point

Sampling (FPS) algorithm to downsample the point

cloud. This algorithm iteratively selects the farthest points

to ensure that the downsampled point cloud is uniformly
tiers in Plant Science 04
distributed while maintaining geometric features. This

approach reduces data volume while retaining the overall

shape and key details of the point cloud of maize plant.

4. Point Cloud Labeling: We used a point cloud labeling tool

to manually label the stem and leaf organs of maize as

ground truth for model training.
2.2.2 Tomato and soybean point cloud dataset
Due to the relatively simple structure of maize plants, we further

evaluated the performance of our proposed point cloud

segmentation model on different plant species using two publicly

available plant point cloud datasets with more complex structures:

Pheno4D (Schunck et al., 2021) and Soybean-MVS (Sun et al.,
FIGURE 1

Overview of the proposed framework. (A) Photographs were taken around a maize plant. The bitmaps of these image frames were computed using
COLMAP and then converted to the Local Light Field Fusion (LLFF) format. (B) The converted data trains the neural radiance field, which generates
dense point clouds. These dense point clouds are then preprocessed. (C) The main stems and leaves of the maize are segmented using
PointSegNet. The segmentation effectiveness of the model is verified using various complex plants. (D) Based on the segmentation results of maize
plants, four phenotypic traits (stem height, stem thickness, leaf width, and leaf length) were extracted to validate further the point cloud
segmentation effect and shape extraction methods.
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2023). The Pheno4D dataset is a sub-millimeter precision plant

point cloud dataset obtained using a laser triangulation scanner. It

includes 77 point cloud samples from seven tomato plants collected

over 20 days, manually labeled into three categories: soil, stem, and

leaves. The Soybean-MVS dataset is a 3D point cloud dataset

covering the entire growth period of soybeans, reconstructed

using multi-view stereo (MVS) technology. It contains 102

samples of five soybean varieties at 13 growth stages, manually

labeled into three categories: leaves, main stem, and branches,

including x, y, z coordinates and r, g, b color values. To ensure

that the network focuses more on the segmentation of plant organs

during training, we preprocessed the point clouds of tomato and

soybean plants. Specifically, we removed the “soil” points from the

tomato plant dataset, and specific color attributes from the soybean

plant dataset. Thus, each point cloud includes x, y, z coordinates

and normal vector information Nx, Ny, Nz, calculated through

normal vector computation.

2.3 3D reconstruction based on Nerfacto

2.3.1 Implicit neural representations
In traditional 3D representation methods, we typically use point

clouds, meshes, or voxels to explicitly define the geometric

information of an object, including its vertices, edges, faces, and

topological relationships. In contrast, implicit representation

methods describe the geometric shape and appearance of a 3D

model through a function that uses coordinates as input. This kind

of approach does not require the explicit definition of geometric

structures but instead predicts surface attributes such as color and

density through an implicit function. Neural Radiance Fields

(NeRF) (Mildenhall et al., 2021) is an application of implicit

neural representation specifically designed for high-quality 3D

scene reconstruction and novel view synthesis. NeRF employs a

multilayer perceptron (MLP) to process the input 3D coordinates

and view directions to predict the color and density of each point, as

illustrated in Figure 2. Specifically, NeRF first casts a ray r(t) = o + td

from a given camera position o = (x0,y0,z0) along the viewing

direction d. Along each ray, a series of sample points are

uniformly sampled or using stratified sampling within a
Frontiers in Plant Science 05
predefined depth range to obtain their coordinates. These

coordinates, along with the view direction, are input into the

MLP, which outputs the color and density for each sampled

point. Finally, the volume rendering techniques integrate these

color and density values along the ray to obtain the color value of

the corresponding pixel in the image, as shown in Equation 1.

During NeRF training, the MLP weights are optimized by

minimizing the photometric loss, defined as the mean squared

error between the rendered image and the actual observed image, to

ensure that the generated images are as consistent as possible with

the real observations.

C(r) =
Z t2

t1
T(t) · s (r(t)) · c(r(t), d) · dt (1)

The transmittance function T(t) represents the probability that

a ray is not occluded by an object at a distance t. In physics, we

assume that the scene is composed of a collection of luminous

particles, with the density field s(x) describing the probability of a

ray encountering particles at position x. The transmittance function

T(t) is described in Equation 2 as follows:

T(t) = exp  −

Z t

t1
s(r(u)) · du

� �
(2)

In the field of agricultural 3D reconstruction, NeRF can capture

plant structures and scene details more accurately than traditional

methods, providing more realistic and detailed reconstruction

results. It is capable of adapting to complex vegetation structures

and various farmland environments. However, the training and

inference processes of NeRF typically require substantial

computational resources and time, which do not fully align with

the practical needs of agricultural production. Moreover, NeRF

generates implicitly represented 3D scenes, which differ from

traditional point cloud or mesh models, leading to challenges in

integrating them with existing agricultural analysis tools.

To address the aforementioned issues, we chose an improved

version of NeRF, the Nerfacto model, as our 3D reconstruction tool.

Nerfacto retains the fine reconstruction capabilities of NeRF while

optimizing computational efficiency and resource utilization,

making it better suited for the practical needs of agricultural
FIGURE 2

NeRF-based 3D representation pipeline.
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applications. Next, we will discuss the structure of the Nerfacto

model in detail and how to extract point cloud data from its implicit

representation to effectively apply it to plant phenotyping tasks.

