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and Mikhail G. Divashuk1
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and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow
Region, Russia
Digital phenotyping is a fast-growing area of hardware and software research and

development. Phenotypic studies usually require determining whether there is a

difference in some trait between plants with different genotypes or under

different conditions. We developed StatFaRmer, a user-friendly tool tailored for

analyzing time series of plant phenotypic parameters, ensuring seamless

integration with common tasks in phenotypic studies. For maximum versatility

across phenotypic methods and platforms, it uses data in the form of a set of

spreadsheets (XLSX and CSV files). StatFaRmer is designed to handle

measurements that have variation in timestamps between plants and the

presence of outliers, which is common in digital phenotyping. Data preparation

is automated and well-documented, leading to customizable ANOVA tests that

include diagnostics and significance estimation for effects between user-defined

groups. Users can download the results from each stage and reproduce their

analysis. It was tested and shown to work reliably for large datasets across various

experimental designs with a wide range of plants, including bread wheat

(Triticum aestivum), durum wheat (Triticum durum), and triticale (×

Triticosecale); sugar beet (Beta vulgaris), cocklebur (Xanthium strumarium) and

lettuce (Lactuca sativa), corn (Zea mays) and sunflower (Helianthus annuus), and

soybean (Glycine max). StatFaRmer is created as an open-source Shiny

dashboard, and simple instructions on installation and operation on Windows

and Linux are provided.
KEYWORDS

high-throughput plant phenotyping, phenotypic data visualization, time series analysis,
digital phenotyping platforms, genotype-phenotype analysis, statistical analysis of
phenotypic data, open-source software, automated data analysis
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1 Introduction

Digital phenotyping is crucial for tackling challenges like

climate change, population growth, and environmental stress

(Pieruschka and Schurr, 2019). Until recently, traditional methods

of phenotyping did not align with the capabilities of high-

throughput genome sequencing and genotyping techniques. These

limitations have prompted scientists from diverse fields, including

agriculture and engineering, to explore new technologies for

phenotyping (Al-Tamimi et al., 2022).

The rapid advancement of high-throughput plant phenotyping

(HTPP) tools has resulted in platforms generating enormous

amounts of data (Li et al., 2021). High-throughput experiments are

conducted both in controlled and field settings through the extensive

use of frequent, non-destructive automatic sampling and/or

monitoring of several hundreds to thousands of plants within a

short period (Al-Tamimi et al., 2022). Comprehensive phenome-

wide data facilitate comparisons across populations, enabling

phenomics to characterize diverse traits, including structural,

physiological, and performance metrics under different

environmental conditions (Rahaman et al., 2015; Demidchik et al.,

2020). When dealing with large volumes of data, the statistical power

of analysis increases. This is particularly true in cases where time

series data are involved. Also, in HTPP input data can be highly

heterogeneous, such as during studies of different plant varieties and

genotypes and different treatments and sites of the studies. Analysis

and interpretation of data by appropriate techniques and tools are

required. To maximize the potential of HTPP, it is essential for

researchers to be able to manage large datasets. This necessitates the

efficient collection and management of data, which is most effectively

achieved through automated processes (Araus et al., 2022).

A number of companies and research institutes have developed

high-capacity phenotyping platforms, both indoor and outdoor,

such as Traitmill (CropDesign, Belgium) (Lobet, 2017),

HyperAIxpert (LemnaTec, Germany) (HyperAIxpert Family -

LemnaTec), and The Plant Accelerator (Australian Plant

Phenomics Network, Australia) (Australian Plant Phenomics

Network, [[NoYear]]). Such platforms are used to assess crop

features related to productivity and tolerance to stressors like

salinity (Lazarević et al., 2021; Li et al., 2022), drought (Hein

et al., 2021; Joshi et al., 2021; Kim et al., 2021; Javornik et al.,

2023), low temperature (Islam et al., 2021). They employ advanced

technologies, including imaging stations, automated systems, and

proprietary software, to conduct efficient analysis of plant

characteristics. In addition, various software solutions have been

developed to automatically extract standard features from images,

such as plant height and width, utilizing open-source platforms

such as HTPheno (Hartmann et al., 2011) and the Integrated

Analysis Platform (IAP) (Yang et al., 2020).

Regardless of the method used to collect data on plant

phenotype, the next essential step is statistical analysis of the

results. Critical for the average user is the self-sufficiency in

employing analytical tools, eliminating the need for recurrent

solution development. Regrettably, the embedded analytical tools
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in mainstream digital phenotyping platforms frequently fall short in

managing extensive datasets with diverse attributes.

Contemporary methodologies of time series analyses of

phenotypic data prevalent in recent publications routinely entail

procedures such as outl ier identificat ion, percentage

transformations, ANOVA, and post-hoc Tukey’s test (Kjaer and

Ottosen, 2015; Minervini et al., 2017; Parmley et al., 2019; Kim et al.,

2020; Leiva et al., 2021; Nyonje et al., 2021; Schmidt et al., 2023;

Tripodi et al., 2024). With the rapid increase in data volume, it has

become clear how crucial it is to be able to seamlessly visualize and

validate digital phenotyping data in an automated manner.

Excellent example of a solution to this problem was given in the

work of Schmidt et al (Schmidt et al., 2023), where detecting and

rectifying any potential phenotyping artifacts at an early stage was

essential for conducting Genome-Wide Association Studies

(GWAS) on a scale of nearly a thousand lines.

In the realm of plant phenotypic data preprocessing, a noteworthy

tool is AllInOne Pre-processing (Yoosefzadeh Najafabadi et al., 2023),

an open-source R-Shiny package that offers efficient solutions for data

management. This package includes advanced features such as

handling missing data, visualizing datasets, detecting outliers,

estimating correlations, normalizing data, and conducting spatial

analyses, all optimized for speed and user experience.

Building on this philosophy, our approach prioritizes extended

longitudinal studies and integrates specialized methods for

controlled environment time series analysis. StatFaRmer

(Statistical Analysis for Farmers using R) is an open-source web

tool that can be installed locally, requiring no prior knowledge of R.

Standard software bundled with phenotyping tools often falls short

in providing user-centric interfaces for specific tasks, highlighting the

need for a more intuitive design that meets diverse hardware and

software requirements. The development goal for StatFaRmer was an

enhanced data processing and insights generation in time-series data.

The key requirements for the tool included:
1. Data Processing and Outlier Filtering: Implementing robust

data processing techniques to filter out outliers and ensure

the integrity and accuracy of the time-series data. The tool

defaults to easily interpretable Z-score outlier detection,

which can be switched to IQR outlier detection for less

normal data by adjusting the options at the beginning of the

main script. Outlier removal can be entirely bypassed by

commenting out the “remove outlier groups” section of the

main script. Additionally, the skewness and kurtosis of each

selected group within the data can be tracked using the

“Descriptive” tab in the StatFaRmer application.

