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Current object detection algorithms lack accuracy in detecting citrus maturity color,

and feature extraction needs improvement. In automated harvesting, accurate

maturity detection reduces waste caused by incorrect evaluations. To address this

issue, this study proposes an improved YOLOv8-based method for detecting Xinhui

citrus maturity. GhostConv was introduced to replace the ordinary convolution in

the Head of YOLOv8, reducing the number of parameters in the model and

enhancing detection accuracy. The CARAFE (Content-Aware Reassembly of

Features) upsampling operator was used to replace the conventional upsampling

operation, retaining more details through feature reorganization and expansion.

Additionally, the MCA (Multidimensional Collaborative Attention) mechanism was

introduced to focus on capturing the local feature interactions between feature

mapping channels, enabling the model to more accurately extract detailed features,

thus further improving the accuracy of citrus color identification. Experimental

results show that the precision, recall, and average precision of the improved

YOLOv8 on the test set are 88.6%, 93.1%, and 93.4%, respectively. Compared to

the original model, the improved YOLOv8 achieved increases of 16.5%, 20.2%, and

14.7%, respectively, and the parameter volume was reduced by 0.57%. This paper

aims to improve the model for detecting Xinhui citrus maturity in complex orchards,

supporting automated fruit-picking systems.
KEYWORDS

object detection, maturity detection, XinHui citrus, YOLOv8, CARAFE lightweight
operator, multi-dimensional collaborative attention mechanism (MCA), GhostConv
1 Introduction

Xinhui dried tangerine peel(Chenpi), regarded as the finest among Guangdong dried

tangerine peels, is a traditional authentic Chinese medicinal material. It is considered one of

the three treasures of Guangdong and is also listed among the top ten medicinal materials

(Lin et al., 2009). The expected total output value of dried tangerine peel in 2023 is 23
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billion yuan. And Xinhui citrus is the raw material for making

tangerine peel. Mechanical picking has become a focal point of

research in recent years, with recognition being the foundation for

successful harvesting (Zheng et al., 2021). Enhancing recognition

accuracy can significantly reduce the incidence of mechanically

picking non-target citrus fruits (Li et al., 2021). In actual

production, citrus fruits of varying maturities have different

economic values. Additionally, identifying the ripening stage of

citrus fruits directly affects their transportation and storage

methods. People usually judge citrus maturity by observing the

skin color. While this intuitive method meets daily needs, it is

insufficient for large-scale mechanized picking (Zheng et al., 2023)

and tangerine peel production. Therefore, studying an automatic

maturity detection system with a high recognition rate is of great

significance for promoting the automatic picking (Zheng et al.,

2024b) of Xinhui citrus.

In recent years, to promote the development of intelligent

agriculture (Ying et al., 2004), domestic and international scholars

have explored using spectral analysis and machine vision methods

to detect the maturity of various fruits, such as navel oranges (Wei

et al., 2017), banana (Zheng et al., 2024a) and sweet peppers (Castro

et al., 2019). Yuan et al. (2023) used spectral methods to distinguish

different maturity stages of camellia oleifera fruit, but this process is

prone to generating a large amount of noise and interference. Zou

(2023) studied the use of machine vision technology to identify the

external color of citrus fruits and to determine their color grade.

Although this method was implemented in a laboratory detection

environment after harvesting, it provides a valuable technical

reference for the application of automatic picking technology in

complex natural environments. Zhou et al. (2020) proposed a

maturity detection method for red grapes based on an improved

circular Hough transform, providing theoretical guidance for

achieving automated picking. The machine learning methods

mentioned above often rely on manual feature extraction, which

tends to have poor robustness in complex scenarios and struggles

with real-time maturity detection under natural conditions (Lv

et al., 2019). Consequently, some researchers have begun to use

deep learning methods for fruit maturity recognition

and classification.

With advancements in computer system performance and

computing power, deep learning algorithms have become widely

used for identification and detection in agricultural fields (Song

et al., 2023). Due to the significant advantages of deep learning

technology in agriculture, including its ability to perform

detection tasks quickly and accurately, an increasing number of

scholars are integrating computer vision with agriculture (Tang

et al., 2024). This integration is being applied to various

production stages, such as crop cultivation (Bi et al., 2019),

harvesting (Fu et al., 2022) and other agricultural processes (Lv

et al., 2019). Due to the characteristic of fruits having inconsistent

ripening periods during growth, harvesting robots need to

determine the ripeness of the fruits before issuing picking

commands (Chen et al., 2024). Therefore, harvesting robots

need to be equipped with high-precision recognition systems

(Momeny et al., 2022). Azarmdel et al. (2020) applied artificial

neural networks (ANN) and support vector machines (SVM) to
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classify the maturity of mulberry fruits, achieving detection and

