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1Fujian Agriculture and Forestry University, Fuzhou, China, 2Key Laboratory of Smart Agriculture and
Forestry (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China, 3Digital
Agriculture Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
Pears are one of the most widely consumed fruits, and their quality directly

impacts consumer satisfaction. Surface defects, such as black spots and minor

blemishes, are crucial indicators of pear quality, but it is still challenging to detect

them due to the similarity in visual features. This study presents

PearSurfaceDefects, a self-constructed dataset, containing 13,915 images

across six categories, with 66,189 bounding box annotations. These images

were captured using a custom-built image acquisition platform. A

comprehensive novel benchmark of 27 state-of-the-art YOLO object

detectors of seven versions Scaled-YOLOv4, YOLOR, YOLOv5, YOLOv6,

YOLOv7, YOLOv8, and YOLOv9,has been established on the dataset. To

further ensure the comprehensiveness of the evaluation, three advanced non

YOLO object detection models, T-DETR, RT-DERTV2, and D-FINE, were also

included. Through experiments, it was found that the detection accuracy of

YOLOv4-P7 at mAP@0.5 reached 73.20%, and YOLOv5n and YOLOv6n also

show great potential for real-time pear surface defect detection, and data

augmentation can further improve the accuracy of pear surface defect

detection. The pear surface defect detection dataset and software program

code for model benchmarking in this study are both public, which will not only

promote future research on pear surface defect detection and grading, but also

provide valuable resources and reference for other fruit big data and

similar research.
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1 Introduction

Pear is one of the major fruits in the world, is the third

economically most important fruit after apple, citrus. In 2022,

global pear production reached approximately 23 million tons.

China is the world’s largest pear producer, accounting for more

than two-thirds of the global production. In 2022, China’s pear

production reached 19,265,300 tons (USDA Foreign Agricultural

Service, 2024; IndexBox, 2024). Other major producing countries

include Argentina, Italy, the United States, and Turkey. As a high-

value fruit, pears are popular not only for fresh consumption but

also for their extensive use in processed foods. They play an

important role in promoting rural economic development and

increasing farmers’ income. However, the pear industry faces

significant losses due to pests, surface bruising, and storage issues.

For instance, Korla fragrant pears suffer up to a 30% annual loss

during storage due to pathogenic infections, and a rot rate as high as

15% due to surface defects, resulting in annual economic losses

exceeding 60 million RMB (IndexBox, 2024).

At present, the detection of defect types and defect severity in

pears mainly relies on manual sampling or physical and chemical

methods. Long-term use of eyes will cause visual fatigue, and

different people have different judgment standards, resulting in

high error rate and low reliability in defect recognition (Zhou et al.,

2013). Therefore, finding a more efficient and accurate method to

deal with pear surface defects has become an urgent problem to be

solved in the current development of the pear industry.

In fruit surface defect detection, computer vision technology

plays an important role. Zhou et al (Zhou et al., 2013). proposed a

method to distinguish calyx, fruit stalk and defects, which uses a

simple morphological method to detect defects and remove the

background. The experimental results showed the universality and

accuracy in successfully detecting three pear surface defects. Chen

(Chen, 2021). highlighted the original features and defect features of

Korla fragrant pear respectively by greying the image and image

enhancement, reducing the redundant image information. A

recognition algorithm to distinguish the outer contour and

defective region of Korla fragrant pear was investigated by

combining the improved threshold segmentation of bimodal

thresholding method, edge detection and morphological

processing. Ireri (Ireri et al., 2019). developed a tomato grading

machine vision system based on RGB, which detects the calyx and

stalk scar of normal and defective tomato based on the histogram

thresholding respectively, and the accuracy of the recognition was

95.15%. These computer vision techniques can also identify the

surface defects of pears significantly.

There are some fruit sorters commercially available, grading

fruits only based on their color and size in the image. This kind of

sorters is too crude to detect fruits with surface defects. Hu (Hu,

2022). combined visible/near-infrared spectroscopy detection

technology and embedded systems to develop a portable pear

disease detection device, which can detect typical diseases of pear

fruits in the outdoor or detection site. At present, the actual

performance of this technology still needs to be fully verified

before it can be widely promoted and adopted. Furthermore, in

the field of fruit surface defect detection, traditional object detection
Frontiers in Plant Science 02
methods based on image processing and machine learning require

manual extraction of features (color, texture, morphology, etc.),

which is inefficient and only applicable to specific objects.

At the same time, a lot of research has been carried out on image

processing image/analysis techniques for pear surface defect

detection (Chen et al., 2021; Hu, 2022). The geometric, color and

texture features of defects have been proposed to be studied and

analyzed, and combined with decision trees to construct

classification algorithms for identifying defects in pears. Although

easy to compute, most of them are not robust to various imaging

conditions, but they can only classify pear images at the pixel level

and cannot accurately locate the position of defects (rectangular

boxes). In recent years, pear surface defect detection has started to

use data-driven deep learning (DL) based algorithms. Satisfactory

classification or detection accuracy (Xie et al., 2023; Sun et al., 2022;

Zhang et al., 2021) can be achieved by using well-trained models

with a large number of datasets.Trained DL models can be deployed

on computational hardware (e.g., NVIDIA Jetson AGX Xavier

module), which is suitable for pear classification platforms to

realize real-time pear defects and classifications.

Fruit defect detection tasks can be divided into three basic

categories: 1) classifying images as defective or defect-free, 2)

detecting or localizing defective regions in an image, and 3)

segmenting images into semantic surface defect maps. This

corresponds to the three basic problems of computer vision -

image classification, target detection and semantic segmentation.

Deep learning methods are commonly used to train feature surface

error classification models based on image-level labeled datasets

(Sun et al., 2022; Zhang et al., 2021).However, the resulting model

does not provide information about the location of specific defects

in the image, and is therefore imperfect for tasks that require

obtaining a precise localization of defects for grading purposes. In

contrast, object detection that requires localizing objects of interest

within an image (Girshick et al., 2015), which predicts the specific

location of defects in an image, is more conducive to highly accurate

of fruit quality grading.

