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ASD-YOLO: a lightweight
network for coffee fruit ripening
detection in complex scenarios
Baofeng Ye1,2, Renzheng Xue1,2* and Haiqiang Xu1,2

1School of Computer and Control Engineering, Qiqihar University, Qiqihar, China, 2Heilongjiang Key
Laboratory of Big Data Network Security Detection and Analysis, Qiqihaer University, Qiqihar, China
Coffee is one of the most popular and widely used drinks worldwide. At present,

how to judge the maturity of coffee fruit mainly depends on the visual inspection

of human eyes, which is both time-consuming and labor-intensive. Moreover,

the occlusion between leaves and fruits is also one of the challenges. In order to

improve the detection efficiency of coffee fruit maturity, this paper proposes an

improved detection method based on YOLOV7 to efficiently identify the maturity

of coffee fruits, called ASD-YOLO. Firstly, a new dot product attention

mechanism (L-Norm Attention) is designed to embed attention into the head

structure, which enhances the ability of the model to extract coffee fruit features.

In addition, we introduce SPD-Conv into backbone and head to enhance the

detection of occluded small objects and low-resolution images. Finally, we

replaced upsampling in our model with DySample, which requires less

computational resources and is able to achieve image resolution

improvements without additional burden. We tested our approach on the

coffee dataset provided by Roboflow. The results show that ASD-YOLO has a

good detection ability for coffee fruits with dense distribution and mutual

occlusion under complex background, with a recall rate of 78.4%, a precision

rate of 69.8%, and a mAP rate of 80.1%. Compared with the recall rate, accuracy

rate and mAP of YOLOv7 model, these results are increased by 2.0%, 1.1% and

2.1%, respectively. The enhanced model can identify coffee fruits at all stages

more efficiently and accurately, and provide technical reference for intelligent

coffee fruit harvesting.
KEYWORDS
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1 Introduction

As one of the three major beverages in the world, coffee is popular with cocoa and tea as

the main beverage in the world. China has become the world’s seventh largest coffee

consumer. When ripe coffee fruits are not picked in time, they can spoil, leading to

economic losses (Vegro and de Almeida, 2020). At present, coffee fruit picking in China

mainly relies on manual labor. Due to the four stages of coffee fruit: over-ripe, semi-ripe,
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ripe and over-ripe (Dalvi et al., 2013), it often leads to low

picking efficiency and high cost, which restricts the development

of coffee industry. Automated detection of coffee fruit ripened not

only prevents wrong picking and reduces costs, however also

improves resource utilization. Therefore, automated maturity

detection has become an inevitable trend in the development of

coffee industrialization.

In recent years, with the rapid development of artificial

intelligence, computer vision technology has been widely applied

to agriculture, and a large number of scholars have conducted a lot

of research in fruit recognition and detection tasks. Fruit

identification methods can be broadly divided into two main

categories. One category is the traditional image processing

methods, which are mainly based on fruit features such as color,

texture or shape. It is difficult for such methods to achieve the

desired accuracy because they are complicated by factors such as

weather effects and occlusion of fruit leaves. The second type of

methods are deep learning based methods, It includes single-stage

algorithms represented by YOLO (You Only Look Once) (Redmon

et al., 2016) series and two-stage algorithms represented by RCNN

(region-based convolutional neural networks) (Ren et al., 2016)

(Cai and Vasconcelos, 2018) series. For example, based on YOLOX,

a SDNet for strawberry maturity detection was proposed by An

et al. (2022). He replaced the original CSP block in the backbone

network with the self-designed feature extraction module C3HB

block, then embedded NAM in the neck, and used the latest SIOU

target loss function to improve the accuracy, and finally realized the

monitoring of five growth states of strawberry fruit. For example,

based on YOLOv5s, a YOLO-CIT for citrus maturation detection at

different stages was proposed by Wang et al. (2024), and he

proposed R-LBP, which uses Ghostconv instead of traditional

convolution. The model can identify citrus at different ripening

stages accurately and quickly in real environment. For example,

based on YOLOv7-tiny, a YOLO-LM for camellia fruit maturity

detection was proposed by Zhu et al. (2024). He introduced three

CCA modules into the backbone network and, in addition,

introduced GSConv to replace the standard convolution of the

Neck network. This model can improve the accuracy of detecting

the maturity of camellia fruit in orchard environment. In practice,

the one-stage algorithm is more appropriate than the two-stage

algorithm because the one-stage algorithm effectively solves the

slow speed disadvantage of the two-stage algorithm while

maintaining the accuracy.