2.3.2 Network structure of Nerfacto and point-
cloud extraction method

To enhance the efficiency and effectiveness of the sampling

process, as shown in Figure 3, Nerfacto (Tancik et al., 2023)

employs a segmented sampling strategy. This sampler performs

uniform sampling within a fixed distance from the camera and

applies distributed sampling at greater distances. This approach not

only maintains dense sampling for nearby objects but also improves

sampling efficiency for distant objects. Additionally, the sampling

process emphasizes regions of the scene that contribute most to the

final rendering. Unlike NeRF, which uses an MLP model for

predictions, Nerfacto processes the input 3D coordinates and

view directions by combining hash encoding (HA) and spherical

harmonic encoding (SH), and can also predict the scene’s density

(s) and color (r, g, b). Moreover, the appearance embedding vectors

further enhance the model’s adaptability to different viewpoints and

lighting conditions. These improvements make Nerfacto

significantly superior to NeRF and other NeRF-based models in

terms of accuracy, efficiency, and applicability, We thought that this

makes i t bet ter sui ted for pract ica l agr icul tural 3D

reconstruction applications.

For each ray, we have a set of sample points, with each point

having a known depth di. The model, once trained, learns the

density and color information of each sample point in the scene.

Using the volume rendering equation, it calculates the weight wi for

each sample point. Specifically, as derived from Equation 2, the

accumulated transmittance Ti for each sample point represents the

probability that the light has not been obstructed from the start of

the ray to the current point. For the i − th sample point, the

accumulated transmittance is computed as shown in Equations 3,

4, where the transmittance ai of each sample point is derived from

its density si and the sampling interval di. Thereby, from these

calculations, the formula for the weight wi can be determined, as

shown in Equation 5.

Ti =
Yi−1
j=1

(1 − ai) (3)
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ai = 1 − exp ( − si · di) (4)

wi =
Yi−1
j=1

exp ( − si · di) · (1 − exp ( − si · di)) (5)

Finally, the formula for computing the expected depth tsurface is

given as shown in Equation 6.

tsurface =
oN

i=1diwi

oN
i=1wi

(6)

where N is the number of points sampled along the ray.

After obtaining the approximate depth, the next step is to

compute the position of the point on the ray r(t) = o + td within

the world coordinate system, as shown in Equation 7.

p = o + tsurface � d (7)

where p represents the position of the 3D point, o is the spatial

coordinate of the camera, and d is the direction of the ray.

Once the 3D position is determined, the color value at that

location can be directly queried from the trained model. At this

stage, the generated point cloud reflects only a single viewpoint of

the original scene. By repeating these steps for each pixel across

multiple images, and mapping the corresponding coordinates and

color information of each sample point in the scene to the world

coordinate system, a dense point cloud is generated (Hu et al.,

2024). This process can completes the 3D reconstruction of

the plant.
2.4 Lightweight plant point cloud
segmentation network

2.4.1 Network architecture
PointNet++ (Qi et al., 2017) is a deep learning model designed

for processing point cloud data and represents an advancement and

refinement of PointNet. It introduces a hierarchical structure for

handling point cloud data, including sampling layers, feature

extraction layers, and aggregation layers. Each layer is responsible

for processing point cloud information at different levels of

granularity, progressively extracting higher-level features and thus

enhancing the model’s ability to learn and analyze point cloud
FIGURE 3

Structural components within the Nerfacto model.
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features. However, despite the multi-scale processing introduced by

PointNet++, the integration of global information may be

insufficient, leading to a limited understanding of the overall

point cloud structure and impacting the accuracy of analysis and

predictions. Especially, for point clouds with sharp edges or

complex local shape variations, PointNet++ may struggle to

accurately capture and analyze local features, resulting in

decreased segmentation and classification precision in these areas.

To achieve strong generalization and performance, PointNet++

requires a substantial amount of labeled data for training to

enhance model effectiveness and stability.

In recent years, the field of point cloud segmentation has

emerged in many advanced feature extraction modules and model

architectures. However, these complex structures often result in

increased model parameters and computational costs (Guo et al.,

2020), in contrasts with the need for lightweight and practical

solutions for agricultural applications. To address this, we propose a

lightweight plant organ segmentation network called PointSegNet.

As illustrated in Figure 4, it follows a conventional encoderdecoder

framework. Initially, data is processed through a multi-layer

perceptron (MLP) module for preliminary feature extraction,

mapping low-dimensional features to a higher-dimensional space.

In the encoder section, we have redesigned the structure and

introduced the Global-Local Set Abstraction (GLSA) module,

which integrates both local and global information. The encoder,

consisting of four GLSA modules, enhances the network’s ability to

capture point cloud features, extract multi-scale information, and

reduce information loss during compression. Thereby, they

improve the network’s generalization and adaptability. For the
Frontiers in Plant Science 07
decoder section, we have restructured the design and proposed

the Edge-Aware Feature Propagation (EAFP) module, which is used

for edge-preserving sharpening. This module can retains effectively

and recovers detail features from the original resolution, thereby

improving the model’s understanding of semantic information,

especially in terms of the detail and edge preservation. The

network’s final layer employs a segmentation head composed of

two MLP layers to predict semantic labels for each point.