There are two main types of deep learning object detectors (Liu

et al., 2020), the first is a two-stage detector that generates object

proposal in the first stage, and then performs object categorization

and bounding box regression on these proposal in the second stage.

The other is single-stage detector which is end-to-end and does not

require region proposals process, so single-stage detector has higher

computational efficiency and faster inference. While R-CNN

(Girshick et al., 2015), Faster-RCNN (Ren et al., 2016) and Mask-

RCNN (He et al., 2017) these two-stage detectors are not as suitable

as the single segment detectors for real-time applications, especially

on embedded devices with resource constraints. YOLO is the most

familiar single-segment detector, which was originally proposed by

Redmon et al (Redmon et al., 2016), and then the original authors

upgraded it twice as for YOLO 9000 (Redmon and Farhadi, 2017)

and YOLOv3 (Redmon and Farhadi, 2018). YOLOv3 achieved a

good balance between accuracy and inference speed and was widely

used in the previous years. The original authors did not continue

with version updates after YOLOv3. However, other researchers

have modified it to continue to improve the accuracy and inference

speed of the model, including YOLOv4 (Bochkovskiy et al., 2020),
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Scaled-YOLOv4 (Wang C. Y. et al., 2021a), and YOLOv5 (Jocher,

2022), YOLOR (Wang C. Y. et al., 2021b), YOLOv6 (Li et al., 2022)

and YOLOv7 (Wang C. Y. et al., 2023), YOLOv8 (Jocher, 2023).

The latest version, YOLOV9, was released on February 21, 2024

(Wang C. Y. et al., 2024). Each YOLO detector pair is available in

different sizes and can be configured on demand.

The most widely used detector for detecting surface defects in

fruit is the YOLO. Xin Y. et al (Xin et al., 2021). compared the

performance of SVM, Fast RCNN, YOLOv2 and YOLOv3 models

on apple images. The results showed that the YOLOv3 model was

the most suitable for apple defect detection. Valdez et al (Valdez,

2020). considered apple defect detection as an object detection

problem. Having compared the Single-Shot Detector (SSD) with

YOLOv3, they trained the chosen YOLOv3 model on a dataset

containing both normal and defect apples to detect which apples are

normal. Liang et al (Liang et al., 2022). proposed a real-time tomato

surface defect detection method based on model pruning. Model

pruning was used to optimize the YOLOv4 network model. Wang

Z. et al (Wang Z. et al., 2022). proposed an object detection

algorithm based on YOLOv5 to achieve real-time detection of

apple stem/calyx. Xie et al (Xie et al., 2023). proposed An

Extremely Compressed Lightweight Model (ECLPOD) for pear

object detection based on YOLOV7 to assist in the pear sorting

task. These studies have shown the effectiveness of the YOLO

detector. however, relatively little research has been done on pear

surface defects because many high-quality pears have black spots on

their surfaces, which have similar characteristics to pear surface

defects and pose significant challenges to defect recognition. And

there is no publicly available object detection dataset on pear surface

defects. Although Xie et al (Xie et al., 2023). constructed a large

dataset, they only included a single class of pear surface defects.

There are no studies on detecting various types of defects that are

important in the detection of pear surface defects. Given the positive

developments in YOLO detectors and the pear industry, the

establishment of a comprehensive benchmark for YOLO

detection of surface defects in multiple classes of pears would be

of significant benefit to the research community.

There are two major factors that greatly affect the detection of

surface defects in pears. including the size and quality of the dataset

used for model training and defect detection algorithm. Large-scale

labeled image data is crucial to ensure the performance of machine

vision-based algorithms. It is reported that the performance of deep

learning methods on computer vision increases logarithmically with

the volume of training dataset (Sun et al., 2017). In intelligent

agroforestry, high-quality manually labeled datasets are still the key

bottleneck to fully exploit deep learning algorithms to develop

robust computer vision systems (Lu and Young, 2020). For pear

surface defect detection, a good dataset should provide adequate

representations of classes and specific positioning (labeled frames)

of the defects, as well as labeled frames including pear contour and

lighting suitable for production line, and so on. In addition to

demanding domain expertise in fruit surface defect recognition

preparing such a dataset is notoriously time-consuming and costly.

There is no publicly available dataset for pear surface defects. some

previous studies on pear surface defects have constructed their own

small-scale datasets and the datasets contain only image-level
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annotations, so they are not suitable to detection tasks that

require locating specific defect bounding boxes.

This study aims to provide the first comprehensive evaluation of

the performance of state-of-the-art YOLO object detectors in multi-

class pear surface defect detection, which has already been applied

at Luyuan Fruit Co., Ltd. in Jianning County, Sanming City, Fujian

Province. It is anticipated that this study will offer data support for

the future development of machine vision-based pear quality

grading systems and serve as a reference for other similar research.
2 Material and methodology

2.1 Pear surface defects dataset

The defect dataset in this study was collected by an image

acquisition system. In order to construct the dataset, a test bed for

image acquisition system was built in this study. depicted in the

schematic diagram in Figure 1, with an interior scene photograph

shown in Figure 2. There are mainly one TN-68A Ginon brand

computer sorter, three MV-SUA1600 industrial cameras

(resolution: 4608*3456, lens focal length: 6mm-18mm), one Acer

Aspire V15 T5000 laptop, one flash with instantaneous flashing

power of 300w (Model: CXBG-2-MC-SL-1211- 200), four 128W

LED lights and other components. Image acquisition components

are placed in a black dark box. In this way, each pear can be

captured from three different angles by three industrial cameras.

Moreover, the pears can be rolled on the conveyor belt, so that the

camera directly above can captures the whole surface of the pear

every 0.8s. The pears used in the experiment were pears from the

orchard in Sanming City, Fujian Province. Approximately 80 boxes

of various types of pears were purchased, totaling 1,000 kg. 63,000

images of pears with a resolution of 2048*1536px were captured

from 27th October to 5th November, 2023, at a room temperature

of 16°C on the experimental platform.