Many lightweight CNN models have been proposed.

Lightweight models reduce the number of parameters however

result in a decrease in accuracy. To compensate for the accuracy

loss of the lightweight model, the attention mechanism can be used

to assign different weights to each part of the input feature layer,

extract the basic features, and improve the classification

performance. Through the continuous development of YOLO,

domestic and foreign scholars have realized the identification and

detection of small and densely distributed coffee fruits (Bazame

et al., 2021, Bazame et al., 2022). For example, based on YOLOv3-

tiny, a method for coffee fruit classification and detection was

proposed by Bazame et al. (2021). When the input drawing

resolution was 800×800, the model performance reached the
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highest accuracy in about 3300 iterations. Because of its high

calculation time, it is difficult to apply to practical applications.

Unal et al. (2022) Four different convolutional neural network-

based models (SqueezeNet, Inception V3, VGG16 and VGG19)

were used to classify three different coffee beans by transfer learning

method, and the experimental results showed that SqueezeNet was

the most successful model. Ji et al. (2024) Using hyperspectral

imaging to detect coffee beans, two classifier methods are proposed,

one combining CEM and support vector machine (SVM) for

classification, and the other combining convolutional neural

network (CNN) and deep learning for classification. It provides

advantages for future practical application and commercialization

process. For example, based on YOLOv8n, a model enhanced by

WIoUv3, ECA, and C3Ghost for green coffee bean detection was

proposed by Ji et al. (2024), achieving higher accuracy. In summary,

these methods have made great progress in the object detection of

coffee-related tasks through the use of deep learning, however there

is still room for improvement in dealing with data diversity,

improving model generalization ability, and optimizing resource

efficiency. Despite the rapid development of computer vision

techniques, only a few studies have been conducted to identify

coffee fruits and classify their ripening stages.

In order to improve the detection efficiency of coffee fruit

ripening, an improved detection method based on YOLOV7 was

proposed to enhance the detection accuracy of coffee fruit ripening.

The main contributions of this paper are as follows:
1. We propose a lightweight one-stage CNN model based on

YOLOv7, called Attention SPD-Conv with Dysample

YOLO network (ASD-YOLO), for coffee fruit maturity

recognition. The SPD-Conv module is used to enhance

the detection ability of small fruits and fruits occluded by

leaves. We replaced upsampling with Dysample, effectively

reducing the number of FLOPs.

2. Due to the high computational cost of dot-product

attention, it is difficult to apply to practical applications.

We address this problem by proposing a novel Attention

mechanism called L-Norm Attention. The new attention is

mathematically equivalent to dot-product attention, and

the complexity is reduced from O(n2) to O(n). We

successfully improve the detection accuracy and

computational efficiency of the model.
2 Related work

2.1 Machine learning methods

The application of machine learning methods to fruit

recognition usually consists of three steps: image preprocessing,

feature extraction, and fruit recognition. Firstly, the image was

converted from RGB (Red, Green, Blue) color to HSV (Hue

Saturation Value) and LUV (CIELUV), and grayscale adjustment

and noise reduction were carried out. During preprocessing, the

background is usually removed. After that, statistical learning
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methods are used to extract fruit features, and finally machine