Additionally, inspired by PointNext (Qian et al., 2022), we

incorporate some advanced training strategies, including data

augmentation techniques (such as point re-sampling, jittering,

random scaling, and rotation) and some optimization strategies

(such as loss functions, optimizers, learning rate scheduling, and

hyperparameter tuning). These improvements significantly reduce

the model’s reliance on the quantity of training data and effectively

mitigate overfitting issues, particularly in scenarios with limited

data samples.

2.4.2 GLSA module for capturing local and global
structural information in point clouds

As illustrated in Figure 4, the proposed Global-Local Set

Abstraction (GLSA) module comprises four components: the FPS

downsampling layer, the ResMLP module, the Relative Spatial

Attention (RSA) module, and the Channel Attention Mechanism

with Statistical Enhancement (CAM-SE). Initially, the FPS

downsampling layer performs subsampling of the input point

cloud using the farthest point sampling at a rate of 0.5.

Subsequently, the ResMLP module and the RSA module extract

the local and global features from the downsampled point cloud,
FIGURE 4

The overall architecture of PointSegNet, a U-net style architecture, has a Global-Local Set Abstraction (GLSA) module for downsampling and an
Edge-Aware Feature Propagation (EAFP) module for upsampling. The xN×3 and fN×d in the Edge-Aware Feature Propagation (EAFP) module are jump
connections from the encoder. xN×3 denotes the spatial location information of the point cloud and fN×d denotes the feature information of the
point cloud.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1491170
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qiao et al. 10.3389/fpls.2025.1491170
respectively. Finally, the CAM-SE module is employed to mitigate

the impact of noise and irrelevant information.

In the ResMLP module, as illustrated in Figure 5, the process

begins with a ball query to obtain the k nearest points for each

sampled point, thereby partitioning the point cloud data into

multiple local regions. Subsequently, a two-layer MLP structure,

implemented using 1×1 convolutions, projects the features of each

point into a higher-dimensional space along the channel dimension,
Frontiers in Plant Science 08
which enhances the network’s ability to represent local features.

Residual connections enable the model to capture deeper features

and help mitigate the issue of gradient vanishing.

As shown in Figure 6, the Relative Spatial Attention (RSA)

module differs from standard global attention mechanisms by

leveraging spatial and semantic proximity, and approximates the

entire shape using only the currently downsampled points, which

significantly reduces computational costs. For the input point cloud

data pin and fin, the coordinates of all points are first averaged to

obtain a global mean point P, serving as the global positional

encoding of the point cloud. Concurrently, the features of each

point are averaged to obtain a global feature mean F, providing a

global perspective for understanding point cloud features. Each

point’s coordinates are then subtracted from the global mean P,

yielding deviation vectors representing each point’s position in the

global coordinate system. Similarly, each point’s features are

subtracted from the global feature mean F, yielding deviation

features representing local feature variations relative to the global

context. These deviation vectors P and deviation features F are

concatenated and input into a multi-layer perceptron (MLP). After

passing through a sigmoid function, the attention weights for each

point are obtained. The original point cloud features are multiplied

by these attention weights and processed through an MLP layer

again to yield the final output of the global attention, as shown in

Equations 8 to 10. By computing the global mean point and feature

mean and determining the positional and feature deviations of each

point relative to the global context, this module enhances the

understanding of each point’s global positional relationships and

local feature variations, thereby improving the overall expressive

capability of the point cloud.

P = pin −
1
No

N

i=1
piin (8)

F = fin −
1
No

N

i=1
f iin (9)

fRAS = MLP2(fin · Sigmoid(MLP1(P, F))) (10)

Finally, we use a learnable parameter X to fuse local and global

features to control their contributions during the fusion process.

This allows the model to adjust to maximize the overall effectiveness

of feature representation automatically. Given that each point in the

point cloud data may have varying importance and contribution, we

employ a CAM-SE module to dynamically adjust the significance of

each feature channel using statistical information (mean and

standard deviation) along with learned parameters. Specifically,

for the input point cloud features f, we first calculate the mean

and standard deviation of each channel across the entire point cloud

and concatenate them into a new tensor t. We then apply a

learnable parameter matrix to weight the tensor t, sum the

weighted results along the channel dimension, and process them

through batch normalization followed by a Sigmoid activation

function to obtain the final attention coefficients g. The point

cloud features F are then multiplied by the attention coefficients

g, and a residual connection is added to the features F, resulting in
FIGURE 5

The illustration of Residual Multi-Layer (ResMLP) module.
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an enhanced feature representation through weight adjustments, as

described in Equations 11–14.

ui =
1
No

N

j=1
fij (11)

si =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

j=1
(fij − ui)

2 + Є

s
(12)

gi = Sigmoid(BN(o
N

j=1
(½ui,si� · Wi) (13)

fCAM−SE = g · f + f (14)
2.4.3 EAFP module for edge-aware capability
In point cloud segmentation models such as PointNet++, the

decoder module has played a crucial role in the final segmentation

results. It is responsible for progressively up-sampling the

multiscale features extracted by the encoder, to recover them to

the same resolution as the input point cloud, and finally generating

predictive labels for each point. The design and implementation of

the decoder module directly impact the accuracy and quality of the

segmentation results. The process can be summarized as follows:

firstly, the lower-resolution features are upsampled to higher
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resolutions using nearestneighbor interpolation; next, the

upsampled features are fused with the skip connection features

from the corresponding layers of the encoder; finally, the fused

features undergo nonlinear transformation and processing through

multilayer perceptrons (MLPs) to map the features to the desired

output space (e.g., for classification, segmentation, or

generation tasks).