classification accuracy of 98.26%. Harvesting robots’ embedded

devices require faster detection algorithm models (Zhang et al.,

2024). The YOLO algorithm (Redmon et al., 2016), known for its

ability to quickly and accurately detect different objects, has been

widely applied in the agricultural field (Wang et al., 2024). Xiong

et al. (2023) improved YOLOv5 by using MobilenetV3 as the

backbone feature extraction network and replacing conventional

convolution with depthwise separable convolution. They achieved

an average precision of 92.4% in recognizing the maturity of

papaya fruits in natural environments. Chen et al. (2023)

improved the YOLOv5s backbone network and incorporated a

full-dimensional dynamic convolution module into the neck

structure. This modification successfully enabled the detection

of strawberry fruit maturity in greenhouse environments,

achieving an average precision of 97.4%. Miao et al. (2023)

incorporated MobileNetV3 into YOLOv7 and added a global

attention mechanism to the feature fusion network. This

enhancement improved the detection accuracy of fruits with

adjacent maturity stages and occluded fruits, achieving an

average precision of 98.2%. Yang et al. (2023) incorporated the

Swin Transformer structure, which offers improved feature

extraction capabilities, resulting in an increase in average

precision. Ni et al. (2024) proposed a lightweight YOLOv8

model that introduced a reconstruction convolution module,

achieving an average precision of 98.1%. The above methods

have achieved significant success in agricultural object detection,

strongly supporting the realization of intelligent harvesting.

The detection accuracy and the number of parameters in a

model are crucial for its application in target detection on smart

agriculture mobile devices (Liu et al., 2024). Other models exhibit

limited capability in extracting color features of citrus fruits at

different maturity levels, which adversely affects classification

accuracy. At the same time, under natural conditions, the same

fruit tree can have fruits at different maturity stages, and not all

fruits may meet the harvesting standards. Therefore, accurately

assessing fruit maturity helps to reduce waste caused by harvesting

immature fruits. This paper proposes an improved YOLOv8

model for detecting the maturity of Xinhui citrus. First, during

datasets construction, images of citrus fruits at different maturity

stages are collected. Based on the YOLOv8 model, GhostConv

(Han et al., 2020) is used to replace some of the conventional

convolutions in the Head, reducing the number of parameters and

improving parameter deployment. This approach helps to lower

the complexity of convolutional computations. Next, the

upsampling module of YOLOv8 is improved by replacing the

transpose convolution-based upsampling operation with the

CARAFE upsampling operator (Wang et al., 2019). This

modification, which involves feature reorganization and

expansion, retains more detailed information and enhances the

model’s detection accuracy. Additionally, the MCA attention

mechanism (Yu et al., 2023) is introduced to capture local

feature interactions between feature mapping channels, helping

the model to more accurately extract and understand detailed

features. This further improves the accuracy of citrus

maturity recognition.
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The main contributions of this study are as follows:
Fron
1. Model Innovation: This study introduces an improved

YOLOv8 model specifically designed for detecting the

maturity of Xinhui citrus in complex backgrounds.

Through meticulous optimization of the network

architecture and the integration of advanced attention

mechanisms, this model achieves outstanding accuracy

even in challenging scenarios.

2. Dataset Development: This study constructs a

comprehensive dataset comprising real citrus fruit images

captured in orchard environments. This dataset serves as a

valuable resource for training and evaluating the model,

providing diverse and realistic data to achieve optimal

performance assessment.

3. Performance Enhancement: This study leverages the

combination of CARAFE, GhostConv, and MCA

attention mechanisms to enhance color information

recognition, significantly improving detection accuracy

and computational efficiency.

4. Real-Time Application Potential: This study’s method

features a compact model size and exceptional

computational efficiency, making it a viable solution for

real-time citrus fruit detection applications. This

technological advancement greatly supports intelligent

management in citrus orchards and ensures a steady

supply of raw materials for citrus peel production.
2 Dataset construction

2.1 Image acquisition

The experimental research area selected was the Xinhui citrus

planting base in Dongjia Village, Xinhui District, Jiangmen City,

Guangdong Province. The main cultivars in this base are Xinhui

citrus, Emperor citrus, and Wogan citrus. This paper focuses on

Xinhui citrus, which has the highest yield and the greatest economic

and medicinal value. Images of Xinhui citrus at different maturity

stages were collected using a Canon 760D SLR camera under

natural environmental conditions from October to December

2023. The image acquisition times included noon and afternoon

to capture images under varying lighting conditions. A total of 1793

images of Xinhui citrus with 6000 � 4000 pixels resolution were

obtained. The complex orchard environment, shown in Figure 1,

includes various lighting conditions such as direct light and

backlight, as well as different scenarios such as single fruit,

multiple fruits, close-up views, distant views, fruit overlap, and

occlusion by branches and leaves.