learning models are used to identify coffee fruits, such as k-means,

Support Vector Machine (SVM) and Random Forest (RF) (Garcıá

et al., 2019; Velásquez et al., 2021), which are used as classifiers to

detect coffee fruits. Although the computational cost of this type of

algorithms is relatively lower compared with deep learning, the

feature extraction is complex and it needs expertise.
2.2 Deep learning methods

Because deep learning effectively solves the problem of slow

speed while maintaining accuracy, deep learning is widely used in

agriculture. Researchers have conducted many studies on coffee

fruit recognition and ripeness using deep learning. For example,

based on CNNs, a model for coffee classification was proposed by

Fuentes et al. (2020), achieving an accuracy of 97.6% with 41 out of

42 tests classified correctly. For example, based on YOLOv4, a high-

efficiency, low-cost, and high-precision method for coffee fruit

maturity detection was proposed by Bazame (2021). For example,

using YOLOv3, a method for identifying coffee and cherries was

proposed by Valles-Coral et al. (2023), reducing the running time

by three times while maintaining accuracy. For example, combining

YOLOv3 with MobileNetv2, a coffee leaf detection method was

proposed by Javierto et al. (2021), utilizing a lightweight depth

convolution in the intermediate expansion layer to filter nonlinear

source features. These studies show that compared with traditional

machine learning models, models using the YOLO series can

achieve higher accuracy and faster speed in coffee fruit

recognition and ripened detection tasks.
2.3 The attention mechanism

In recent years, attention mechanism has been widely used in

computer vision. Although the introduction of attention

mechanisms can help deep learning methods focus on important

information, some attention methods are computationally

expensive and difficult to implement in practice. For example,

Non-local (Wang et al., 2018) can solve the receptive field

problem to a large extent, however it is severely limited in

computational complexity. In order to reduce the amount of

computation, the simplest method is to reduce the number of

channels and reduce the resolution, while these methods will

cause a decrease in accuracy. CCNet (Huang et al., 2019) is

different from Non-Local, which computes the attention of the

whole graph at once. The complexity is effectively reduced by Criss-

cross attention. Efficient Attention (Shen et al., 2021) achieves linear

complexity by clever use of Softmax. ANNNet (Zhu et al., 2019)

provides sample in terms of calculating key and value, which

reduces the size of key and value, thus reducing the amount of

calculation when performing Softmax operations. DANet (Fu et al.,

2019) introduces spatial attention and channel attention at the same

time, which effectively expands the receptive field, however the high

amount of calculation generated is not friendly to GPU devices.
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3 Materials and methods

3.1 Coffee fruit ripeness object
detection dataset

Our dataset comes from contributions from roboflow. Coffee

fruit maturity was divided into four categories, including over-ripe,

ripe, semi-ripe and unripe. The background of the coffee fruit is

affected by the shadow and the influence of the occlusion of the

leaves, which has a complex light environment. This mimics real

application scenarios and may enhance the robustness of the

trained model. There were significant differences in the

characteristics of fruit maturity among the four coffee varieties.

Figure 1 shows representative images of the four categories. We

divide the dataset into, train valid and test datasets, corresponding

to 4359, 425 and 198 images per group, respectively. These images

have uneven distribution of fruit natural scenes such as fruit

occlusion, overlapping occlusion, branch occlusion, visual

appearance similar to the background image, and dense targets.
3.2 ASD-YOLO

YOLO stands for “You Only Look Once” and is a fast and

accurate object detection algorithm. YOLO v7 uses a large number

of ELAN as the base module. The multiple stacking corresponds to

a denser residual structure. The characteristics of the residual

network are easy to optimize, and it can improve the accuracy by

increasing a certain depth. YOLOv7 has different variations, such as

YOLOv7-Tiny,YOLOv7 and YOLOv7-w6.

In agricultural applications, YOLO series models have

significant advantages in the field of object detection, especially in

crop monitoring, pest detection, crop classification, fruit maturity

judgment and other tasks. YOLOv7 reduces the complexity of the

model, making the inference relatively fast. This is especially

important for real-time inspection in agricultural applications.

YOLOv10 and YOLOv11 have advantages in detection accuracy

on high-resolution images. However, in today’s agricultural

applications, most of them are faced with the challenges of

complex scenes and low image resolution, YOLOv7 still performs

well in terms of speed and accuracy, and its low computing

overhead and high reasoning speed are very suitable for YOLOv7.

YOLOv9, YOLOv10 and YOLOv11 may be suitable for some

complex missions. For example, YOLOv7-BiGS for real-time

citrus identification was proposed by Deng et al. (2024), meeting

the real-time requirement while effectively ensuring accuracy. For

example, YOLO-SwinTF for tomato detection was proposed by Liu

et al. (2024), achieving excellent performance in detection accuracy

while maintaining a comparable detection speed. For example,

YOLOv7-E for accurate inflorescence detection and positioning at

different distances was proposed by Zhang et al. (2024), providing

effective technical support for future fruit thinning machinery in

differentiation and precise flower thinning operations.

In general, YOLOv7 network is divided into four parts: Input,

backbone network, neck network and head network. The size of the
frontiersin.org
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input image in the YOLOv7 model is 640×640. The YOLOv7 model

uses 3×3 or 1×1 convolution cores. These convolution kernel sizes

are chosen based on empirical evidence and computational

considerations. These 3×3 convolution cores capture spatial

information for local regions in the input image, while 1×1

convolution cores perform channel-level operations to adjust the

depth of the feature mapping. Firstly, the images are preprocessed

by operations such as data augmentation in the input part, and then

fed into the backbone network. The backbone network framework

is constructed by convolution, E-ELAN module, MPConv module

and SPPCSPC module. The backbone network is responsible for

feature extraction of the input image, and then the extracted feature

map is enhanced by the Neck module. The Neck module aggregates

low-level spatial features and high-level semantic features through

FPN+PAN, which aims to combine feature information at different

scales. It significantly improves the accuracy of recognizing objects

at different scales. Finally, the head generates the object bounding

box with coordinates, category, and confidence.