In traditional decoder module designs, nearest-neighbor

interpolation easily results in unsmooth interpolation outcomes,

and introduce high-frequency noise, so that it makes the network

training process difficult to converge, and disrupts the geometric

consistency of the point cloud. It is the reason that we propose the

Edge-Aware Feature Propagation (EAFP) module. Previous

research has shown that edge-aware methods based on EdgeConv

(Wang et al., 2019) can better extract local geometric structures

through convolution operations. However, when handling deeper

edge features, these methods can lead to increased memory

consumption during training and inference.

As shown in Figure 4, The structure of our proposed Edge-

Aware Feature Propagation (EAFP) module is illustrated as follows:

First, upper-layer features are expanded to the current resolution

through interpolation and then fused with the skip connection

features fN×b from the corresponding encoder layer to retain high-

level semantic information. Next, the features are further processed

by ResMLP to enhance their expressive power and non-linear

characteristics. Subsequently, by incorporating the positional

information xN×3 of the skip connection points, K-Nearest

Neighbors (KNN) is used to retrieve the K = 16 nearest neighbor

features for each point. The original features are then subtracted

from these nearest neighbor features to obtain edge features, which

are smoothed and enhanced using ReLU activation and Mean

operations, improving robustness to outliers (Xiu et al., 2023).

Finally, a layer of MLP maps the processed features to the final

output space. This module leverages the spatial relationships

between points in the point cloud to enhance task-relevant edges

while smoothing irrelevant outliers, thereby better preserving and

processing useful information and reducing the interference of

unrelated elements on the results.

2.4.4 Loss function
During the model training process, we use PolyFocalLoss (Leng

et al., 2022) as the loss function, as shown in Equation 15.

PolyFocalLoss is an advanced loss function that integrates focal

loss with a polynomial weighting mechanism. This combination

effectively addresses the class imbalance in point cloud

segmentation, significantly enhancing the model’s ability to learn

from challenging samples and improving segmentation accuracy.

LPloy = LFL + Є · (1 − pt)
g +1 (15)

In this context, LFL represents the focal loss function, Pt denotes

the weighted sum of the predicted probabilities and the true labels, g
is the focus factor, which is used to adjust the weights of the difficult

and easy recognition samples, and Є is a small constant used to

prevent numerical instability or excessively small values. The

specific process is detailed in Equations 16 to 18.
FIGURE 6

The illustration of Relative Spatial Attention (RSA) module. where
xN×3 represents the spatial location information of the point cloud
and fN×d represents the feature information of the point cloud.
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LFL = LCE · (1 − Pt)
g (16)

LCE = −½labels · log (p) + (1 − labels) · log (1 − p)� (17)

Pt = labels · p + (1 − labels) · (1 − p) (18)

Among them, p is the predicted probability after activation by

the sigmoid activation function.

2.4.5 Experiment settings and evaluation metrics
We will train and test the point cloud segmentation network on

three different plant point cloud datasets. To ensure full utilization

of the data, we divided the datasets into an 80% training set and a

20% validation set. Before inputting the model, we selected 2048

points using an FPS downsampling strategy to serve as the number

of input data points for the model. We implemented our method on

a single NVIDIA GTX 3060Ti GPU using the PyTorch framework.

During training, the batch size is set to 4. We choose the AdamW

optimizer and set the weight decay to 1 × 10−4 to optimize the

parameters in training and effectively suppress overfitting. The

training period of the experiment is 300 epochs. To manage the

learning rate more accurately, we adopt the multistep scheduler.

During the training process, the learning rate is decayed at a rate of

0.1 when 210 and 270 epochs are reached. This decay strategy of

multistep learning rate helps to maintain good convergence of the

model at different training stages.

For data augmentation, we use a combination of random

scaling, normalization, and jittering techniques. Specifically,

random scaling adjusts the scale of each point cloud to a range

between 0.8 and 1.2, aiding the model in learning features at various

scales. Point clouds are also centralized and normalized to ensure

consistency in the coordinate system and numerical range across all

data before training. To introduce additional randomness and

noise, we apply jittering technique to each point by adding

independent Gaussian noise, with a standard deviation of 0.001

and a noise threshold of 0.005. This can simulates real-world noise

and uncertainty, enhancing the model’s robustness to noise and

variations. The effectiveness of these data augmentation methods in

improving point cloud segmentation accuracy has been validated in

the PointNeXt (Qian et al., 2022) model.

This paper evaluates the performance of our proposed point

cloud segmentation network, PointSegNet, by using a

comprehensive set of metrics, including Intersection over Union

(IoU), Precision, Recall, and F1-score, as well as model parameter

count and computational complexity. Among them, IoU measures

the overlap between the predicted region and the ground truth

region, with higher values indicating greater alignment between the

prediction and the actual situation. Precision assesses the

proportion of true positive samples among all samples predicted

by the model as positive class, reflecting the accuracy of the model’s

predictions. Recall measures the proportion of actual positive

samples that are correctly identified by the model, highlighting its

ability to detect all positive samples. The F1 score combines

Precision and Recall into a single metric, providing a balanced

evaluation of the model’s performance in predicting both positive
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and negative samples. Specifically, the formulas for calculating these

evaluation metrics are as shown in Equations 19–22.