2. ANOVA: Incorporating ANOVA analysis with post-hoc

Tukey’s test to enable users to perform statistical

comparisons and identify significant differences among

various groups within the time-series data. The Shapiro-

Wilk test and diagnostic plots are offered alongside ANOVA

to evaluate normality and, thus, reliability of ANOVA results.

The specific ANOVA model incorporates user-defined terms

and is prominently displayed above the plot. While you can
frontiersin.org
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adjust the number of terms, only two-way interactions

between them are considered to improve the clarity of

the results.

3. Data Subsetting: Developing capabilities for data

subsetting, allowing users to focus on specific subsets of

the time-series data for more targeted and detailed analysis.

4. Factor Selection and Faceting: Enabling selection of

phenotyping traits to facilitate in-depth analysis by

grouping and examining data based on specific variables

or factors.

5. Download Table with Statistics: Enabling users to

download tables with comprehensive statistics, including

selected grouping parameters such as gene, treatments,

cultivar, and time clusters. This feature empowers users

to access and utilize data insights offline for further analysis

and reporting purposes.
Functionality and performance of the StatFaRmer tool was

tested on plant data obtained using TraitFinder (Phenospex,

Netherlands) (TraitFinder digital phenotyping workstation on

wheels for lab- and greenhouse phenotyping automation -
tiers in Plant Science 03
PHENOSPEX) high-performance phenotyping platform,

complemented by our custom annotations of accessions.
2 Methods

2.1 Development of StatFaRmer

StatFaRmer was developed fully with R (R Core Team, 2024)

and consists of an initial processing script main.R, which can be

modified to better work with a new experiment, and a shiny app.R,

which allows users to visualize the data and quickly test a number of

hypotheses, as shown in Figure 1.

The script main.R is equipped with functions that can handle

various tasks using four groups of R packages:
• The first group consists of libraries that are primarily used

for project stability and data validation: checkmate (Lang,

2017) for ensuring the validity of input data, logger

(Daróczi, 2024) for testing tool’s interactivity, and renv

(Ushey, 2023) for managing project dependencies.
FIGURE 1

The overall block-scheme of the StatFaRmer platform. The block types are categorized: bold blocks represent required hardware and optional data
sources, regular blocks indicate input and output files, and dashed blocks depict processing units and concepts.
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• The second group includes tidyverse (Wickham et al., 2019)

packages that focus on data manipulation and

transformation: magrittr (Bache and Wickham, 2022) and

rlang (Henry and Wickham, 2024) for simplifying code

structure, purrr (Wickham and Henry, 2023) for functional

programming, dplyr (Wickham et al., 2023a) for data

manipulation, forcats (Wickham, 2023a) for handling

categorical data, stringi (Gagolewski, 2022), stringr

(Wickham, 2023b) and glue (Hester and Bryan, 2024) for

string manipulation; readr (Wickham et al., 2024a), readxl

(Wickham and Bryan, 2023) for reading tabular data, tibble

(Müller and Wickham, 2023) for data structure, tidyr

(Wickham et al., 2024b) for data tidying; with addition of

janitor (Firke, 2023) for data cleaning, and lubridate

(Grolemund and Wickham, 2011) for working with dates

and times.

• The third group introduces statistical and clustering

libraries: stats (R Core Team, 2024) for basic statistical

functions and operations, and dbscan (Hahsler et al., 2019;

Hahs le r and Piekenbrock , 2024) for dens i ty-

based clustering.

• astly, shiny (Chang et al., 2024) is a library for starting

interactive web applications directly from R, providing a

user-friendly interface for data visualization and analysis.
The script app.R utilizes various libraries to enhance its

functionality: for dashboard creation, it employs shiny (Chang

et al., 2024) with shinyWidgets (Perrier et al., 2024) for data

wrangling, it incorporates tidyverse (Wickham et al., 2019) and

vecsets (Witthoft, 2023); and for plotting, it features ggplot2

(Wickham, 2016). Additionally, libraries such as broom, flextable,

moments, bslib, viridis, DT, multcompView (Komsta and

Novomestky, 2022; Garnier et al., 2024; Gohel and Skintzos, 2024;

Graves and Piepho, 2024; Robinson et al., 2024; Sievert et al., 2024;

Xie et al., 2024) are used for general beautification and presentation

of tabular results, while writexl (Ooms, 2024), svglite (Wickham

et al., 2023b) are employed for data export. The script also includes

publishing options through rsconnect (Atkins et al., 2024),

facilitating tasks like data visualization, statistical testing, and

data preparation.
2.2 Automated data handling

StatFaRmer imports user data from a specified project directory

in the form of a TraitFinder-compatible experiment (.zip

containing.csv files). The data includes plant coordinates (in the

“unit” column) at each time point (in the “timestamp” column, ISO

8601 standard (ISO, 2017)), along with their respective numerical

phenotypic parameters such as height and Normalized Difference

Vegetation Index (NDVI).

Users are also required to provide two.csv tables: one named

*_handmade.csv, which includes the required plant IDs (column

“V.T.R,” indicating variety, treatment, and repetition number), as

well as treatment and cultivar names (columns “Treatment” and

“Cultivar”). This information will be displayed in the reports,
tiers in Plant Science 04
overwriting any corresponding columns from the.zip file if

provided. Additionally, a *_translation.csv table is necessary for

establishing a one-to-one correspondence between plant IDs and

unit coordinates, containing “V.T.R” and “T:X:Y” (should match

TraitFinder ‘unit’ convention, indicating table number and spatial

coordinates on it) columns.

An optional groups.xlsx table can be included, which must have

a cultivar column and any additional columns that the user wishes

to include as factors. Factor levels should consist of Roman letters,

d ig i t s , and underscore s for compat ib i l i t y wi th the

multcompView package.

On first access of StatFaRmer to the data, it determines time

clusters. These clusters are introduced since the measurements of

each plant take some time and timestamps for different plants are

different for each experimental time point. For example, if the

measurement takes 1 second, the timestamps for measurements at 2

PM for the first plant will be 2:00:00, for the second plant— 2:00:01,

etc. Also, at this step the script identifies repeated measurements of

each plant at one time point that have different timestamps as

replicates, and separates them from measurements made at other

time points. For this clustering, the script main.R of StatFaRmer

uses DBSCAN clusterization algorithm with epsilon parameter.

This parameter, defined in the main.R script in hours and

currently configured to 1, efficiently processes experimental data

irrespective of the plant measurement frequency. It is optimized to

handle datasets where consecutive measurements are separated by

an hour or longer. measurements with narrower time windows are

considered technical repeats. From this point on, the original

timestamps are replaced by “dbscan_cluster” times, which are

close to the time points defined in experiment design, but do not

coincide exactly. For example, the 2 PM time point in experimental

design will result in timestamps of original data in the 2:00:00 —

2:05:30 interval, which become replaced by the median for all

measurements in the cluster, say, 2:02:43 dbscan_cluster value.