Since there are three different pears in a photo taken by the

camera directly above, we used YOLOv3 for pear recognition, and

then cropped based on the recognized candidate frames, which

ensured that there is only one intact pear in each photo, and we end

up with about 100,000 photos of pears. The images were labeled by

trained personnel who used the Labelme labeling tool to label the

bounding boxes for defects in the images. Examples of defects are

labeled with their abbreviated names rather than scientific names.

Where bruises and abrasions are of the same nature and extremely

similar in appearance, we uniformly labeled them as mechanical

injuries. The generated annotations were saved in JavaScript Object

Notation (JSON) file format, and then we visualized them for

multiple checks by fruit growing experts from the Chinese

Academy of Agricultural Sciences in Fujian Province, China, to

ensure the annotation quality. A pear surface defect dataset of

13,915 images containing 5 types of defects with 66189 annotated

frames was finally obtained. Due to the unbalanced distribution of

pear surface defects data, as shown in Figure 3, only the first 4 types

of defects were considered in this study, resulting in the

PearSurfaceDefects dataset, which is publicly available in the

Google Cloud Drive repository. According to the needs of
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subsequent research and actual deployment, we will continue to

update and enrich the categories of defects to improve the

annotation quality of the dataset. In our experiments, we found

that it is difficult for the model to distinguish those puncture

wounds that have been stored for a long time. Finally, after

asking experts from the Academy of Agricultural Sciences, we

learned that puncture wounds can also be categorized as

mechanical wounds, so we changed the labeling of puncture
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wounds to mechanical wounds in our experiments. To the best of

our knowledge, this is the first largest public dataset in pear surface

defect detection. Figure 4 illustrates example annotated images

where only one pear surface defect category is highlighted in each

row of images.
2.2 Defect detection

2.2.1 Object detection
DL-based object detectors typically consist of two main parts:

the trunk and the head (Bochkovskiy et al., 2020). The backbone

extracts features from high-dimensional inputs, usually pre-trained

on ImageNet data, and the head predicts the class and bounding

box of the object. Depending on whether or not a generative region

is suggested, object detectors can be categorized as two-stage and

single-stage (Liu et al., 2020). There are many layers between the

backbone and the head, which are usually used to capture feature

mAPs at different stages, which is also known as the neck of the

object detector.

YOLOv3 (Redmon and Farhadi, 2018) achieved optimal results

in real-time object detection compared to YOLO and YOLO9000

(Redmon et al., 2016; Redmon and Farhadi, 2017). YOLOv3 uses

Darknet-53 as the backbone network for feature extraction, where

YOLOv3-tiny is based on Darknet-19. YOLOv4 (Bochkovskiy et al.,

2020) differs significantly from YOLOv3. It uses the CSPDarknet-53

backbone (Wang C. Y. et al., 2020), as well as SPP (Spatial Pyramid

Pooling) and PAN (Path Aggregation Network) block

necks.YOLOv4 incorporates a number of training methods,

including ‘bag of freebies’ (methods that only increase the

training time methods) such as CutMix (Yun et al., 2019), Mosaic

Data Enhancement (Bochkovskiy et al., 2020) and DropBlock

regularization (Ghiasi et al., 2018), as well as ‘Bag of freebies’

(increasing training time) and ‘bag of specials’ (slightly increasing

inference time but significantly improving detection accuracy), such

as mish activation (Misra, 2019), cross-stage partial connectivity
FIGURE 2

Real view of the image acquisition experimental platform.
FIGURE 1

Simulation of image acquisition experimental platform, 1: Image acquisition box; 10: Fruit and vegetable conveying mechanism; 15: Support column;
4: Reflective fabric; 31: Low level lighting; 32: High level lighting; 3:Lighting device;11: Each set of cross beams; 111: Traversing guides; 12:
Longitudinal beams; 120: Second bolt; 13: Camera mounting bracket; 130: Third bolt; 14: Pendulum frame.
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and DIoU-NMS (Zheng et al., 2020). Scaled-YOLOv4 (Wang C. Y.

et al., 2021a) improved YOLOv4 using cross-stage partial networks

(Wang C. Y. et al., 2020), wanting to deploy YOLOv4 on a wider

range of computing devices (such as regular, low-end, and high-end

GPUs). Among these models, YOLOv4 for cloud GPUs- large

achieves the highest detection accuracy on the COCO dataset

(Wang C. Y. et al., 2021a).YOLOR (Wang C. Y. et al., 2021b) is

one of the excellent YOLO target detectors, and along with other

similar products such as YOLOX (Ge et al., 2021), YOLOF (Chen

et al., 2021), and PPYOLOv2 (Huang et al., 2021). Based on

YOLOv4-CSP (Wang C. Y. et al., 2021a), YOLOR integrates

implicit and explicit knowledge to learn a generic, unified

representation for multi-tasking. Tests show that YOLOR

achieves comparable accuracy to Scaled-YOLOv4 in target

detection tasks, but with significantly faster inference (Wang C. Y.

et al., 2021b).

Shortly after the release of YOLOv4 (Bochkovskiy et al., 2020),

Ultralytics LLC released YOLOv5 (Jocher, 2022), claiming that it

outperforms all previous YOLO versions (Thuan, 2021). YOLOv5

only released the code and did not publish the paper, which, along

with its structural similarity to YOLOv4, triggered some

controversy within the computer vision community about the

validity of its proposed name. The most important modification

of YOLOv5 relative to YOLOv4 is the migration of the anchor

frame selection process into the model (Nelson and Solawetz, 2020).

Nevertheless, YOLOv5 is still widely used and in some cases

performs better (Thuan, 2021). Currently, YOLOv5 is rapidly

iterating in the PyTorch framework, with the latest version being

YOLOv5-v7.0, which is very flexible in controlling model size and

can be deployed on many devices.