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F1 =
2Precision� Recall
Precision + Recall

(21)

IoU =
TP

TP + FP + FN
(22)

Where TP (True Positive) denotes the number of positive class

samples correctly predicted by the model, FP (False Positive)

denotes the number of samples where the model incorrectly

predicted a negative class as a positive class, and FN (False

Negative) denotes the number of samples where the model failed

to predict a positive class as a negative class.
2.4.6 Phenotypic trait extraction and evaluation
We extracted four phenotypic parameters—stem height, stem

diameter, leaf length, and leaf width—from the segmented maize

stems and leaves to evaluate the effectiveness of our proposed point

cloud segmentation model (PointSegNet), in plant phenotyping

tasks. The detailed parameter extraction process is as follows:
1. Stem height: Before measurement, the point cloud rotation

correction is necessary. The principal direction of the stem

is determined using PCA (Principal Component Analysis),

and a rotation matrix aligning this direction with the Z-axis

is computed. The entire point cloud is then rotated to be

parallel to the Z-axis. Finally, the stem height parameter is

obtained by subtracting the minimum z-value from the

maximum z-value within the stem point cloud.

2. Stem diameter: First, the point cloud data is segmented

along the Z-axis into four equal-height parts. The lowest

segment is selected for analysis because the base of the stem

is usually the most stable and uniform. Next, the linear

fitting is performed on the point cloud data of the lowest z-

value segment using the least squares method. Specifically,

a linear regression model fits a plane that describes the

variations in z-values in the X and Y directions,

respectively. Then, we calculate the vertical distance from

each point to the fitted plane (i.e., the difference between

the actual z-value of the end and the z-value predicted in

the plane). The stem diameter is defined as twice the

median of these residuals’ absolute values, as the median

is insensitive to outliers and can more accurately reflect the

true diameter of the stem (Miao et al., 2021).

3. Leaf length and width: To extract leaf length and width

from the leaf point cloud, PCA (Principal Component

Analysis) is first used to determine the primary direction

of the point cloud, and the leaf point cloud is projected onto
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Fron
this principal vector. The point cloud is then segmented

based on these projection values. For each segment, the

points corresponding to the minimum and maximum

projection values are identified, as the extreme positions

along the principal direction, i.e., the two most distant

points. To accurately fit the leaf surface, multiple points are

uniformly inserted between the start and end points, then

projected onto the leaf point cloud. By connecting the start

point, endpoint, and projection points, the width of the

segment is determined. The maximum width among all

segments is taken as the leaf’s width. For leaf length

calculation, the midpoints of the start and end points of

each segment are identified and projected onto the leaf

point cloud. By connecting all projection points, the total

length of the leaf is obtained. Finally, smoothing is applied

to remove noise and irregularities in the leaf length and

width contours to improve measurement accuracy and data

continuity. Later experimental result show that our method

can be responsible for the more stable and reliable

calculations of leaf width and length.
To assess the accuracy of the phenotypic parameters extracted

from the PointSegNet model segmentation, we compared the

predictions calculated from the model segmentation results with

the actual measurements by measuring the actual values and

calculating the R2 coefficients and the RMSE, as shown in

Equations 23, 24.

R2 = 1 −o
n
l=1(vl − bvl)2

on
l=1(vl − vl)

2 (23)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

l=1

(vl − v̂ l)
2

s
(24)

where n is the number of sample points, vl is the actual

measured data, and v̂l is the predicted value calculated from the

model segmentat ion results . v ̄l i s the average of al l

actual measurements.
3 Experiments and results

3.1 Nerfacto-based 3D reconstruction
validation experiments

To evaluate the effectiveness of the Nerfacto-based 3D

reconstruction method in plant phenotypic parameter extraction,

we choose to use the point clouds generated by the mainstream

Colmap (Schonberger and Frahm, 2016) open-source software and

the 3DF Zephyr commercial software as the reference for the

geometric extraction results. Colmap, known for its open-source

nature and wide range of applications, is capable of providing highly

accurate reconstruction results of point cloud data, while 3DF

Zephyr, an industry-leading commercial software, is widely

recognized for its fast processing and high-quality reconstruction
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capabilities. By comparing these reference point clouds, we aim to

validate the reconstruction performance and applicability of the

Nerfacto (Tancik et al., 2023) method in complex plant scenes, thus

providing a new solution for the efficient acquisition of point

cloud data.

In the experiments, we provide a detailed analysis from the

following three aspects: reconstruction quality under limited

viewpoints, visualization of 3D point cloud models, and

reconstruction time. The experiments are divided into two

groups: one using 40 images and the other using 60 images. As

shown in Figure 7, Nerfacto is capable of generating high-quality

3D models even under conditions with limited viewpoints. In

contrast, 3DF Zephyr and Colmap are significantly more limited

in their reconstruction, and the point cloud models may be less

complete and less detailed. In terms of reconstruction time,

Nerfacto takes longer in the training phase and is less affected by

the number of images. Colmap’s dense reconstruction is very slow

and consumes a lot of time mainly in stereo matching. In contrast,

3DF Zephyr’s reconstruction is faster, but the generated dense point

cloud is sparse and cannot capture all the details, and there may be

voids and breaks in the point cloud.