Thus, “dbscan_cluster” times serve as a substitute for timestamp

data, enabling faceting and factor selection in the analysis. It allows

grouping timestamps with a given precision, which is required in an

experiment with multiple consecutive scans. This step is necessary

for further data processing and statistical analysis.

Then, al l replicated measurements for plants (the

measurements with the same dbscan_cluster time value) are

filtered from outliers for each measured parameter (trait) within

clusters based on a 3-sigma threshold. If the parameter is expressed

as a percentage (for example, bins of specific ranges of NDVI values

in TraitFinder datasets), then it is converted using the logit

function, and placed in data tables as logit value for further

analysis. Percentage values exactly equal to zero or one are

replaced in advance with the nearest extreme finite values to

avoid introducing infinities into analysis. This transformation was

chosen as a more robust alternative to the arcsin, while still striving

for interpretability (Lin and Xu, 2020). Additionally, the data table

undergoes further modifications, such as column reordering, type

conversions, the elimination of columns with only one factor level,

and data reorganization for better readability. These manipulations

are optional and can be controlled by the user as needed. However,

this functionality is currently implemented by commenting out the
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relevant sections of the main script. At this stage, additional criteria

for grouping are incorporated based on the groups.xlsx file located

in the current project directory. Users also have the flexibility to

group plants based on additional criteria in accordance with the

experimental design (e.g., control, factor treatment), as

demonstrated in section 2.4. All of these steps are implemented to

prevent collisions during the subsequent ANOVA. Then

StatFaRmer computes medians for technical repetitions of the

same plants within time clusters, and saves the processed table as

an RDS file for the Shiny app.

StatFaRmer performs ANOVA on user-selected grouping

factors and their interactions for a specified trait, followed by

Tukey’s test. It includes Shapiro-Wilk tests to assess normality,

displaying results and diagnostics in the ANOVA tab to aid

informed decisions on further analysis, such as adjusting outlier

removal strategies and model parameters.
2.3 User interface

StatFaRmer has a friendly interface made with the Shiny app

framework, which allows users to analyze data interactively and

share the dashboards. Users can choose grouping factors, factor

levels, treatments, and more to customize their analysis. The main

panel displays faceted violin plots with automatically assigned

characters from multiple comparisons, based on ANOVA/Tukey’s

tests of user defined groups. There are also tabs for looking at raw

data, stats, ANOVA and Tukey’s test results, and group

comparisons, giving users more ways to analyze their data.

The tool’s server logic handles data smoothly using reactive

expressions and debouncing techniques. It allows users to select and

change variables by specifying them in a drop-down list and

removing them using the Backspace or Delete keys for dynamic

data visualization. By presenting mean, median, deviation from

normal distribution, ANOVA and Tukey’s test results, StatFaRmer

provides a comprehensive view on the data. Additionally,

StatFaRmer makes it easy for users to see and download plots as

SVG files, formatted tables with formulas used, raw data and their

stats, ANOVA results, Tukey’s test outcomes, and group

comparison characters. This feature makes it simple for users to

explore, interpret and record the results of their statistical analysis.
2.4 Utilization of the StatFaRmer tool for
statistical analysis of phenotypic data

The tool is run in a browser (tested on major web browsers) at

address (https://stathmin.shinyapps.io/StatFaRmer). A sample

dataset of different plant species (bread wheat (Triticum

aestivum), durum wheat (Triticum durum), and triticale

(× Triticosecale)), cultivars (35 variants) and plant genotypes

(allelic state of 3 genes), with different treatments (3 variants),

and the time series of morphological and spectral parameters of

these plants is loaded in this tool as an example and available

on GitHub.
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3 Results

3.1 Initial data processing

3.1.1 The application of the DBSCAN method for
the soybean dataset

Clustering similar timestamps with DBSCAN — with epsilon

guided by the experimental design (e.g., event duration or data

collection frequency, typically 1 hour) allows for identification of

patterns in time-series data. This approach minimizes artifacts from

cruder timestamp aggregation, clarifying meaningful relationships.

The effectiveness of DBSCAN is contingent on selected epsilon,

requiring meticulous tuning for optimal clustering.

This feature is exemplified by an experiment on soybean

(Glycine max) phenotyping, where 50 varieties were grown under

two photoperiods with two repetitions, totaling 200 plants. Seed

preparation involved treating dry seeds with a fungicide, then

treated soybean seeds were planted 2 cm deep in 500 ml pots

filled with 230 g of moistened peat, with four seeds per pot. After

germination, three plants were retained per pot. Plants were grown

in a climate chamber under a photoperiod of 22 hours light and 2

hours dark. Initial lighting was continuous (24/0) for the first three

days to prevent seedling stretch. Temperatures were maintained at

+26°C daytime and +25°C nighttime, with an intensity of 400 mmol/

m²/s. Pots were arranged randomly and repositioned weekly.

During the first 7-10 days, plants were watered with room-

temperature water, then with 50 ml as needed. Once true leaves

appeared, a mineral fertilizer was applied daily at 30 ml per pot. For

scanning, plants were moved to a phenotyping table, organized by

variety and replication. Soybeans were grouped into sets of 12 pots,

recorded in separate blocks, totaling nine blocks. Figure 2A displays

the raw data in HortControl (PHENOSPEX, [[NoYear]]), the

default application of Phenospex, while Figure 2B presents the

same data after time clustering using StatFaRmer.

Biologically, this function is crucial for making the data more

accessible to humans. In the original unprocessed figure, the volume

of data is too large to discern any trends (200 graphs compared to

50). Additionally, the spikes and “ladders” caused by the absence of

timestamp clustering make it difficult to follow the individual

graphs and the figure as a whole.

3.1.2 Example of the outlier removal for bread
wheat, durum wheat, and triticale datasets

Filtering outliers in timestamp clusters using a 3-sigma

threshold preserves data integrity in time-series analyses. This

method discards measurements beyond three standard deviations

from the mean, mitigating measurement errors and highlighting

true trends. It assumes normality; thus, alternative methods like

interquartile range (IQR) may be needed. In this case, the variable

use_IQR changes the filtration method.

This method is illustrated by our sample dataset of bread wheat,

durum wheat, and triticale plants featuring 35 varieties and 3

treatments, measured across 2 repetitions, totaling 210 plants. A

more detailed description of this experiment can be found in section

3.5. The original dataset includes outliers, as shown in Figure 3A,
frontiersin.org
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where specific outlier measurements are indicated by arrows.