The network structure of ASD-YOLO is mainly composed of

two parts: Backbone and Head. The extraction of image features is

mainly implemented in backbone. SPD-Conv (Sunkara and Luo,

2022) is introduced into backbone and head to enhance the pair of

small fruits and fruits occluded by leaves. In order to avoid

generating a large number of parameters, we only introduce one

layer in backbone and head. After that, we add our designed L-

Norm Attention to the head to enhance the feature extraction

ability of the neural network model through the attention

mechanism. Finally, we replace the upsampling in head with

Dysample (Liu et al., 2023), which reduces the computational

load of the model while improving the image resolution. The

network structure of ASD-YOLO is shown in Figure 2.

The Backbone network is the feature extraction part of the

ASD-YOLO model, which extracts high-level features from raw

images. The Backbone network here consists of a series of

convolution layers, pooling layers, and a SPD-Conv layer. The

layers are stacked in order. The conv module consists of

convolution, batch normalization, and SiLU activation functions

to extract features. The Backbone network starts with a convolution

layer with 3×3 kernels and step size 1, which is used to process the

input image. In the following layers, the Backbone network

gradually increases the feature depth through convolution layers.

These convolution layers include layers with different numbers of
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filters and different sizes of convolution kernels to gradually extract

more complex features. After some convolution layers, the

backbone network includes a Maxpooling layer. To address the

fine-grained information lost using the conv step and/or pooling

layers, we use the SPD-Conv module to handle it, especially on

small objects and low-resolution images.

The Head network is the output generation part of the ASD-

YOLO model, which converts the feature maps extracted from the

backbone network into outputs for object detection. The Head

network consists of a series of convolution layers, Dysample layers,

concatenation layers, SPD-Conv layers and L-Norm attention layers,

as well as an object detection layer. The Head network consists of

multiple convolution layers with different number of filters and

different kernel sizes, and these layers are used to process the

feature maps from the neck network. To address the loss of fine-

grained information introduced by using conv step and/or pooling

layers, we add a layer of SPD-Conv to head. The Head network

zooms in on the feature maps on the upsampling layers to merge

them with the feature maps at different scales in the Neck network.

Feature maps from different layers of the neck and head networks are

merged by concatenation to combine multi-scale information. L-

Norm Attention is an attention module designed by ourselves. We

also replaced upsampling with DySample, which does not require a

custom CUDA package and has far fewer parameters, FLOPs, GPU

memory, and latency. Detect is the last layer of the head network and

is used to generate the output of object detection. It accepts feature

maps from different scales and uses anchors for object detection,

generating detection boxes along with the corresponding category

confidence and location information for each box.
3.3 The L-Norm Attention module

The texture features of coffee fruit have the characteristics of low

resolution, small pixel area and small object. We enhance the

extraction of coffee fruit features by adding L-Norm Attention.

From recent studies, the performance of dot product attention

mechanism in image processing tasks is getting better and better.

However, we observe the drawback of the dot product attention: the

high computational complexity is difficult to apply in practice. We

propose an efficient attention mechanism that is equivalent to the dot

product attention, however achieves the desired level of complexity
FIGURE 1

Representative images of over-ripe, ripe, semi-ripe and unripe coffee fruits. (A) unripe; (B) semi-ripe; (C) ripe; (D) over-ripe.
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o(n). Where Q (Query) refers to the scope of the query, autonomous

suggestion, that is, the feature vector of subjective consciousness, K

(Key) refers to the item being compared, non-autonomous

suggestion, that is, the prominent feature information vector of the

object, and V (Value) is the feature vector representing the object

itself, which usually appears in pairs with Key. The form of dot

product attention is shown in Equation 1:

Attention(Q,K ,V)   = softmax(QKT)V (1)

We observe that the key factor limiting the performance of dot

product attention is Softmax. This step yields an n� nmatrix of, and it is

this step that makes the dot product attention complexity o(n2). That is,

removing Softmax reduces the complexity to linear. We can come up

with a general definition of Attention: that is, replace  QKT   with the

general function sim (qi, kj) of qi, kj. Then it is sim (qi, kj) = QKT . We

define the equivalent formula for the dot product attention as Equation 2:

Attention(Q,K ,V)i =
on

j=1sim(qi,kj)vj

on
j=1sim(qi,kj)

(2)

Removing Softmax, it can be expressed as Equation 3:

sim(qi,kj) = q
T
i kj (3)

The question is how to satisfy sim(qi, kj) ≥ 0. Efficient

Attention uses a flexible way to perform Softmax on Q and K

separately, instead of performing Softmax after the operation. Our

idea is to cancel Softmax and add 1 after L2 normalization of Query

and Key. It can be expressed as Equation 4:

sim(qi,kj) = 1 + L2Norm(qi)
TL2Norm(Kj) (4)
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As shown in Figure 3, for the input feature map, it is changed

into a matrix, and after L-Norm Attention, it is changed to h�
w � d again. Finally, the output features are added to the input

features to form a residual structure.
3.4 The SPD-Conv module

In object detection, we have observed that convolution neural

Networks (CNNs) have achieved excellent results in image processing

tasks, however, when the resolution of the image being detected is low

or the object being detected is small, their detection accuracy will be

affected. The ultimate reason is that some fine-grained information is

lost when using conv step and pooling layers. Therefore, we are

compensating for this loss of fine-grained information by adding the

SPD-Conv module to backbone and head. SPD-Conv consists of a

space-to-depth (SPD) layer and a convolution-free step (Conv) layer,

as shown in Figure 4. Firstly, the spatial dimension of the input image

is converted into the depth dimension, which avoids the information

loss in the traditional step convolution and pooling operations. Thus,

the depth of the feature map can be increased without losing

information, and more spatial information can be retained through

this layer. After that, by applying a convolution layer, no step size is

used. This is because the non-step convolution is able to perform

feature extraction without reducing the size of the feature map, which

further preserves the fine-grained information of the image. This

combination of the combined use of SPD layers and non-step

convolution layers enables the CNN to better detect small objects

and low-resolution images, improving the performance and

robustness of the model in these complex scenes.
FIGURE 2

ASD-YOLO network structure.
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3.5 The Dysample module

Feature upsampling is a key component in object detection

models to recover feature resolution. The most popular ones are

bilinear interpolation and nearest neighbor. They follow fixed rules

to interpolate the upsampled values. With the popularity of

dynamic networks, some excellent upsamplers have also shown

excellent potential. CARAFE (Wang et al., 2019), FADE (Lu et al.,

2022) and SAPA, for example, have significant performance gains

while also suffer from high computational overhead due to the time

consumption of dynamic convolutions and the additional

subnetworks used to generate dynamic kernels. In addition,

FADE and SAPA require high-resolution feature guidance, which

limits their application scenarios to some extent. Dysample bygoes

dynamic convolutions and reconstructs the upsampling process

from the point sampling perspective, which is more resource

efficient and easy to implement. DySample eliminates the need

for custom CUDA packages and significantly reduces the number of

parameters, FLOPs, GPU memory, and latency. Figure 5 shows the

module diagram of Dysample.

Therefore, we integrate Dysample into our ASD-YOLO

network to focus on upsampling low-resolution images to higher

resolutions with minimal overhead.
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3.6 Hardware and software

For the train and test of the research work in this paper, a

computer with ubuntu18.04 operating system, 24 GB RAM

(NVIDIA GeForce RTX 4090GPU), python 3.8.18 and torch-1.9.0

is used for the experiments. Weights were initialized using a

random initialization technique and all models were trained from

scratch. Table 1 shows the hyperparameter settings for the

network model.
3.7 Evaluation metrics

The metrics are as follows (Sirisha et al., 2023): precision, recall,

and AP. For binary classification problems, samples can be

classified into four types: true positive (TP), false positive (FP),

true negative (TN), and false negative (FN). Equations 5, 6 for

precision (P) and recall (R) are as follows.