The versions of YOLO following YOLOv5 (Jocher, 2022) are

YOLOv6 (Li et al., 2022) and YOLOv7 (Wang C. Y. et al., 2022),
Frontiers in Plant Science 05
both of which have demonstrated superior performance in real-

time target detection. YOLOv6 features a range of updated designs

in network architecture, labeling assignments, loss functions, data

augmentation, and quantization, making it suitable for industrial

deployments. YOLOv7, proposed by the authors of YOLOv4

(Bochkovskiy et al., 2020) and Scaled-YOLOv4 (Wang C. Y. et al.,

2021a), implements an extended high-efficiency layer-aggregation

network and a variety of trainable ‘free-for-all-in-a-bag’ methods

(such as scheduled reparameterization and coarse-to-fine bootstrap

label assignment) to enhance network training and detection

accuracy without increasing inference time. On the COCO

dataset, YOLOv7 outperforms previous target detectors in both

speed and accuracy.

In 2023, Ultralytics LLC released YOLOv8 (Jocher, 2023),

which inherits the technological strengths of the YOLO family

while making significant improvements in accuracy and efficiency.

Compared to its predecessor, YOLOv8 introduces an improved

auto-learning anchor box mechanism and an enhanced feature

extraction network, which improves detection of small objects and

generalization performance in complex scenes. Additionally,

YOLOv8 supports multi-scale training and inference, providing

greater flexibility and adaptability. The model is published on

GitHub, allowing developers to directly access and contribute to

it. Although it has not undergone the traditional peer review

process, it has been widely used in real-world applications

demonstrating excellent performance.

While researching this work, YOLOv9 (Wang C. Y. et al., 2024)

was introduced, further pushing the boundaries of the YOLO

family, particularly in terms of the accuracy and efficiency of real-

time object detection. It addresses the issue of information loss in

deep neural networks by introducing Programmed Gradient

Information (PGI) and reversible functions, technical innovations
FIGURE 3

The pear surface defect detection dataset contains 13,915 images with 5 categories of defects and labels, which contains 66186 bounding boxes,
due to the imbalance of defect categories and the fact that puncture wounds do not require the grading task in our study. So only 4 categories of
labels were used in this.
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that significantly improve the model’s ability to learn and retain

critical information.YOLOv9 also employs the Generalized Efficient

Layer Aggregation Network (GELAN), which improves parameter

utilization and computational efficiency. Compared to the previous

generation of models, YOLOv9 achieves higher detection accuracy

and speed while maintaining or reducing computational

requirements, making it ideal for high-performance real-time

applications. The release of YOLOv9 is also available on GitHub

for easy access and optimization by the community, although it has

not undergone the traditional academic review process.

In the field of object detection, the application of Transformer

(Vaswani et al., 2017) models has increasingly garnered attention.

The DETR (Detection Transformer) (Carion et al., 2020) model

integrates the strengths of traditional CNNs and Transformer

models, while RT-DETR (Zhao et al., 2024) employs CNN as the

backbone for feature extraction and incorporates a Transformer

encoder in the final layer of the feature extraction network to

establish global feature correlations. In the neck network, RT-DETR

utilizes a CCFM module, inspired by the PAFPN structure, and
Frontiers in Plant Science 06
integrates top-down and bottom-up feature maps through a fusion

module, further enhancing the model’s performance in multi-scale

object detection. The recently released RT-DETRv2 (Lv et al., 2024)

improves upon RT-DETR by introducing multi-scale selective

feature extraction, optional discrete sampling operators, and

optimized training strategies, further enhancing detection

performance and practicality while maintaining efficient real-time

processing. In contrast, D-FINE (Peng et al., 2024) is a state-of-the-

art real-time object detection model that significantly enhances

localization accuracy and overall performance by redefining the

bounding box regression task within the DETR model. It combines

fine-grained distribution refinement (FDR) with globally optimal

localization self-distillation (GO-LSD), achieving an impressive

balance between speed and accuracy.

In this study, the seven YOLO object detectors described above,

including Scaled-YOLOv4, YOLOR, YOLOv5, YOLOv6, YOLOv7,

YOLOv8, and YOLOv9 were selected for use in developing a surface

defect detection model for the pear dataset. Additionally, three

Transformer-based object detectors—RT-DETR, RT-DETRv2, and
FIGURE 4

Example images of the pear surface defect dataset. Each row shows a randomly selected image of each pear surface defect, with the corresponding
defect instances labelled by bounding boxes.
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D-FINE—were chosen for comparison. Although previous studies

had conducted pear defect identification, they were based on

classification models and were not able to pinpoint the location of

the defects (Sun et al., 2022; Zhang et al., 2021). There is a recent

study that used a detection model to identify pear surface defects,

but it only identified one pear surface defect (Xie et al., 2023). A

comprehensive evaluation study of a range of YOLO detectors

detecting multiple categories of surface defects for the Mile Pear

dataset species has not yet been conducted. It is important to note

that the selected detectors come with open-source software

packages provided by their developers, with hyperparameters for

training summarized in Table 1. These software packages were

adapted for use in this study to train the pear surface defect

detection model.

2.2.2 Experiments
Figure 5 illustrates a flowchart of the modeling used for pear

surface defect detection. The original image annotations in JSON

format, generated using the labelme annotation tool were converted

into YOLO format labels for YOLOv4, YOLOv5, YOLOv6,

YOLOv7, YOLOv8 and YOLOv9. After the format conversion,

the image dataset was randomly divided into training, validation,

and test subsets according to a division ratio of 8:1:1 (11,132-1,391-

1,392 images), respectively.

To facilitate the training of the model, the selected YOLO object

detectors were trained using migration learning (Zhuang et al.,

2020) by fine-tuning the pre-training weights (Lin et al., 2014).