StatFaRmer automatically filters these outliers, resulting in the

adjusted dataset shown in Figure 3B. After applying either 3-

sigma threshold or IQR outlier removal, 99% and 97% of

measurements are retained, respectively. The outliers are

primarily caused by uncontrollable external factors, such as

improper positioning of glossy or reflective plant parts or

interference from nearby foliage in the scanning area. The tool

allows analyzing the affected plants in subsequent timestamps to

assess any persistent issues or trends.

The biological significance of this lies in the automatic removal

of obviously unrealistic measurements that result from errors, such

as interference from a person or an inanimate object during

measurements. Since we conduct numerous large-scale

experiments in limited spaces, we have encountered instances of
Frontiers in Plant Science 06
human error, such as rearranging pots while TraitFinder is still

running. While we document these incidents thoroughly, having a

function that removes the most extreme outliers is essential.

3.1.3 Example of logit transformation for sugar
beet dataset

Logit transformation corrects deviation from normality in

percentage data, particularly near 0% and 100%, by converting

bounded proportions to an unbounded scale, stabilizing variance

for statistical analyses like linear regression and ANOVA while still

being easily interpretable (Lin and Xu, 2020). Before the

transformation, we replace 0% or 100% values with the closest

observed values to maintain the integrity of the analysis.

As an example of such a percentage data, which normally

occurs in phenotyping analysis, we have studied the share of
FIGURE 2

(A) The first two measurements of soybean phenotyping. The X-axis represents the date and time of each scan, while the Y-axis shows the
corresponding digital biomass. Each line on the graph corresponds to an individual plant, resulting in a total of 200 graphs. The data is unprocessed,
with each timestamp represented as a separate plotted point, totaling 34 points per measurement. This creates visual clutter, evident as “ladders” at
the edges, and complicates further analysis. (B) The same data, presented in StatFaRmer. The repetitions are averaged and displayed as one graph
per variety, reducing the total to 50 graphs in one image. Similar timestamps are clustered and represented as single time points, enhancing the
graph’s visual accessibility and making the data easier to use for statistical analysis. The points in this graph represent unprocessed measurements,
while the lines represent data processed in StatFaRmer.
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specific Plant Senescence Reflectance Index (PSRI) bins. PSRI is

calculated as follows:

RED − GREEN
NIR

where the red wavelength is 620-645 nm, green is 530-540 nm,

and near-infrared (NIR) is 720-750 nm. Spectral indices can also be

represented using bins. A bin counts howmany points of a given 3D

scan fall within its defined boundaries, each having a lower and

upper limit. The number of points within the bin is expressed as a

percentage of the total area. In this case, the PSRI index consists of

six bins, with bin 0 [-4:-0.8] being the lowest. A lower PSRI value

indicates healthier plants (Merzlyak et al., 1999).

To illustrate this feature we picked an experiment with sugar beet

(Beta vulgaris) plants of 2 varieties which were exposed to a prolonged

period of cold (vernalization) at 5 and 10°C (24 plants in total) and

were grown at lighting conditions differing by spectrum. After pre-

sowing preparation, the seeds for germination were placed on moist

filter paper in a plastic container, which was covered with film and kept

in the dark at room temperature for three days. The growing containers

used were 500ml plastic seedling pots filled with sterilized peat that had
Frontiers in Plant Science 07
been treated for 15 minutes at 121°C, mixed with perlite in a 5:1 ratio.

Germinated seeds were planted at a rate of three seeds per pot.

Vernalization was carried out at temperatures of +5°C and +10°C.

Temperature was monitored through temperature and humidity

sensors the entire duration of the experiment. Plants were grown

under LED lamps with photoperiods of 22/2 and 10/14 hours, using

white light at an intensity of 60, blue + red light at an intensity of 500,

and blue + red light at an intensity of 466.

In Figure 4 we compare the PSRI [-4:-0.8] bin of plants grown at

various lighting conditions at temperature 10°C. The Plant

Senescence Reflectance Index (PSRI) is a key parameter in plant

science for assessing leaf senescence. Proposed in 2002 (Merzlyak

et al., 1999), it helps estimate the onset, stage, relative rates, and

kinetics of senescence and ripening processes.

As shown in Figure 4, the lowest and healthiest bin of PSRI was

significantly reduced after two months of growing the plants under

white light, while there was little change under the other conditions.

Based on the conducted research, it can be stated that a short day,

particularly in combination with low temperature, significantly

slows down plant development. However, the blue-red spectrum

at an intensity of 400-500 mmol/m²/s mitigates this effect.
FIGURE 3

Plots of the same data collected during bread wheat, durum wheat, and triticale phenotyping from HortControl and StatFaRmer. (A) Unprocessed
data collected during phenotyping by HortControl, the primary software for the TraitFinder platform. The X axis is the date and time for each scan,
the Y axis is the corresponding plant leaf area. Each line on the graph represents an individual plant. (B) Comparative visualization from StatFaRmer
with individual lines displaying the changes over time of DBSCAN cluster medians. The outliers are removed, the spike at Apr-13 is made more
evident, presuming technical issues to be studied in more detail. The thin lines represent the “height map” or 2D density map and are used when the
number of plotted observations exceeds 2000 individual points.
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3.1.4 Example of support for supplementary data
for bread wheat, durum wheat, and
triticale dataset

Integrating Phenospex (TraitFinder) data with user-generated

tables enriches datasets by adding variables like environmental and

genetic factors, enhancing analysis robustness and validity, and

improving insights into phenotypic traits and research reproducibility.

Grouping and subsetting data by genes, treatments, cultivars, and time

clusters enables targeted hypothesis testing for selected traits.

This step is illustrated with a subset of our experiment with bread

wheat. All the cultivars of bread wheat were screened for their allelic

states of the Ppd-1 gene, which is known to regulate inflorescence

architecture and paired spikelet development in bread wheat (Boden

et al., 2015). A more detailed description of this experiment can be

found in section 3.5. After the experiment was completed, the data

were uploaded in csv format and supplemented with information

about Ppd-1 alleles in each cultivar. Using StatFaRmer, we assessed

the effect of the Ppd-1 alleles Ppd-D1a and Ppd-D1b on the digital

biomass of bread wheat (Figure 5). Photoperiod-insensitive alleles of

Ppd-1 are commonly utilized in breeding to reduce the requirement

for long day lengths and promote earlier flowering in the season. The

graph indicates that the digital biomass was nearly equal for plants

with Ppd-D1a and Ppd-D1b alleles at the beginning of the experiment

(first column). However, by the end of the experiment (third

column), plants with the Ppd-D1b allele exhibited significantly

higher digital biomass, suggesting that some Ppd-1 alleles may

enhance biomass gain.
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3.2 Examples of phenotypic data
visualization with dynamic faceting for
sugar beet, corn and sunflower datasets

The tool’s visualization allows for interpretation of temporal

variations among groups, marked by characters, obtained based on

Tukey’s test p-values, where common characters identify levels or

groups that are not significantly different. This aids in hypothesis

formulation and decision-making. Alternatively, it allows users to

observe and compare time trends between groups of interest. A

color-coded, color-blind-friendly palette enhances accessibility and

clarity for all users.