P = 
TP

TP + FP
(5)

R = TP=(TP + FN) (6)

Precision is a measure of the relevance of the results, while recall

is a measure of how many truly relevant results are returned. Our

models should be comprehensively evaluated in terms of detected

boundaries and classification performance. The most widely used

criterion is the mean Average Precision (mAP) adopted in the

following tests as shown in Equation 7. In addition, mAP needs to

be evaluated using a threshold IoU. As shown in Equation 8:

mAP = 
1
m

 o AP (i) (7)

IoU(m, n) = 
area (m∩n)
area (m∪u)

(8)

m denotes the truth box and n denotes the bounding box. AP50

and mAP are used to evaluate the overall performance of the

detection. mAP refers to the average precision value over different

IoU thresholds ranging from 0.5 to 0.95.
4 Experimental results and discussion

4.1 Experimental results

Deep learning models are often referred to as black boxes

because they have complex architectures and a large number of

parameters that obscure their internal mechanisms. This lack of

transparency poses a significant obstacle to the train and evaluation

of these models. In this paper, the training results and the sum

loss function of the model are analyzed. As shown in Figure 6,

the decrease in validation loss correlates with the increase in

mPA. Figure 6B describes the detailed monitoring of the loss

function values throughout the training phase and draws special

plots for validation data sets. The trend described in Figure 6 shows
FIGURE 3

⊗ denotes matrix multiplication and ⊕ denotes addition, where s ≤ n.
Our designed attention mechanism is mathematically equivalent to
and approximately equivalent to the dot product attention.
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that the consistency of the model converges as the training

iteration progresses. As the model continues to learn, its

performance steadily improves. As shown in Figure 6A. This

convergence serves as compelling evidence to support the validity

of our model and affirms the validity of our training and

evaluation methods.

Based on the experimental results, Figure 7A shows the confusion

matrix summarizing the prediction results of the classification. The

confusion matrix is a tool for evaluating the performance of a

classification model by comparing the model’s predicted class tables

with the true data categories. This matrix takes the form of a two-

dimensional array, where rows represent the actual categories and

columns represent the predicted categories. As observed from the

confusion matrix in Figure 7A, the values on the main diagonal (0.73,

0.67, 0.82 and 0.87) indicate the proportion of instances correctly

predicted by the model for each class. Elements outside the diagonal

represent the degree of confusion between different classes by the

model. For example, in the unripe class, there is a 2% probability that

instances are incorrectly predicted as the semi-ripe class. It can be

seen that the prediction of coffee fruit maturity at different stages is

excellent. The proportion of false positives is very small, and the

occasional false negative cases may be due to the occlusion of fruits

and leaves and the influence of complex environmental factors, which

may affect the performance of the model.

As shown in Figure 7B, the Precision-Recall curve illustrates the

P performance of a classification model for each class at different R

thresholds. P refers to the ratio of the number of samples predicted

as positive and actually positive to the total number of samples

predicted as positive by the model, while R refers to the ratio of the
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number of samples predicted as positive and actually positive to the

total number of actual positive samples. Four PR curves are

presented in the graph, corresponding to four class tables: over-

ripe, ripe, semi-ripe, and unripe. The calculation of AP was

performed at a fixed R threshold of 0.5. The curves are located

near the upper right corner of the coordinate axes, indicating that

the model maintains high P while maintaining a high R rate,

demonstrating excellent classification performance on these classes.

4.1.1 Comparison experiments
The results in Table 2 show that different backbone

modules have different influences on the detection results of the

original YOLO v7 model. After we introduced the SPD-Conv

module into YOLO v7, the accuracy increased by 0.7% to

78.7% when the calculation amount remained almost unchanged

and the number of parameters decreased by 3.0%. Specifically,

compared with SPPCSPC module and DSConv module, SPD-

Conv has the highest improved accuracy. In resource-constrained

environments, SPD-Conv improves computational efficiency and

inference speed while maintaining reasonable feature representation

and detection accuracy.

Table 3 shows the comparison results. This article uses

DySample to update the upsampling operation of the original

model. Compared with the original nearest neighbor interpolation

method, the accuracy of DySample is improved by 0.5% under the

condition that the calculation amount and parameter number are

basically unchanged. In contrast, the lightweight upsampling

operator CARAFE improves the accuracy compared to the

original upsampling, while the effect is not as good as DySample.
FIGURE 4

The SPD-Conv module. (A) shows the standard feature map, (B) is the space-to-depth operation, (C) shows the depth increase of the resulting
feature map, (D) shows the non-step convolutional layer applied after the SPD operation, and (E) shows the output feature map after a convolution
with step 1 that preserves spatial resolution however changes the depth dimension.
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Therefore, this paper chooses DySample operator to replace the

original upsampling.

We compared different attention methods based on the YOLO

v7 model to verify the validity of our proposed L - Norm attention.

We respectively compared SE (Hu et al., 2018), ECA (Wang et al.,

2020), CBAM (Woo et al., 2018), CA (Hou et al., 2021), GAM

(Liu et al., 2021) and our proposed L - Norm attention. The

comparison results are shown in Table 4.