During training, the image of the input model was adjusted to a

resolution of 640 × 640 pixels, as shown in the YOLO network

architecture.YOLOv5 through YOLOv9 were implemented in the
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PyTorch framework (version 2.0.1 + cu118) (Paszke et al., 2019),

while Scaled-YOLOv4 and YOLOR were in PyTorch (version 1.8.2

+ cu111). RT-DETR, RT-DETRv2, and D-FINE were implemented

in the PyTorch framework (version 2.0.1 + cu118). All models were

trained with a total batch size of 120 for 100 epochs. We trained all

detectors on 8 GPUs. All detectors using cosine annealing (He et al.,

2019) to adjust the learning rate over time. All other

hyperparameters used the default settings from the official

implementation (see Table 1). The computational resources for

the model training and testing experiments are composed of three

GPU compute servers, each with the following GPU computational

resources: 2 AMD EPYC 7763 CPUs with 128 cores. 16 sticks of

64GB DDR4 3200MHz RAM for a total of 1TB of RAM; 2 blocks of

3.84TB U.2 2.5-inch PCIE 4.0 enterprise-grade SSDs; 1 dual-port 10

Gigabit fiber optic network card (Full optical module); 8 NVIDIA

3090 turbo cards.

In image classification, data enhancement can improve model

accuracy in object detection (Zoph et al., 2020). Although, YOLO

introduces data augmentation during model training, data

augmentation used in isolation can still improve model accuracy.

Therefore, in order to improve the detection accuracy, the training

dataset is augmented by randomly applying one of the 10 geometric

and photometric transformations shown in Figure 6 on the

individual training images. Here, to preserve the computational

cost, only two cases of data augmentation are considered, i.e.,

doubling and quadrupling the original training set, respectively

(Figure 5). These transformations are implemented using the image

enhancement package Albumentations (Buslaev et al., 2020).

Bounding box information for each defect also needs to be saved

during data enhancement. In this study, Data enhancement
TABLE 1 Summary of benchmark models and hyperparameters.

Index Yolo
models

Total
Batch

Epochs Optimizer Momentum Weight
Decay

Learning
Rate (lr0)

Scheduler Input
Size

Reference

1 Scaled-
YOLOv4

120 100 SGD 0.937 0.0005 0.0100 Cosine
Annealing

Wang C. Y.
et al. (2021a)

2 YOLOR 120 100 SGD 0.937 0.0005 0.0100 Cosine
Annealing

Wang C. Y.
et al. (2021b)

3 YOLOv5 120 100 SGD 0.937 0.0005 0.0100 Cosine
Annealing

Jocher (2022)

4 YOLOv6 120 100 SGD 0.937 0.0005 0.0100 Cosine
Annealing

Li et al. (2022)

5 YOLOv7 120 100 SGD 0.937 0.0005 0.0100 Cosine
Annealing

Wang C. Y.
et al. (2023)

6 YOLOv8 120 100 SGD 0.937 0.0005 0.0100 Cosine
Annealing

Jocher (2023)

7 YOLOv9 120 100 SGD 0.937 0.0005 0.0100 Cosine
Annealing

Wang C. Y.
et al. (2024)

8 RT-DETR 120 100 AdamW N/A 0.0000 0.0001 Cosine
Annealing

Zhao et al. (2024)

9 RT-
DETRv2

120 100 AdamW N/A 0.0000 0.0001 Cosine
Annealing

Lv et al. (2024)

10 D-FINE 120 100 AdamW N/A 0.0001 0.0008 Cosine
Annealing

Peng et al. (2024)
frontiersin.org

https://doi.org/10.3389/fpls.2025.1483824
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2025.1483824
experiments were conducted on three YOLO models, namely,

YOLOv6n (as shown in Table 2, with the lowest value at mAP@

0.5), YOLOv4-p7 (as shown in Table 2, with the highest value at

mAP@0.5) and YOLOv5s, to check their effectiveness.
2.3 Performance evaluation indicators

The performance of the object detector in pear surface defect

detection is evaluated based on detection accuracy, model

complexity, and inference time (Dang et al., 2022), as

described below.

2.3.1 Detection accuracy
The detection accuracy of the trained model was evaluated on

the test data using common metrics for object detection

(Everingham et al., 2015; Padilla et al., 2020), which include

precision (P), recall (R), and mean average precision (mAP, i.e.,

mAP@0.5 and mAP@[0.5:0.95]). Among these metrics, mAP is the

main metric used to evaluate object detectors in multi-category

object detection.

2.3.2 Number of model parameters
The number of model parameters is a direct indicator for

assessing the complexity of a model and is one of the key factors

that must be taken into account when actually deploying it. Models

with more parameters usually require more memory, which affects

their deployability on various devices. In addition, the number of

parameters significantly affects computational cost and inference

time. More parameters mean more computational resources and
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longer processing time are required in real-world applications,

which may affect the efficiency and usefulness of the model. (see

Section 2.3.3 for more details).

2.3.3 Computational cost and inference time
Floating point operations (FLOPs) are commonly used as a

measure of the computational power of a model, i.e. the number of

operations required to run the model to process a single instance. as

another criterion for evaluating model complexity. Inference time,

which refers to the time taken by the model to make predictions

about the input image, is critical for real-time applications. Here,

the inference time for each YOLO detector is the average time

required to compute predictions for all test set images. Unlike

FLOPs, inference time is affected by the computational hardware, so

the same model may have different inference times on different

hardware. FLOPs provide a hardware-independent measure of

computational complexity, whereas inference time reflects

performance in real-world deployments.
3 Results and discussion

3.1 Performance of the YOLO model

Figure 7 shows the training curves for mAP@0.5 and mAP@

[0.5:0.95] for the top 8 detectors in terms of accuracy of pear surface

defect detection. The training curves for the other models are not

shown here due to space constraints. Overall, these models show

objective training performance in terms of fast convergence and

high detection accuracy, achieving 63% of mAP@0.5 and 45% of
FIGURE 5

Flow of YOLO object detector for pear surface defect detection.
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mAP@[0.5:0.95] within 50 training cycles. Training showed that the

accuracy of all models (including those not shown in Figure 7)

stabilized after more than 70 cycles, validating the adequacy of 100

cycles of training in this study.