This function is illustrated (Figure 6) with a dataset consisting

of plants of 3 varieties of corn (Zea mays) and 3 varieties of

sunflower (Helianthus annuus) in 6 repetitions grown under two

different conditions (72 plants in total). The sunflower varieties

used were Zhemchuzhina, Korona, and CC-4, while the corn

varieties included Marmeladka, 147MB, and 975-5. The plants

were grown under photoperiods of 10/14 and 22/2.

As shown in Figure 6, digital biomass is similar across various

conditions for both sunflower and corn at the initial measurement.

At the second time point, while sunflowers continue to exhibit

similar digital biomass across all treatments, corn demonstrates a

preference for the 10/14 photoperiod. This suggests that

photoperiod has a more significant impact on corn compared to

sunflower. Alternatively, the effects of photoperiod on sunflowers

may manifest later due to differences in growth rates.
FIGURE 4

Results of the Plant Senescence Reflectance Index (PSRI) for sugar beet plants after a vernalization period, under different lighting conditions in the
[-4:-0.8] bin. This bin is the lowest, with lower PSRI values corresponding to healthier plants. The graph comprises six panels for easy comparison
among the different conditions. The left three panels display measurements from the initial time point, while the right three were measured two
months later to evaluate how the spectrum affects the plants. On the right, there is a bar indicating the spectrum options. The colors represent
different clusters. Clusters that do not share common characters (a and b) are significantly different. The equation above the panels represents the
analyzed factors and interaction in the ANOVA.
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The facet syntax aligns with R formula principles, allowing

grouping variables to be placed around the tilde (~) for distinct

vertical or horizontal subplots. This flexibility enhances data clarity

and interpretability, while using “~.” simplifies visualizations by

removing faceting when necessary.

To illustrate this feature we used the previously mentioned

experiment with sugar beet plants and compared the growth of leaf

areawith different temperatures of vernalization. As shown in Figure 7, the

leaf area of plants exposed to 5°C vernalization remained consistently

lower throughout the experiment. This likely indicates that the plants

experiencedmore stress, resulting in suppressed leaf growth. Conversely, it

may suggest that the plants were conserving energy to invest in flowering.
3.3 Statistical evaluation of the differences
between groups for significance

3.3.1 Example of descriptive statistics for
cocklebur and lettuce datasets

StatFaRmer reports raw tables and tables with descriptive statistics.

They provide essential insights on sample size (n), central tendency

(median, mean), variability (cv_perc), range (min, max), and

distribution shape (skewness, kurtosis), guiding further analysis.

This feature is illustrated with an experiment in which 22 plants of

cocklebur (Xanthium strumarium) and 22 plants of lettuce (Lactuca

sativa) were treated with 4 different herbicides. Plants were grown in

pots measuring 16.5 cm x 9.5 cm x 8.5 cm, with two plants per pot,

using a universal soil that contains all the necessary macro- and
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microelements.Soil moisture was maintained at 50% through

watering three times a week, and plants were kept indoors at 22°C

and 60% humidity with 16 hours of light. Temperature and humidity

were regulated using air conditioning units and water containers, and

they were continuously monitored with temperature and humidity

sensors throughout the entire duration of the experiment.

On day 0, plants were sprayed with water or clopyralid

formulations (20.6 mL/m²) in five replicated pots. Clopyralid

formulations, Hacker WG and Hacker 300 SL, were obtained from

JSC August Inc. A gemini surfactant, 16-6-16, was synthesized from

hexadecyl bromide and N,N′-tetramethylhexamethylenediamine.

Readers can find a more detailed description of the results in our

article dedicated to this experiment (Mirgorodskaya et al., 2023).

Figure 8 demonstrates that lettuce plants were significantly

more susceptible to herbicide treatment compared to cocklebur,

as indicated by the higher PSRI in lettuce. The descriptive statistics

in Table 1 confirm this observation.

The increased sensitivity of lettuce indicates a deficiency in

protective mechanisms against herbicides, making it more

susceptible to chemical stress. In this experiment, lettuce was used

as a control plant due to its low resistance to chemical stress, and its

higher PSRI indicates that the herbicide is effective.

3.3.2 Example of ANOVA and Tukey’s test
for cocklebur

ANOVA’s user-selected factors are automatically supplemented

with their two-way interactions, which allows for thorough assessment

of variable influences on responses. This aids in identifying complex
FIGURE 5

This graph consists of six panels: the top three illustrate how the digital biomass of plants with the Ppd-D1a allele changed over time, while the
bottom three show the same process for plants with the Ppd-D1b allele. The three time points are indicated at the top, and colors represent the
respective clusters. Clusters sharing a common character (c and cd; cd and de; de and d) may overlap. They are arranged in order of digital biomass
value, with plants in cluster “a” having the highest biomass and being the most distinct from those in cluster “e.” The equation above the panels
represents the correlation of the analyzed factors in the ANOVA test.
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relationships, but researchers must be cautious of potential overfitting

due to increased model complexity. StatFaRmer reports post-ANOVA

tables (Table 2) to succinctly present key results.

This feature is illustrated by a subset of the same experiment. The

Normalized Difference Vegetation Index (NDVI) is a widely used

vegetation index for assessing plant health. Figure 9 displays sets of

three time points for plants treated with four different herbicide

compositions. Cluster “a” represents higher NDVI values, indicating

healthier plants before herbicide treatment. Conversely, cluster “e,”

which has the lowest NDVI, appears only at the end of the experiment

with Treatment 1. This suggests that this treatment is particularly

effective at destroying this specific weed.
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The “Tukey” feature identifies contrasts among parameter

combinations across factors and time points. StatFaRmer reports

these tables after the Tukey’s test to present key results, including

contrasts, estimates, confidence intervals (conf.low, conf.high),

adjusted p-values, and significance (sig).
3.4 Results export

In StatFaRmer Shiny App, all tables and produced plots can be

downloaded after applying filters and subsets (via the “Download

Full Results” and “Save Plot as SVG” buttons).
FIGURE 6

The comparison of biomass growth of sunflower (A) and corn (B) under two distinct sets of conditions. The graph illustrates that while corn
exhibited variability in response to the different growing conditions, sunflowers showed consistent growth across both environments.
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3.5 The dataset of high-throughput plant
phenotyping of Triticeae

To evaluate the features and performance of StatFaRmer, a

study on the growth of various cereal plants under conditions of

nitrogen starvation and low and high nitrate concentrations has

been performed (Figure 10). The grains of different cultivars of

bread wheat (Triticum aestivum), durum wheat (Triticum durum),

and triticale (× Triticosecale) were placed on Petri dishes containing

moist filter paper and incubating them at 25 degrees Celsius. After

seed germination, the seedlings were transferred to pots filled with
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sand and watered regularly with modified Hoagland solutions with

various concentrations of nitrates. These solutions contained 0,

1mM and 10mM potassium nitrate, and the first two solutions were

supplemented by potassium chloride to maintain the same molar

potassium content that the third solution. The pots were arranged

randomly. The modified Hoagland solutions were added 3 times per

week in quantities to replace the lost weight of the pots.