According to the experimental results in Table 4, L-Norm

Attention was introduced into YOLO v7, and the accuracy was

increased by 0.9%, reaching 78.9%, while the amount of

computation and the number of parameters remained almost
FIGURE 5

The DySample module (A) The sample set is generated by the sample point generator, and the input features are resampled by the grid sampling
function. In generator (B), the sampling set is the sum of the generated offsets and the original grid locations.
TABLE 1 Network model hyperparameter settings.

Parameter settings Illustrate

Epoch 150

Batch size 16

Learning rate 0.01

Weight decay 0.005

Optimizer SGD

Size 640
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FIGURE 6

The training outcome of models and Loss map. (A) The training outcome of models. (B) Loss map for model training and validation.
FIGURE 7

Confusion matrix and precision-recall curve for the model. (A) Confusion matrix (B) Precision-Recal curve.
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unchanged. Compared with other kinds of attention, our proposed

attention method can significantly improve the accuracy.

We comprehensively evaluated the accuracy of the model using

metrics such as Precisio, Recall, and mAP. To demonstrate the

excellent performance of our model architecture, we compare our

proposed ASD-YOLO method with several SOTA object detection

algorithms. Table 5 shows the experimental results of the improved

model and different YOLO models on the coffee fruit maturity

dataset. Among them, the YOLO series, along with Faster-Rcnn and

Efficientdet, were all tested in one environment. Their epochs are

150, their batch size is 16, and their input size is 640×640. The

YOLO Optimizer uses sgd, the Faster-Rcnn uses adam, and the

Efficientdet uses adamw; The YOLO series has a weight decay of

0.005 and a Faster-Rcnn of 0.

As shown in Table 5, the experimental results of five object

detection models, YOLOv5, YOLOv7, YOLOv8, YOLOv9,

YOLOv10, YOLOv11, Faster-Rcnn,Efficientdet and ASD-YOLO,

are analyzed, and the following observations are made: ASD-

YOLO shows excellent performance in precision, recall and

mAP@0.5 with values of 0.698, 0.784, 0.801 and 0.732,

respectively, which is 1.4% higher than the second-place

YOLOv8 on mAP@0.5. Through comparative analysis with

other models, ASD-YOLO has excellent accuracy and detection

ability. Integrating the L-Norm attention mechanism, SPD-Conv,

and Dysample into the YOLOv7 network structure, ASD-YOLO is
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significantly enhanced. Empirical evidence shows that the

modified ASD-YOLO is more resistant to interference and can

more reliably detect specific characteristics of coffee fruits with

different ripeness. Therefore, it is an effective improvement

strategy to integrate the improved L-Norm attention

mechanism, SPD-Conv and Dysample into the YOLOv7

network structure.

The test results are shown in Figure 8. ASD-YOLOv7

(Figure 8A), YOLOv7 (Figure 8B), YOLOv5 (Figure 8C),

YOLOv8 (Figure 8D), YOLOv9 (Figure 8E), YOLOv10

(Figure 8F), YOLOv11 (Figure 8G), effentdet (Figure 8H). In the

same picture, there are coffee fruits of different maturity with

unclear features and blocked features at the same time, as shown

in Figure 8, over-ripe, ripe, semi-ripe and unripe coffee fruits have

small differences, which are difficult to identify easily, and more

obvious features are needed to be recognized. This leads to

misjudgment of the maturity detection results of YOLOv7.

However, the confidence of the improved ASD-YOLO detection

results is impressive and can extract features with high confidence,

however also identify coffee fruits of similar maturity that are

occluded due to fruit overlap. ASD-YOLO can accurately identify

coffee fruits with different maturity levels while overcoming the

problem of occlusion. However, in practice, unpredictable lighting

conditions are difficult to standardize, and these conditions affect

the detection of maturity. Therefore, the characteristics of complex
TABLE 2 Different backbone methods.

Module mAP@0.5/% Parameters/M FLOPS/G FPS

YOLOv7 78.0 37.2 105.2 114.0

YOLOv7-SPD-Conv 78.7 38.2 102.2 91.7

YOLOv7-DSConv 77.8 37.2 95.7 91.7
TABLE 3 Different upsampling method comparison results.

Upsampling mAP@0.5/% Parameters/M FLOPS/G FPS

Nearest 78.0 37.2 105.2 114.0

DySample 78.5 37.2 105.2 112.4

CARAFE 78.3 37.5 105.6 106.3
TABLE 4 Comparison of different attention mechanisms.