Table 2 summarizes the performance results of all YOLO

detection models. The trained models are publicly available on

the project’s GitHub site. Overall, all 27 models achieve

considerable accuracy in detecting defects on pear surfaces.

mAP@0.5 values range from 63.60% for YOLOv6n to 71.20% for

Scaled-YOLOv4-p5. The accuracy of mAP@[0.5:0.95] ranges from

42.50% for YOLOv7D6 to 47.10% for YOLOv9-e. mAP@[0.5:0.95]

values are lower than those of mAP@0.5 because the former uses

higher IoU thresholds (which implies stricter criteria) to compute

the APs. Figure 8 illustrates the results obtained by the YOLOv6n

and Scaled -YOLOv4-p5 predicted image examples. These two

models produce visually good predictions in the pear surface

defect complication images, even for defects that are difficult to

distinguish by the human eye. The prediction results for the test

images have also been collated into a video presentation, which can

be viewed on the GitHub website. Overall, these results demonstrate
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the effectiveness of the chosen YOLO object detector in multi-class

surface defect detection.

In order to examine the performance differences between the

seven different types of YOLO detectors, an average accuracy value

was obtained by calculating the average accuracy of the results for

the different model variants within each detector type (see Table 2).

On average, Scaled-YOLOv4’s mAP@0.5 and YOLOv9’s mAP@

[0.5:0.95] were the best, with 70.39% and 47.75%, respectively,

followed by YOLOv9 and YOLOR’s mAP@0.5, with similar and

higher accuracies, and then YOLOv7, YOLOv5, YOLOv6 and

YOLOv8 While the average accuracies may not be a rigorous

metric for comparing different types of YOLO detectors, their

differences seem to indicate that the YOLOv4-based detection

models (models indexed 1-6 in Table 2) perform better than the

YOLOv5- and YOLOv6-based models in terms of pear surface

defect detection accuracy. It is worth noting that more recent YOLO

detectors (YOLOv8 and YOLOv9) achieved the most recent

accuracies when benchmarked on the COCO dataset, but they did

not outperform the earlier YOLO detectors, including Scaled-

YOLOv4 and YOLOR. The exact reasons for the lower accuracy
FIGURE 6

Example of basic image enhancement of two pear defect images, each processed by ten different conventional image enhancement methods.
Images with different colored bounding boxes indicate different defect types and the bounding box information is preserved during the image
enhancement process.
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of these two newer models are yet to be investigated, but it is

important to note that the performance of YOLO detectors may be

specific to the object detection task and dataset, as observed in the

literature (Nepal and Eslamiat, 2022) and also discussed at https://
Frontiers in Plant Science 10
github.com/AlexeyAB/darknet/issues/5920. The ad hoc design of

network training and data enhancement techniques in recent

YOLO detectors may not lead to performance improvements

when transferring YOLO models pre-trained and evaluated on
TABLE 2 Pear surface defect detection performance of 27 YOLO detectors on the test dataset.

Index YOLO models Precision Recall mAP@0.5 mAP@[0.5:0.95] Inference Time(ms)

1 Scaled-YOLOv4 YOLOv4-P5 58.60 76.00 67.20 45.40 14.0

2 YOLOv4-P6 57.50 80.60 69.60 46.00 15.8

3 YOLOv4-P7 56.20 80.40 71.20 46.50 29.0

Average 57.43 79.00 69.33 45.97 19.6

4 YOLOR YOLOR-P6 59.30 74.20 67.20 43.70 3.9

5 YOLOR-w6 58.70 73.90 68.90 45.60 4.6

6 YOLOR-CSP-X 56.80 75.30 69.10 44.30 10.6

Average 58.27 74.47 68.40 44.53 6.4

7 YOLOV5 YOLOV5n 67.50 65.90 65.30 44.30 1.2

8 YOLOV5s 71.60 65.10 65.40 43.60 1.6

9 YOLOV5m 70.90 65.40 64.50 43.60 3.5

10 YOLOV5l 68.40 62.90 64.30 43.20 5.8

11 YOLOV5x 68.80 63.20 65.40 43.20 11.0

Average 69.44 65.30 64.98 43.58 4.6

12 YOLOv6 YOLOV6n 68.20 63.80 63.60 44.30 1.1

13 YOLOV6s 66.80 59.00 63.70 44.00 2.3

14 YOLOV6m 65.10 60.00 64.70 44.70 4.8

15 YOLOV6l 65.20 60.50 63.80 45.10 7.4

Average 66.33 60.83 63.95 44.53 3.9

16 YOLOv7 YOLOv7 70.50 63.80 66.50 44.30 4.0

17 YOLOv7x 68.20 65.40 67.30 44.40 6.4

28 YOLOv7W6 68.30 65.20 65.90 44.00 3.8

19 YOLOv7E6 69.00 61.30 64.10 43.80 5.6

20 YOLOv7D6 67.30 63.50 64.20 42.50 6.8

Average 68.66 63.84 65.60 44.94 5.3

21 YOLOv8 YOLOV8n 68.90 62.10 64.80 44.10 1.6

22 YOLOV8s 67.10 63.50 64.80 44.50 2.7

23 YOLOV8m 67.10 65.40 65.30 44.50 5.2

24 YOLOV8l 69.00 64.00 64.90 45.10 8.1

25 YOLOV8x 68.20 63.80 65.60 44.30 13.4

Average 68.06 63.76 65.08 44.70 6.2

26 YOLOv9 YOLOV9-c 69.60 65.10 68.30 45.60 14.0

27 YOLOV9-e 72.40 67.20 70.20 47.10 18.1

Average 71.00 66.15 69.25 46.35 16.05
Percentages of precision, recall, mean average precision (mAP) and inference time.
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COCO data to a different domain dataset, unless dedicated domain

adaptation work has been performed (Dang et al., 2023).