Temperature and humidity were monitored throughout the entire

duration of the experiment.

Phenotypic observations of all plants were conducted three

times daily in two to three replicated measurements using the
FIGURE 7

(A) This study compares the leaf area growth of sugar beets vernalized at 5°C and 10°C. The results indicate that plants vernalized at 10°C exhibited a
larger leaf area compared to those vernalized at 5°C. However, the observed distributions are not normal, raising questions about the underlying
factors affecting growth. Additionally, the same data was visualized as a timeline (B) by eliminating the faceting. The deviations from normality
observed in (B) can thus be attributed to some plants not initiating growth throughout the experiment. The data is plotted in a single subplot by
setting the faceting formula to “~ 1” and using genotype as the grouping factor.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1475057
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ulyanov et al. 10.3389/fpls.2025.1475057
TraitFinder phenotyping platform (Phenospex, Netherlands). This

platform is based on a PlantEye — a laser scanner coupled with a

multispectral imager. PlantEye generates a 3D point cloud with

reflectance values for each point at four wavelengths. The

TraitFinder we used was equipped with two PlantEye scanners

that were installed at some distance and angles to minimize plant

blocked areas. Two 3D point clouds from each PlantEye were

combined into one point cloud with better coverage of plants.
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Using these 3D point clouds, a HortControl software calculated

various morphological and spectral parameters of the plant.

Among the morphological parameters are plant height, leaf area

and digital biomass, which is determined by the product of the two

previous parameters and for plants with the same architecture

correlates well with the real plant biomass (Vadez et al., 2015;

Maphosa et al., 2017; Quijia Pillajo et al., 2024). Among the spectral

parameters are NDVI and its “bins” — the proportion of plant leaf
FIGURE 8

Timeline representation of the herbicide experiment with lettuce and cocklebur. Due to over 2,000 observations, the data is presented as density
maps. Notably, May 17 exhibits a decline in average PSRI for one cocklebur sample, lasting for several days.
TABLE 1 Descriptive statistics from the herbicide experiment at three time points.

group n median mean cv_perc min max skewness kurtosis

1 1:cocklebur 20 0 0.01 -1291.42 -0.03 0.05 0.32 1.62

2 69:cocklebur 10 0.06 0.07 75.2 0.01 0.15 0.21 1.72

3 35:cocklebur 20 0.05 0.13 383.78 -0.07 0.55 1.07 2.79

4 1:lettuce 20 0.21 0.21 13.64 0.15 0.25 -0.17 2.07

5 69:lettuce 10 0.28 0.28 14.35 0.18 0.33 -1.48 5.18

6 35:lettuce 20 0.34 0.3 39.23 0 0.41 -1.74 4.42
The “group” column represents the combination of grouping factors—plant type and time point— where 1 indicates the start, 35 the second time point, and 69 the experiment’s conclusion.
TABLE 2 ANOVA table illustrating the significance of observed effects in cocklebur plants treated with four herbicide compositions across days 1, 2,
and 10 of the experiment.

term df sumsq meansq statistic p.value sig

1 dbscan_cluster 2 0.16 0.08 96.75 0 ***

2 treatment 3 0.02 0.01 8.89 0 ***

3 dbscan_cluster:treatment 6 0.01 0 2.13 0.07 .

4 Residuals 48 0.04 0
It includes statistics such as degrees of freedom (df), sum of squares (sumsq), mean squares (meansq), test statistic, p-values, and significance levels, where *** signifies ‘p-value< 0.001’ and.
indicates ‘p-value > 0.05’.
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area that has NDVI values in a certain range. A set of parameters

obtained during the experiment for all plants and time points

exported in archived CSV format, was combined with annotation

tables and imported into StatFaRmer as a standard sample dataset.
3.6 StatFaRmer performance evaluation

Data processing speed of StatFaRmer has been tested on a

laptop equipped with an AMD Ryzen 5 5500U with Radeon

Graphics 2.10 GHz with 8 GB of RAM. The test showed that the

initial launch of the program using the bread wheat, durum wheat,

and triticale study dataset (18 Mb.csv file that contains 58,380 rows

and 49 columns) takes 30 seconds. Subsequent launches take only 4

seconds, since the.rds objects used by the shiny app were already

created when the application was first launched.

ANOVA analysis and plotting violin charts for a phenotypic

parameter for selected time points occurs almost instantly for

numbers of treatment and timestamp levels below ten. Plotting

time series trends for big datasets such as the bread wheat, durum

wheat, and triticale study dataset (almost 20,000 measurements to

represent after averaging within DBSCAN clusters) was sped up by

drawing density maps instead of point geometric objects when

trying to plot more than 2,000 measurements.

In this series of studies, StatFaRmer has become essential to

evaluate the outcomes obtained from digital time-series

phenotyping due to its flexibility and a wide range of

customizable parameters for analysis. During our work with this

tool, we were able to explore a diverse range of plant cultivars and

identify the factors that influence the condition of specific plants.

For instance, in our latest experiment, we grew plants of various
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varieties, and because of this tool, it was possible to not only

compare the growth patterns between different varieties but also

assess the impact of various alleles by grouping the varieties based

on these allelic variants.

The resulting tool can be accessed at 9https://github.com/

Stathmin/StatFaRmer), with the instructions on installation and

the sample dataset provided.
4 Discussion

The evaluation of StatFaRmer underscores its efficiency in

processing data for digital time-series phenotyping, with an initial

launch time of 30 seconds, followed by just 4 seconds for subsequent

access. The tool demonstrates strong capabilities in conducting

ANOVA and generating violin plots for both simple and complex

datasets, making it valuable for a variety of applications. It also works

reliably with datasets from vastly different cultures, including bread

wheat, durum wheat, and triticale, sugar beet, cocklebur and lettuce,

corn and sunflower, and soybean. However, to maximize its potential,

future research should prioritize enhancing its usability and exploring

integration possibilities with other tools, thereby strengthening its role

in plant phenotyping workflows.