Therefore, Nerfacto can be taken as a basic tool for 3D

reconstruction of plants in agriculture. Later experimental results

show that its high-quality reconstruction can help researchers

analyze and characterize plant structures more precisely,

providing strong support for plant phenotyping and

related research.
3.2 Comparisons of different point cloud
segmentation methods

3.2.1 Ablation study
In order to fully evaluate the performance and effectiveness of

our proposed point cloud segmentation method, we conducted

systematic ablation experiments on the Tomato dataset, as shown in

Table 1. Our aim is to validate the contribution of each key

component of the method to the final segmentation results and

provide a basis for model optimization. Our ablation experiments

verify the effectiveness of individual components in point cloud

segmentation by removing or replacing these modules one by one.

The ablation study results demonstrate that the complete

PointSegNet model achieves a mIoU of 92.525%, indicating its high

segmentation performance. Removing individual modules leads to a

decrease in model performance: removing the Relative Spatial

Attention (RSA) module results in a 0.885% drop in mIoU;

removing the channel attention module results in a 0.425% drop;

replacing the Edge-Aware Feature Propagation (EAFP) module with

the FP module from PointNet results in a 1.315% drop; and replacing

the ResMLP module with the SA module from PointNet results in a

0.565% drop. Notably, removing both the RSA and EAFP modules

simultaneously causes a significant performance drop of 2.795%.

These results indicate that the RSA and EAFP modules make

significant contributions to the model’s performance, while the

channel attention and ResMLP modules also provide some
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performance improvement. Although removing these modules

reduces the number of parameters and computational complexity

to some extent, the significant performance drop demonstrates that

these modules are essential for enhancing the segmentation

performance of the PointSegNet model.

3.2.2 Point cloud segmentation results with
different datasets

To comprehensively evaluate the performance of PointSegNet,

we compared it with several advanced models, including PointNet+

+ (Qi et al., 2017), PCT (Guo et al., 2021), PointMLP (Ma et al.,

2022), SPoTr (Park et al., 2023), and PointVector (Deng et al.,

2023). Tables 2, 3 presents the quantitative comparison results for

maize organ segmentation, where PointSegNet excels in efficiency

metrics such as model parameters and throughput. In terms of

segmentation metrics, including Intersection over Union (IoU), F1

score, and recall, PointSegNet surpasses the second-best model by

approximately 1%. Although its precision is slightly lower than that

of the PointVector model, PointSegNet’s model parameter count

and computational complexity are only one-third of those of the

PointVector model. Table 4 further demonstrates that PointSegNet
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performs exceptionally well in handling plants with complex

structures, such as tomatoes and soybeans, outperforming other

models across all four average quantitative metrics. Experimental

results indicate that PointSegNet exhibits strong robustness and

versatility, reflecting its excellent generalization ability and feature

extraction accuracy, which is attributed to its optimized model

structure, effective feature fusion, and superior data preprocessing

techniques in this paper.

To show the performance of the model in various plant

structures more intuitively, we carried out a detailed visualization

analysis of its segmentation results. As shown in Figure 8, the

segmentation results of maize organs are visualized and analyzed at

their different growth stages. PointSegNet has high segmentation

accuracy, avoiding obvious mis-segmentation or segmentation

omission, and the corresponding segmented stems and leaves

have clear and smooth boundaries, and accurately show the

actual shapes of them, meanwhile, maintaining a high degree of

consistency at different growth stages. Additionally, in Figure 9, we

show the visualization results of point cloud organ segmentation for

tomato and soybean. For tomato and soybean, due to the

complexity of the plant structure, all five models except
FIGURE 7

Visualization results of 3D reconstruction using Nerfacto, Colmap open source software and 3DF Zephyr commercial software at different numbers
of images and the time taken for reconstruction.
TABLE 1 Comparison of results from network model ablation experiments on the tomato point cloud dataset.

Ablate mIoU (%) D Params (M) FLOPS (G)

PointSegNet(ours) 92.525 − 1.33 4.73

− RSA 91.64 0.885 1.068 4.63

− CAM-SE 92.1 0.425 1.32 4.76

− EAFP 91.21 1.315 1.24 4.6

− ResMLP 91.96 0.565 1.152 2.72

− RSA & EAFP 89.73 2.795 0.981 4.5
− denotes removing from baseline.
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PointSegNet show mis-segmentation to varying degrees, which are

mainly concentrated at the junction of stems and leaves as well as at

the intersection of the main stem and branches. Especially in the

dense leaf region, these models often fail to distinguish neighboring

leaves due to their occlusion and overlapping correctly. In contrast,

PointSegNet can effectively handle the challenges posed by these

complex structures, maintains high segmentation accuracy and

detail retention, and can accurately segment stems, leaves, main

stems, and branches with clearer boundaries.
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3.3 Evaluation of extracted traits based on
point cloud segmentation

To validate the effectiveness of the proposed leaf length

calculation method, we visualized each step of the process. As

shown in Figure 10, we first computed the principal direction of the

leaf point cloud using PCA and segmented the point cloud based on

projection values. Next, we calculated the principal vector for each

segment of the point cloud to identify the nearest and farthest
TABLE 2 Comparison of segmentation performance on maize point cloud datasets.