The detection accuracy of each pear surface defect category was

further examined. Due to space limitations, only the results

obtained by YOLOv5s and YOLOv6s are shown here,

summarized in Table 3. The accuracy of pear surface defect

detection may be affected by factors such as the number and size

of bounding boxes, biological variation between classes, and defect
Frontiers in Plant Science 11
similarity between classes. During annotation, we found that

abrasions and bruises were very similar, and we eventually

referred to them as mechanical injuries. Moreover, punctures and

mechanical injuries already present in the dataset are also very

similar, with many defects have very similar features, making it very

difficult to distinguish them. For the characteristic class such as

pear, each detector achieved a mAP value of 99%, but for defects

with complex features, the accuracy was not very high, which
FIGURE 8

Pear surface defect detection with prediction boxes.
FIGURE 7

Training curves of mAP@0.5 and mAP@[0.5:0.95] of the YOLO model for the first 8 defect detections.
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determined our direction for future maintenance and expansion of

this dataset.

The first two sub-figures in Figure 9 depict the relationship

between the number of model parameters and GFLOPs and

inference time for all tested YOLO detectors. GFLOPs and inference

time increase linearly with the number of model parameters. Among

the seven types of YOLOmodels, Scaled-YOLOv4 appears to have the

highest GFLOPs and the longest inference time of 29.00 milliseconds.

In contrast, the YOLOv5 model, especially the two simplified versions

YOLOv5n and YOLOv5s, is the most computationally efficient and

has fastest inference (consuming less than 2 milliseconds). Figure 9

also depicts the relationship between model inference time and

mAP@[0.5:0.95]. There may be a trade-off between accuracy and

inference time in model selection, as high accuracy is often associated

with longer inference time. Overall, all YOLO detectors tested in this

study have the potential to perform surface defect detection under

real-time conditions of tens or even hundreds of frames per second.

However, since the models were tested on advanced computing

hardware, further testing of these models on embedded devices

is needed.
3.2 Data augmentation

To investigate the impact of the data augmentation methods

described in Section 2.2.2 on the model performance, experiments
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were conducted on three selected YOLO detectors, namely

YOLOv6n (worst performance in terms of mAP@0.5), YOLOv4-

P7 (best performance in terms of mAP@0.5), and YOLOv5s, with

and without data augmentation. Figure 10 shows the training curves

of the three YOLO detectors. Obviously, data augmentation

significantly speeds up the training process for all three models.

Both YOLOv4-P7 and YOLOv5n achieve performance gains in

terms of mAP@0.5 and mAP@[0.5:0.95]. Table 4 shows the

comparison of the detection accuracy metrics of the YOLO

detectors with and without data augmentation. Data

augmentation has a positive impact on the performance of

YOLOv4-P7 and YOLOv5n. Using four times the data

augmentation, YOLOv4-P7 achieves significant increases in

mAP@0.5 and mAP@[0.5:0.95], from 71.20% to 73.20% for

mAP@0.5 and from 46.50% to 47.80% for mAP@[0.5:0.95].

YOLOv5n also achieves slight increases in mAP@0.5 and mAP@

[0.5:0.95], despite the inclusion of advanced data augmentation

(CutMix and Mosaic data augmentation) in its modeling process.

However, for YOLOv6n, mixed performance is observed, indicating

that the data augmentation proposed in Section 2.2.2 may not be

effective enough for YOLOv6n. Considering that the YOLOv6

detector already incorporates standard data augmentation

methods, further non-customized data augmentation may not

necessarily contribute to the accuracy improvement. Further

research is needed to optimize the data augmentation strategy for

the YOLO detector for pear surface defect detection.
FIGURE 9

GFLOPs and inference time (milliseconds) versus number of parameters (millions), and mAP@[0.5:0.9] versus inference time. Detection models in the
same type of YOLO detector are labeled with the same color markers. GFLOPs stands for 100 billion floating point operations (FPLOPs), which is
equal to 10^9 FLOPs, and mAP stands for mean average precision.
TABLE 3 The detection results of YOLOV5n and YOLOV6n for each category, where P, R and mAP represent the precision, recall and average
precision respectively.

Index Class YOLOv5n YOLOv6n

P R mAP@0.5 mAP@[0.5:0.95] P R mAP@0.5 mAP@[0.5:0.95]

1 all 67.50 65.90 65.30 44.30 68.20 63.80 63.60 44.30

2 pear 99.40 99.70 99.40 96.00 99.20 99.40 99.20 97.80

3 bruise 53.5 53.20 50.00 18.80 51.80 49.80 48.70 20.20

4 twig 52.60 46.40 44.10 17.00 51.30 49.80 48.70 20.00

5 rot 64.40 64.30 67.50 45.50 70.30 57.10 58.50 39.30
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3.3 Discussion

Research on multi-class pear surface defect detection and

localization is scarce in the literature. This is partly due to the

lack of suitable pear surface defect datasets with multi-class

bounding box annotations. As machine vision-based fruit grading

systems are evolving towards the next generation of high-accuracy

and control for specific pear defects, it becomes increasingly

important to distinguish the species of pear surface defects and

detect individual defect instances. Although considerable efforts

have been made in the classification of pear image defects

(Sun et al., 2022; Zhang et al., 2021), few studies have focused on

multi-class pear surface defect detection, especially with large-scale,

multi-class pear surface defect data. Extending from our previous

work on ‘Cuiguan Pear’ grading (Liu et al., 2023), this study

addresses this issue by creating and releasing a 6-class pear

surface defect dataset with tens of thousands of bounding box

annotations collected on an image acquisition system. In addition,

we establish a comprehensive benchmark for pear surface defect

detection using the state-of-the-art YOLO detector, which performs

well in terms of detection accuracy and fast inference time.
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In addition to YOLOmodels, we further explored Transformer-

based object detection models, including RT-DETR, RT-DETRv2,

and D-FINE. These models demonstrated significant potential in

handling complex pear surface defect images. Table 5 presents a

comparison between the fastest inference and highest mAP@0.5

YOLO detection models and advanced Transformer-based object

detection models. For the Transformer models, we selected both the

smallest and largest parameter versions for experimentation.