Three-dimensional visualization techniques can be classified

into active and passive categories. Active techniques utilize a

controlled source of structured energy emission, such as a

scanning laser or projected light pattern, in conjunction with a

detector, such as a camera, to generate an image. Passive techniques

rely on ambient lighting to form an image (Harandi et al., 2023).

Point sets can contain noise originating from various sources,

whether the point cloud was actively or passively generated.
FIGURE 9

Comparison of NDVI in cocklebur plants treated with various herbicides. Treatment 1 notably decreased NDVI, showing significant effects the day
after application and lasting for a week. The colors represent clusters, where lack of common characters in cluster names indicate statistically
significant differences between the clusters. These lowercase letters are automatically assigned characters from multiple comparisons, based on
ANOVA/Tukey’s tests of user defined groups. They are used consistently across multiple figures.
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Generated point clouds often suffer from limited sensor accuracy

and measurement errors caused by environmental factors.

Therefore, it is crucial to promptly identify and eliminate these

outliers to prevent their impact on the accuracy of the results. In

addition to environmental factors, technical errors caused by

human interference can also lead to inaccuracies in generated

point clouds. Common errors may also include improperly

calibrated equipment, misaligned sensors, or incorrect parameter

settings during the data acquisition process. Furthermore, other

plausible reasons for errors in point clouds could be occlusions,

reflections, and varying surface properties of objects being scanned.

The results demonstrate that our framework is robust and

suitable for diagnostics throughout the experiment, requiring no

formal statistical knowledge or advanced tool expertise.

We are also exploring ways to make our tool more general and

less reliant on TraitFinder. Aside from the naming conventions in
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the experiment.csv file, we have largely achieved this goal. An

alternative to our current approach with data acquisition would

be to utilize measurements from deep learning models. Recently,

there has been a significant increase in the use of deep learning

models for analyzing phenotypic data. This trend has become

increasingly important for the advancement of plant phenotyping

research, as the available phenotyping platforms can be broadly

categorized into two types: previously discussed commercially

available solutions that offer, among other features, data

processing tools, which are often proprietary; and more affordable

options based on RGB or multispectral cameras and LiDARs,

typically implemented on self-built platforms for indoor or

outdoor use, or on unmanned aerial vehicles (UAVs) (Gano

et al., 2021; Gano et al., 2024). In this latter case, the processing

tools must be developed independently, and deep learning models

represent the most flexible option for this purpose. We plan to use
FIGURE 10

Schematic representation of the study examining nitrate’s effect on bread wheat, durum wheat, and triticale growth, which produced the sample
dataset for StatFaRmer. * here represents "wildcard character".
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StatFaRmer in tandem with open-source deep learning point cloud

processing tools to reduce reliance on proprietary instruments and

extract new biological features from existing point clouds. This

process could benefit from a “sanity check” through parallel

processing with previously explored features.

As previously mentioned, deep learning models represent a

versatile option for the open-source analysis of phenotypic data. For

example in a recent study, the researchers developed a high-

throughput phenotyping method utilizing RGB and infrared

time-series data obtained from unmanned aerial vehicles (UAVs)

and a multi-modal image segmentation model in order to monitor

and quantitatively assess the growth of soybean canopy (Yu et al.,

2024). The study found that the RIFSeg-Net, a novel multimodal

image segmentation model, outperformed traditional deep

learning-based image segmentation networks in accurately

extracting canopy cover from unmanned aerial vehicle (UAV)

images. The study demonstrates the potential of high-throughput

phenotyping to rapidly identify crop germplasm with favorable

traits such as high yield, disease resistance, and improved quality.

This method can assist breeders in developing novel varieties with

increased productivity and resilience, thereby enhancing crop

quality and yield simultaneously.

Another study proposes a method for automatically acquiring

detailed traits of rice panicles based on time-series images, using the

YOLO v5 and ResNet50 models, as well as the DeepSORT

algorithm, to analyze the effect of nitrogen on panicle

development during the heading and flowering stages (Zhou

et al., 2023). The proposed approach achieved high accuracy in

counting panicles (R2 = 0.96, root mean square error (RMSE) =

1.73), as well as in estimating the heading date (absolute error of

0.25 days). The study revealed that higher nitrogen application leads

to an earlier initiation and longer duration of flowering, and a

longer total duration from the beginning of vigorous flowering to

the end of the process. This proposed technique provides a novel

approach to analysis for agricultural experts, and the impact of

nitrogen on rice heading and blooming may assist us in avoiding

extreme weather conditions and achieving sustainable and stable

food production.

Another research paper explores the use of Terrestrial Laser

Scanning (TLS) to study seasonal and circadian rhythms in plants

and leaves under standard and cold stress conditions (Jin et al.,

2021). The methods used in the research paper involved the

collection of LiDAR data along with environmental data such as

photosynthetically active radiation (PAR), temperature, and relative

humidity throughout the growing season. Seasonal rhythms in

structural traits like azimuth and Plant Leaf Area Index (PLA)

were consistent between plant and leaf levels, while leaf-level

rhythms were more diverse, such as changes in leaf inclination

angle. Circadian rhythms of certain traits were found to be opposite

under cold stress and standard conditions, with environmental

factors showing stronger correlations with leaf trait rhythms

under cold stress, especially air temperature. The study highlights

the potential of using time-series TLS to study crop chronobiology
Frontiers in Plant Science 15
in outdoor environments, aiding in understanding plant rhythms

and survival strategies in response to environmental changes.

Many advanced deep learning data analysis methods under

development could greatly benefit from a reliable and transparent

validation tool, enabling comprehensive evaluation of outcomes

through straightforward, interpretable metrics. Conversely,

StatFaRmer would enhance its effectiveness by collaborating with

emerging platforms designed for measuring traits critical to

breeding. This integration would help alleviate phenotypic

measurements as a bottleneck in Genome-Wide Association

Studies (GWAS), streamlining the research process and

improving the accuracy of trait assessments.

In the realm of time series analysis, a work by (Han et al., 2019)

delves into the nuances of exploring data dynamic patterns, notably

through the application of fuzzy clustering analysis. The approach

of the study, if implemented in the newer versions of StatFaRmer,

would allow detecting new phenotypic traits hidden in the

temporal profiles.

Moreover, the limitations of traditional ANOVA in time series

analysis have motivated researchers to explore more sophisticated

approaches (Spyroglou et al., 2021). introduced a novel

methodology that integrates generalized linear mixed models with

classical time series models, modernizing the analysis of

longitudinal datasets in plant sciences.

Furthermore, the landscape of crop-specific point cloud

segmentation tools has seen significant advancements, exemplified

by the pioneering work (Li et al., 2023). By harnessing these state-

of-the-art tools, researchers can now extract valuable traits with

unprecedented accuracy, underscoring the urgency of modularizing

StatFaRmer for broader accessibility beyond one specific platform.