Maize

Leaf Stem Mean

ins. IoU (%)

PointNet++ 83.27 98.84 91.055

PCT 65.92 96.63 81.275

PointMLP 83.49 98.71 91.1

SPoTr 85.9 98.93 92.415

PointVector 86.5 99.08 92.79

Ours 88.26 99.2 93.73

Precision (%)

PointNet++ 94.05 99.22 96.635

PCT 69.88 99.54 84.71

PointMLP 91.82 99.4 95.61

SPoTr 94.95 99.37 97.16

PointVector 96.06 99.33 97.695

Ours 94.97 99.52 97.245

F1 score (%)

PointNet++ 90.97 99.42 95.195

PCT 79.99 98.29 89.14

PointMLP 91.25 99.35 95.3

SPoTr 92.61 99.47 96.04

PointVector 92.84 99.54 96.19

Ours 93.85 99.6 96.725

Recall (%)

PointNet++ 88.1 99.62 93.86

PCT 93.53 97.07 95.3

PointMLP 90.69 99.31 95

SPoTr 90.39 99.57 94.98

PointVector 89.83 99.75 94.79

Ours 92.75 99.67 96.21
The best and second-best results are highlighted in bold and underlined.
TABLE 3 Comparison of segmentation efficiency using PointSegNet and five other state-of-the-art networks.

PointNet++ PCT PointMLP SPoTr PointVector Ours

Params (M) 1.74 2.88 16.71 25.56 4.07 1.32

FLOPs (G) 4.09 2.32 132.85 151.18 14 4.73
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points. Due to the curvature of maize leaves, using the distance

between the nearest and farthest points directly as the leaf width is

inaccurate. Therefore, we propose to generate points uniformly

between these two points and projecting them onto the leaf. By

connecting the nearest point, projection points, and the farthest

point, the total length of the resulting segments is taken as the leaf

width, which better fits the shape of the leaf. For leaf length, we

project the midpoints of the nearest and farthest points in each

segment onto the segment’s point cloud. We then connected the

nearest points, farthest points, and projection points across the

entire leaf point cloud to determine the total length of the leaf. Due

to improper setting of the number of segments and the number of

uniform point insertions, the resulting curves might exhibit

excessive undulations, failing to accurately reflect the leaf

parameters. To address this, we apply Gaussian smoothing to

these points by using one-dimensional Gaussian filtering along
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the x, y, and z axes, respectively, to enhance data continuity

and smoothness.

To assess the performance of point cloud segmentation results in

plant phenotypic parameter extraction, we compared the measurement

results obtained using our proposed method with those obtained

through manual measurement. As shown in Figure 11a, the

validation results about plant stem height produced R2 and RMSE

values of 0.99 and 0.33 cm, respectively. Figure 11b shows that the

validation of plant stem diameters resulted have R2 and RMSE values of

0.84 and 0.12 cm, respectively. The validation results for leaf length and

width are presented in Figures 11c, d, where the leaf length has an R2

value of 0.94 and an RMSE value of 2.95 cm, and the leaf width has an

R2 value of 0.87 and an RMSE value of 0.42 cm. These results indicate

that the proposed method in this paper has high accuracy in extracting

plant phenotypic parameters, effectively capturing and reflecting the

actual characteristics of the plants.
TABLE 4 Comparison of segmentation performance on tomato and soybean point cloud datasets.

Tomato Soybean

Leaf Stem Mean Leaf Stem Branch Mean

ins. IoU (%)

PointNet++ 94.44 82 88.22 93.84 51.4 45.44 63.560

PCT 93.07 77.19 85.13 92.79 51.61 29.17 57.857

PointMLP 93.64 79.08 86.36 93.75 49.38 36.13 59.753

SPoTr 94.51 83.1 88.805 94.79 57.37 43.05 65.070

PointVector 95.8 87 91.4 94.86 62.86 48.26 68.660

Ours 96.45 88.6 92.525 95.53 63.14 51.12 69.930

Precision (%)

PointNet++ 96.75 90.71 93.73 96.13 66.54 71.11 77.927

PCT 95.34 89.62 92.48 95.07 67.99 52.75 71.937

PointMLP 95.74 90.87 93.305 96.29 62.75 57.28 72.107

SPoTr 96.31 92.92 94.615 96.14 75.02 66.2 79.120

PointVector 97.52 93.55 95.535 96.79 75.61 67.58 79.993

Ours 97.93 94.53 96.23 96.52 73.74 75.28 81.847

F1 score (%)

PointNet++ 97.14 89.82 93.48 96.83 69.94 66.36 77.710

PCT 96.4 86.44 91.42 96.2 68.48 47.54 70.740

PointMLP 96.72 88.06 92.39 96.7 65.84 54.36 72.300

SPoTr 97.2 90.89 94.045 97.32 74.58 61.31 77.737

PointVector 97.87 93.04 95.455 97.36 77.09 65.92 80.123

Ours 98.2 93.96 96.08 97.7 77.3 68.41 81.137

Recall (%)

PointNet++ 97.53 88.93 93.23 97.54 73.7 62.21 77.817

PCT 97.48 83.48 90.48 97.36 68.98 43.27 69.870

PointMLP 97.71 85.42 91.565 97.12 69.24 51.72 72.693

SPoTr 98.11 88.95 93.53 98.52 74.15 57.1 76.590

PointVector 98.22 92.52 95.37 97.94 78.62 64.34 80.300

Ours 98.47 93.4 95.935 98.9 81.23 62.69 80.940
The best and second best results are marked in bold and underlined.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1491170
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qiao et al. 10.3389/fpls.2025.1491170
4 Discussion