Among these Transformer-based models, RT-DETRv2-X achieved

the highest precision with an mAP@0.5 of 68.10%, approaching the

performance of YOLOv4-P7, albeit with an inference time of 31.5

ms, which is slightly slower than the latter. D-FINE-N achieved the

fastest inference time among the Transformer models at 10.0 ms,

but both its precision (mAP@0.5) and inference speed were inferior

to YOLOv6. Based on the experimental results, YOLO models

appear to be better suited for pear surface defect detection and

grading tasks, while Transformer-based models exhibit remarkable

potential in balancing precision and inference time.

This study has several limitations that require further

improvements. This study does not aim to evaluate all YOLO-

based object detectors for pear surface defect detection, there are
TABLE 4 Defect detection performance of three YOLO models on the pear surface defect detection dataset (without data augmentation and with
data augmentation).

Models Precision Recall mAP@0.5 mAP@[0.5:0.95]

YOLOV6n 68.20 63.80 63.60 44.30

YOLOV6n-agu(X2) 62.40 64.00 64.00 44.80

YOLOV6n-agu(X4) 64.20 65.10 63.10 44.90

YOLOv4-P7 56.22 80.44 71.20 46.50

YOLOv4-P7-agu(X2) 55.60 79.40 73.10 47.60

YOLOv4-P7-agu(X4) 57.10 78.80 73.20 47.80

YOLOV5n 67.50 65.90 65.30 44.30

YOLOV5n -agu(X2) 66.30 66.50 67.10 44.80

YOLOV5n-agu(X4) 67.10 65.37 67.10 44.10
FIGURE 10

Training accuracy curves of three YOLO models with and without data augmentation.
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other YOLO models with good performance, such as YOLOX (Ge

et al., 2021), PP-YOLOv2 (Huang et al., 2021), and YOLOv3

(Redmon and Farhadi, 2018), were not experimented,. However,

these models will be tested and incorporated in the benchmark that

we will actively update as we continue to update and expand the

pear surface defect detection dataset with future efforts. The data

augmentation experiments in this study need to be improved in a

more systematic way. Cross-dataset evaluation is required to assess

the robustness or generalization ability of data augmentation

methods. Critical factors that may affect model performance, such

as the number of augmented images and image augmentation or

synthesis approaches, should be further studied. This will be of great

benefit in reducing the amount of effort and resources required for

image acquisition and annotation. In this regard, it is worth noting

that small object data augmentation methods may be more suitable

for the pear surface defect dataset (most defects are small objects),

because small object data augmentation methods are a type of data

augmentation method designed for detecting or recognizing small

objects (such as small objects or low-resolution objects in images).

When dealing with small objects, there are usually some challenges,

such as small object size, low information content, and

susceptibility to noise interference. Therefore, small object data

augmentation (Kisantal et al., 2019) aims to improve the

performance and robustness of small object detection or

recognition models through a series of technologies.

In future research, the pear surface defect detection model

developed in this study will be systematically verified by being

deployed on the pear grading equipment built by the Fujian

Academy of Agricultural Sciences. The focus will be on

confirming the model’s out-of-distribution robustness (Hendrycks

et al., 2021), which is crucial for practical applications. Preliminary

tests on the fruit grading equipment using the YOLOv4-p7 model

achieved the best mAP@0.5 in this study, which confirmed its

effectiveness in the fruit grading equipment of Fujian Academy of

Agricultural Sciences. Accurate grading of pears was achieved.

However, more extensive and dedicated research is needed to

understand and improve the robustness under different

imaging conditions.
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The pear defect dataset and software program developed in this

research will be available and public gradually. It is expected that this

research will have a positive impact on future research to develop

machine vision-based surface defect detection for pears (and possibly

other fruits). The main contributions of this paper are as follows:
1. A diverse dataset of pear surface defects including 13,915

images in 6 categories.

2. A comprehensive evaluation and benchmark of 27 state-of-

the-art YOLO object detectors for multi-class surface

defect detection.

3. The effect of data augmentation on the performance of the

YOLO model was examined.
4 Conclusion

Pear surface defect detection is crucial for pear quality grading.

The detection of pear surface defects involves constructing a large-

scale, accurately labeled defect dataset and thereby developing

supervised learning models. This paper introduces the largest pear

surface defect detection dataset related to the pear quality grading

system to date, including 13,915 images in 6 categories of surface

defect with a total of 66,189 bounding box annotations, which were

collected on an image acquisition system built. A comprehensive

benchmark suite of 27 selected YOLO object detectors was

established through transfer learning for multi-class pear surface

defect detection, which was evaluated in terms of detection

accuracy, model complexity, and inference time. The inference

time of YOLOv6n is just 1.1 milliseconds, enabling real-time pear

surface defect detection. Even the slower YOLOv4-P7 achieves an

inference time of only 29.0 milliseconds, further demonstrating that

these YOLO models are fully capable of performing real-time pear

surface defect detection. Having captured a vast collection of over

100,000 photos, we have so far annotated only a fraction of these,

just above 10,000. Nonetheless, our team will continue to update

and maintain the dataset to advance our detection capabilities.
TABLE 5 Performance of YOLO and transformer-based models in pear surface defect detection on the test dataset, detailing precision, recall, mean
average precision (mAP), and inference time.

Index YOLO
models

Precision Recall mAP@0.5 mAP@
[0.5:0.95]

Inference
Time(ms)

1 YOLOv6 YOLOV6n 68.20 63.80 63.60 44.30 1.1

2 Scaled-YOLOv4 YOLOv4-P7 56.22 80.44 71.20 46.50 29.0

3 RT-DETR rtdetr_r18vd 65.30 67.90 61.70 41.50 19.6

4 rtdetr_r101vd 71.10 65.10 68.00 46.40 33.0

5 RT-DETRv2 RT-DETRv2-S 68.20 63.80 62.10 41.50 18.0

6 RT-DETRv2-X 71.00 65.30 68.10 46.50 31.5

7 D-FINE D-FINE-N 68.20 63.80 62.70 42.10 10.0

8 D-FINE-X 66.80 59.00 65.20 43.40 18.8
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