These articles inspire us by clearly indicating pathways for the

future improvement of StatFaRmer.
5 Conclusion

StatFaRmer is an open-source tool created as a Shiny dashboard

that is useful for the analysis of time series datasets in CSV format

with capabilities of outlier filtration, grouping based on multiple

parameters simultaneously, and more advanced statistical methods

for assessing the significance of effects. It can be easily copied and

used through a web interface by any number of users.

In this series of studies, StatFaRmer has become essential to

evaluate the outcomes obtained from digital time-series

phenotyping due to its flexibility and a wide range of

customizable parameters for analysis. During our work with this

tool, we were able to explore a diverse range of plant cultivars and

identify the factors that influence the condition of specific plants.

For instance, in our latest experiment, we grew plants of various

varieties, and because of this tool, it was possible to not only

compare the growth patterns between different varieties but also

assess the impact of various alleles by grouping the varieties based

on these allelic variants.
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Daróczi, G. (2024). logger: A Lightweight, Modern and Flexible Logging Utility.
Available online at: https://CRAN.R-project.org/package=logger (Accessed October 16,
2025).

Demidchik, V. V., Shashko, A. Y., Bandarenka, U. Y., Smolikova, G. N.,
Przhevalskaya, D. A., Charnysh, M. A., et al. (2020). Plant phenomics: fundamental
bases, software and hardware platforms, and machine learning. Russian J. Plant Physiol.
67, 397–412. doi: 10.1134/S1021443720030061

Firke, S. (2023). janitor: Simple Tools for Examining and Cleaning Dirty Data.
Available online at: https://CRAN.R-project.org/package=janitor (Accessed October
16, 2025).
frontiersin.org

https://doi.org/10.1098/rsob.210353
https://doi.org/10.1111/jipb.13191
https://CRAN.R-project.org/package=rsconnect
https://www.plantphenomics.org.au/plant-phenomics/our-infrastructure
https://www.lemnatec.com/hyperaixpert/
https://www.lemnatec.com/hyperaixpert/
https://www.phenospex.com/products/plant-phenotyping/traitfinder-for-lab-and-greenhouse-phenotyping-automation/
https://www.phenospex.com/products/plant-phenotyping/traitfinder-for-lab-and-greenhouse-phenotyping-automation/
https://www.phenospex.com/products/plant-phenotyping/traitfinder-for-lab-and-greenhouse-phenotyping-automation/
https://CRAN.R-project.org/package=magrittr
https://doi.org/10.1038/nplants.2014.16
https://CRAN.Rproject.org/package=shiny
https://CRAN.Rproject.org/package=shiny
https://CRAN.R-project.org/package=logger
https://doi.org/10.1134/S1021443720030061
https://CRAN.R-project.org/package=janitor
https://doi.org/10.3389/fpls.2025.1475057
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ulyanov et al. 10.3389/fpls.2025.1475057
Gagolewski, M. (2022). stringi: Fast and portable character string processing in R. J.
Stat. Software 103, 1–59. doi: 10.18637/jss.v103.i02

Gano, B., Bhadra, S., Vilbig, J. M., Ahmed, N., Sagan, V., and Shakoor, N. (2024).
Drone-based imaging sensors, techniques, and applications in plant phenotyping for
crop breeding: A comprehensive review. Plant Phenome J. 7, e20100. doi: 10.1002/
ppj2.20100

Gano, B., Dembele, J. S. B., Ndour, A., Luquet, D., Beurier, G., Diouf, D., et al. (2021).
Using UAV borne, multi-spectral imaging for the field phenotyping of shoot biomass,
leaf area index and height of west african sorghum varieties under two contrasted water
conditions. Agronomy 11. doi: 10.3390/agronomy11050850

Garnier, S., Ross, N., Rudis, R., et al. (2024). viridis(Lite) - Colorblind-Friendly Color Maps
for R. Available online at: https://sjmgarnier.github.io/viridis/ (Accessed October 16, 2025).

Gohel, D., and Skintzos, P. (2024). flextable: Functions for Tabular Reporting.
Available online at: https://CRAN.R-project.org/package=flextable (Accessed October
16, 2025).

Graves, S., and Piepho, H. P. (2024). Dorai-Raj LS with help from S. multcompView:
Visualizations of Paired Comparisons. Available online at: https://CRAN.R-project.org/
package=multcompView (Accessed October 16, 2025).

Grolemund, G., and Wickham, H. (2011). Dates and times made easy with lubridate.
J. Stat. Software 40, 1–25. doi: 10.18637/jss.v040.i03

Hahsler, M., and Piekenbrock, M. (2024). dbscan: Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) and Related Algorithms. Available online at: https://
CRAN.R-project.org/package=dbscan (Accessed October 16, 2025).

Hahsler, M., Piekenbrock, M., and Doran, D. (2019). dbscan: fast density-based
clustering with R. J. Stat. Software 91, 1–30. doi: 10.18637/jss.v091.i01

Han, L., Yang, G., Dai, H., Yang, H., Xu, B., Feng, H., et al. (2019). Fuzzy clustering of
maize plant-height patterns using time series of UAV remote-sensing images and
variety traits. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00926

Harandi, N., Vandenberghe, B., Vankerschaver, J., Depuydt, S., and Van Messem, A.
(2023). How to make sense of 3D representations for plant phenotyping: a
compendium of processing and analysis techniques. Plant Methods 19, 60.
doi: 10.1186/s13007-023-01031-z

Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., and Schreiber, F. (2011).
HTPheno: An image analysis pipeline for high-throughput plant phenotyping. BMC
Bioinf. 12, 148. doi: 10.1186/1471-2105-12-148

Hein, N. T., Ciampitti, I. A., and Jagadish, S. V. K. (2021). Bottlenecks and
opportunities in field-based high-throughput phenotyping for heat and drought
stress. J. Exp. Botany. 72, 5102–5116. doi: 10.1093/jxb/erab021

Henry, L., and Wickham, H. (2024). rlang: Functions for Base Types and Core R and
“Tidyverse” Features. Available online at: https://CRAN.R-project.org/package=rlang
(Accessed October 16, 2025).

Hester, J., and Bryan, J. (2024). glue: Interpreted String Literals. Available online at:
https://CRAN.R-project.org/package=glue (Accessed October 16, 2025).

Islam, N. U., Wani, S. H., Ali, G., Dar, Z. A., Wani, A., and Lone, A. (2021). High-
throughput phenotyping for abiotic stress resilience in cereals. J. Cereal Res. 13.
doi: 10.25174/2582-2675/2021/111256

ISO (2017). ISO - ISO 8601 — Date and time format. Available online at: https://
www.iso.org/iso-8601-date-and-time-format.html (Accessed October 16, 2025).
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