When labeling, citrus fruits are categorized into three types:

semi-ripe fruits (yellow-green), fully ripe fruits (fully orange peel),

and unripe fruits (green), as shown in Figure 2. The labeled dataset

is divided into training, testing, and validation sets in a random

8:1:1 ratio, resulting in 1656, 64, and 73 images, respectively.
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2.2 Fruit maturity grade division

The maturity of Xinhui citrus is divided into three stages in

the market: green citrus, Erhong citrus(middle red), and bright

red citrus. Xinhui citrus at different maturity stages has varying

demands and prices in the market. The dried peel of citrus fruits

at different maturity stages also differs in appearance, taste, and

use. Green citrus has a thin skin, is resistant to storage, and has a

green appearance. It is suitable for long-distance transportation

and storage, making it ideal for producing green citrus peel or

green citrus tea. Erhong citrus is an immature citrus fruit that is

relatively resistant to storage. It has a hard texture, thick skin, and

a green-yellow appearance, making it suitable for artificial

ripening, long-distance fresh market sales, or as raw material

for producing Erhong citrus peel. Bright red citrus is a fully ripe

fruit that is not easy to store, making it suitable for direct

consumption or production into tangerine peel. It has a soft,

thick skin and an orange-yellow appearance.
2.3 Data set construction

The datasets used for model training in this study follows the

YOLO series format. Xinhui citrus fruits at different maturity stages

in the images were annotated using LabelImg software. The

annotation rules for the txt. documents are as follows: (1) Fruits

in the annotated image can block each other as long as it does not

affect the manual judgment of maturity. (2) Severely blocked fruits

should not be annotated.
3 The maturity detection model of
Xinhui citrus

In this study, the YOLOv8n model was improved to balance

detection speed, accuracy, and computational complexity, and to

better address the detection of fruits with adjacent maturity stages.

The YOLOv8 network structure consists of three main

components: Backbone, Neck, and Head. The Backbone is

responsible for extracting initial features from the input image,

transforming the original image into feature maps rich in

information, and providing the basis for subsequent feature

fusion and target detection.

Improvements were made to the Neck part of the YOLOv8

model. The network structure diagram of the improved YOLOv8

Xinhui citrus maturity detection model is shown in Figure 3. To

achieve fast detection speed while maintaining high accuracy and

reducing model computational parameters, GhostConv was used to

replace some conventional convolutions in the network structure.

To overcome the limitations of the original upsampling, the

lightweight upsampling operator CARAFE (Content-Aware

Reassembly of Features) was introduced. CARAFE allows the

model to dynamically adjust the upsampling process based on the

content of different parts of the feature map, effectively utilizing

contextual information. This makes the model more precise in
frontiersin.org
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handling citrus color and texture, thereby better distinguishing

citrus fruits with different maturities.

Additionally, to enhance the network model’s feature extraction

capabi l i ty for ci trus , the MCA attention mechanism
Frontiers in Plant Science 04
(Multidimensional Collaborative Attention) was added to the

network. This effectively suppresses the interference of non-target

background information, further improving the model’s accuracy in

detecting citrus maturity.
A B C

FIGURE 2

images of different maturity levels Citrus. (A) Mature XinHui citrus. (B) Semi-mature XinHui citrus. (C) Immature Xinhui citrus.
FIGURE 1

Sample images were collected from Xinhui citrus planting.
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3.1 CARAFE lightweight up
sampling operator

The upsampling operation in the YOLOv8 algorithm is

implemented using nearest neighbor interpolation, which

performs a convolution operation on the input feature map to

enlarge its size and increase resolution. However, when processing

large-sized images, upsampling operations often require substantial

computational resources, and nearest neighbor interpolation can

cause discontinuity in images or data, leading to information loss

and affecting model performance.

To address this issue, this paper introduces the lightweight and

efficient CARAFE operator in YOLOv8 to optimize the upsampling

operation. The CARAFE (Content-Aware Reassembly of Features)

operator is a lightweight upsampling method that better retains the

information in the feature map and reduces information loss.

Unlike the upsampling in YOLOv8, the CARAFE operator not

only considers the nearest neighbor points but also combines the

content information of the feature map to achieve more accurate

upsampling by recombining the feature map information.
Frontiers in Plant Science 05
This enables the CARAFE operator to better process large-size

images, reduce computational resource consumption, and maintain

the continuity of feature maps more effectively. Consequently, the

model’s ability to detect and classify the maturity of Xinhui citrus is

significantly improved. The CARAFE operator consists of the

Kernel Prediction Module and the Content-aware Reassembly

Module. The structure is shown in Figure 4. In the kernel

prediction module, the H×W×C input feature map is subjected

for channel compression. The compressed feature map is Content

encoder through the convolution kernel of kup � kup, and the

recombination kernel is generated to obtain the feature map of s 2

�k2up, where is the upper sampling rate. Then, the channels are

expanded in the spatial dimension, and then arranged and

combined according to the law to obtain the k2up � sH� sw up-

sampling kernel. In order to reduce the amount of computation,

Softmax normalization is performed on the upper sampled kernel,

so that the sum of the weights of the convolution kernel is 1. In the

feature sensing recombination module, each position in the output

feature map is mapped back to the input feature map and a region

of size kup � kup is taken with the target as the center. The dot
FIGURE 3

YOLOv8 Network structure diagram of the Xinhui citrus maturity detection model.
FIGURE 4

CARAFE lightweight upsampling operator structure diagram.
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product operation is done with the upper sampling kernel obtained

by the prediction of this point, and the feature map of  sH�
sW� C is obtained.