Attention mAP@0.5/% Parameters/M FLOPS/G FPS

YOLOv7(Base) 78.0 37.2 105.2 114.0

SE 78.2 37.5 105.3 108.6

ECA 78.7 37.2 105.2 100.0

L-Norm Attention 78.9 37.6 105.3 108.7

CBAM 78.6 37.3 105.6 111.3

CA 78.2 37.5 105.5 104.6

GAM 78.3 46.4 114.9 89.1
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FIGURE 8

Comparison of coffee fruit detection at different ripeness with occlusion and overlap. (A) Display the detection results of ASD-YOLOv; (B) Display the
detection results of YOLOv7; (C) Show the detection results of YOLOv5. (D) Shows the detection results of YOLOv8; (E) Shows the detection results
of YOLOv9; (F) is the detection result of YOLOv10, (G) is the detection result of YOLOv11 and (H) is the detection result of Efficientdet.
TABLE 5 Results of ASD-YOLO, YOLOv5, YOLOv7-YOLOv11, Faster-Rcnn and Efficientdet in the test set.

Model Precision/% Recall/% mAP@0.5/% FLOPS/G Parameters/M

YOLOv5s 67.0 77.0 78.5 7.2 25.1

YOLOv7 68.7 76.4 78.0 105.2 37.2

YOLOv8n 68.0 78.4 78.7 8.2 30.1

YOLOv9 69.0 76.5 78.5 315.7 706.1

YOLOV10n 70.5 76.4 79.1 8.4 27.1

YOLOV11 70.1 75.4 78.3 6.4 26.0

Faster-Rcnn 47.1 16.3 25.9 137.1 370.2

Efficientdet – 27.3 26.9 208.2 6.7

ASD-YOLO 69.8 78.4 80.1 59.2 36.3
F
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TABLE 6 Results of ablation experiments on the coffee fruit dataset.

Model Precision(%) mAP@0.5 mAP@0.5:0.95 FLOPS/G Parameters/M

YOLOv7 68.7 78.0 73.4 105.2 37.2

YOLOv7+SPD-Conv 68.9 78.7 71.2 102.2 38.2

YOLOv7+SPD-Conv
+Dysample

69.3 79.2 73.3 61.7 39.3

YOLOv7+SPD-Conv
+Dysample

+L-Norm Attention
69.8 80.1 73.2 59.2 36.3
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scenes are in line with actual application scenarios, and the

generalization ability of ASD-YOLO method is well highlighted.

4.1.2 Ablation experiments
Preliminary experiments on the coffee fruit dataset use YOLOv7 as

a baseline model. The results show that YOLOv7 performs well in

detecting clear, medium, and large objects. However, there is still room

for improvement in detecting partial occlusions and objects with

indistinct features. Therefore, the attention mechanism is introduced

into YOLOv7 to enhance the feature extraction ability of the model.

This paper adopts an approach combining ablation

experiments and comparative experiments to validate the

effectiveness of the proposed algorithm. Ablation experiments,

as depicted in Table 6, are conducted to dissect and verify the

efficacy of the improvements made. Through the ablation

experiment, components were added sequentially and the

improved network performance after adding components was

compared to verify the necessity of the corresponding

improvements. First, SPD-Conv is embedded in YOLOv7-based

Backbone and Neck for performance comparison. Second, the

Dysample is replaced with the original upsample for performance

comparison. Finally, L-Norm attention mechanism is added for

performance comparison. The comparison results with the

original algorithm YOLOv7 are shown in Table 6.
5 Conclusions

In this paper, a method for identifying the maturity of coffee

fruits is proposed, which can automatically detect coffee fruits

with different ripeness and improve the accuracy of coffee fruit

detection. We use YOLOv7 as the base network, integrate the

improved attention mechanism into head, and refer to SPD-Conv

in Backbone and Head, after which all the upsampling in the

model is replaced with Dysample. ASD-YOLOv7 successfully

completed the maturity detection task and outperformed

YOLOv7 in coffee fruit maturity detection performance. The

combination of SPD-Conv, L-Norm Attention, and Dysample

with YOLOv7 achieves the best performance as demonstrated

by ablation experiments.

The results show that the ASD-YOLOv7 model performs well in

the coffee fruit maturity detection task, which provides technical

support for smart agriculture. In addition, the maturity detection
Frontiers in Plant Science 12
technology can provide a more effective method for the automated

picking of coffee fruits.
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