This paper employs the Nerfactomethod for the three-dimensional

reconstruction of maize, extracting point clouds from implicit neural

radiance fields. The Nerfacto method has low requirements for input

data and is capable of generating high-quality 3D models with limited
Frontiers in Plant Science 15
viewpoints and images, making it adaptable to various scenes and

backgrounds, and suitable for the reconstruction of different plant

types. During the image acquisition process, uneven lighting or strong

reflectionsmay lead to issues such as shadows, glare, or overexposure in

the images, which could introduce errors in the reconstruction results

and affect the final quality of the 3Dmodel. Therefore, we will consider
FIGURE 8

Qualitative visual analysis of organ segmentation using PointSegNet on maize point cloud datasets. (a), (b), (c), (d, e) show the segmentation results
and ground truth of maize point clouds for different growth cycles.
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the impact of environmental lighting during data acquisition and

processing, and employ appropriate image preprocessing techniques,

such as exposure correction, to mitigate the interference of these factors

on phenotyping measurements. Although the training and inference

processes of Nerfacto can be completed using a single consumer-grade

GPU, the entire procedure typically requires 20 to 30 minutes.

Particularly when processing high-resolution images, the
Frontiers in Plant Science 16
computational resource consumption and time required increase

significantly. To address this issue, we plan to utilize CUDA

programming to implement part or all of the computationally

intensive tasks, thereby improving processing efficiency and

accelerating the training process.

In our study, the PointSegNet model, which downsamples plant

point clouds to 2048 points, has demonstrated excellent segmentation
FIGURE 9

Qualitative visual analysis of complex plant organ segmentation using PointSegNet on tomato and soybean point cloud datasets. (a–c) show the
segmentation results and ground truth for tomato, while (d) and (e) present the segmentation results and ground truth for soybean.
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performance. However, for plants with complex structures, significant

downsampling can compromise the original structural details, leading

to information loss and makes it challenging for the network to learn

useful features. Increasing the number of points in the plant point

cloud can better preserve plant detail information, thereby improving

segmentation accuracy. Nevertheless, this also introduces new

challenges: higher point cloud resolution results in a substantial

increase in the network’s parameter count and computational load,
Frontiers in Plant Science 17
and requires significant computational resources and time for training

and inference. This may potentially lead to issues with insufficient

computational resources and reduced efficiency in practical

applications. Therefore, finding the optimal balance between model

performance and computational resource requirements is a critical

direction for future research. The effectiveness of plant point cloud

segmentation generally will be improved with the richness of the

dataset. However, point-by-point annotation is a time-consuming
FIGURE 10

Visualization flowchart for leaf length and leaf width parameter extraction.
FIGURE 11

Comparison of extracted phenotypic parameters based on maize point cloud segmentation with measured values. (a) stem height, (b) stem
diameter, (c) leaf length, and (d) leaf width.
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and labor-intensive task, which limits the acquisition of large-scale,

high-quality datasets. To enhance model performance with limited

data, we will explore techniques such as semi-supervised learning, self-

supervised learning, and transfer learning in future work. These

approaches will not only accelerate model development and

application but also reduce data annotation costs and time

investment, thus providing substantial support for the advancement

of agricultural phenotype measurement technologies.

In the process of extracting plant phenotype parameters, such as

stem height, stem diameter, leaf length, and leaf width, the calculation

often relies on methods that are dependent on key points. Traditional

methods, which rely solely on the distance between the nearest and

farthest points, may not accurately fit the curvature of the leaf when it is

bent, resulting in an underestimation of leaf length. Our improved

approach addresses this issue by segmenting the leaf along its principal

direction, thereby enhancing the accuracy of the leaf curve fitting and

resulting in more precise measurements of leaf length and width.

However, excessive segmentation may lead to an overly curved fit,

affecting the final measurement results. Therefore, it is essential to set

the number of segments appropriately to ensure that the fitted curve

closely approximates the actual shape of the leaf while maintaining

measurement accuracy. Additionally, the presence of outliers is a

common and significant issue. Outliers can arise from various

sources, such as errors in point cloud acquisition equipment,

environmental interference, similar situations occur in color between

the plant and background, or errors in dataset annotations. These

outliers may introduce substantial errors in phenotype parameter

calculations, thereby affecting the final measurement results. Future

research should focus on methods to prevent outlier interference

during phenotype parameter computation to enhance the accuracy

and reliability of measurements.
5 Conclusion

In this paper, a plant stem and leaf segmentation and

phenotypic parameter extraction is proposed. Firstly, a novel 3D

reconstruction method, Nerfacto, is employed to plant 3D

reconstruction to explore the extraction of point clouds from

implicit neural radiance fields. This approach provides a new

avenue for obtaining point cloud data and reduces the

reconstruction difficulty associated with complex plant scenes by

using traditional methods. Secondly, a lightweight plant organ point

cloud segmentation network, PointSegNet, is developed. This

network features an efficient encoder-decoder structure that

significantly enhances segmentation accuracy while maintaining

low parameter counts and computational complexity. Experimental

results on maize, tomato, and soybean datasets demonstrate that

PointSegNet outperforms existing advanced networks in

segmentation performance, with higher accuracy and robustness.

Lastly, the PCA-based methods are proposed for calculating leaf

length and leaf width parameters by determining the primary

direction of the leaf point cloud. Experimental results indicate

that the proposed methods achieve high precision in extracting
Frontiers in Plant Science 18
phenotypic parameters such as stem length, stem diameter, leaf

length, and leaf width. In the future, we aim to provide stronger

support for plant phenotyping research and agricultural

applications by continuously optimizing and expanding these

technologies to develop automated tools in smart agriculture.
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