Therefore, CARAFE improves feature upsampling in YOLO by

reorganizing features through a content-aware mechanism,

enhancing feature map resolution and semantic information. This

reorganization helps YOLO achieve more accurate target

recognition and localization, particularly improving detection

precision and color feature recognition.
3.2 The GhostConv module

In classical feature extraction methods, multiple convolution

kernels are used to represent each path of the input feature map.

This approach relies on a large number of parameters, leading to the

generation of many redundant feature maps, which reduces the

efficiency of deep learning and makes it difficult to ensure the

accuracy of the feature maps. To address these issues, this paper

integrates the GhostConv module into the YOLOv8 network. By

dividing the convolution operation into two stages, the main

convolution extracts key features, and GhostConv reduces the

number of parameters and computation. This approach improves

efficiency and processes redundant feature mapping more effectively.

The GhostConv module reduces the computation and

parameters of the network while maintaining the original channel

size and the size of the convolution output feature map. The

structure of the extracted features is shown in Figure 5. The

GhostConv module consists of three parts: the input part extracts

the input feature map through the convolution of 1�1 to obtain the

feature map Y; the middle part calculates the single channel through

deep convolution (Depth-wise convolutional); the output part

combines the feature map (blue) of the first part and the second

redundant feature map (green) (Concat) to obtain the output

feature map. This feature graph shows the number of n-

dimensional channels, where F1…Fn Characteristic graph of
Frontiers in Plant Science 06
different dimensions and Identity for identity mapping. And h’ is

the output feature height; w’ is the output feature width; c is the

number of input channels; and g is the conventional convolution

kernel size.

In ordinary convolution, the formula is:

Flopconv = n� h0 � w0 � c � g � g (1)

Suppose the size of the convolution kernel of a linear

transformation operation is r � r, then each basic feature

corresponds to a feature redundancy, and the number of s is less

than the number of channels. The common convolution method

obtains m feature graphs, and the transformation process of Ghost

module has identity transformation, and the calculation amount of

Ghost module is as follows:

FlopGhostconv =
n
s � h0 � w0 � g � g + (s − 1)� n

s

     �h0 � w0 � r � r
(2)

The computational load of GhostConv compared to standard

convolution is as follows:

Flopconv
FlopGhostconv

= n�h0�w0�c�g�g
n
s�h0�w0�g�g+(s−1)�n

s�h0�w0�r�r

= c�g�g
1
s�c�g�g+s−1

s �r�r ≈
s�c
s+c−1 ≈ s

(3)

Therefore, the computational load of standard convolution is

approximately s times that of the Ghost module.

In summary, the Ghost module in the YOLO framework enhances

feature map generation efficiency and optimizes feature representation.

By splitting the convolution layer into two parts, it generates a few

intrinsic feature maps with limited filters and produces additional

“ghost” feature maps through low-cost linear transformations. This

reduces parameters and computational complexity while improving

feature expression. In YOLO, it maintains high detection accuracy,

reduces computational load, accelerates inference, and improves

performance in detecting small objects and dense scenes, making it

suitable for resource-constrained devices.
FIGURE 5

GhostConv module structure diagram.
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3.3 Multidimensional collaborative
attention mechanism MCA

The Multidimensional Collaborative Attention (MCA)

mechanism is an efficient attention mechanism designed to

address issues in existing fruit detection methods, such as

ignoring attention modeling in the channel and spatial

dimensions, and increasing model complexity and computational

load. This paper introduces the MCA method to optimize these

aspects. The MCA module comprises three components: the

Squeeze mechanism, the Excitation mechanism, and Integration.

Its structure is shown in Figure 6.

The Squeeze mechanism effectively combines average pooling

and standard deviation pooling. The Excitation mechanism

adaptively determines the interaction coverage to obtain local

feature interactions between channels. During the Integration

phase, the three branches converge, generating a refined feature

map. This method employs a three-branched architecture to

simultaneously deduce channel, height, and dimensional attention

without additional computational consumption.

The top branch captures interactions between features in

spatial dimensions, the middle branch also addresses

interactions in spatial dimensions, and the bottom branch

captures interactions between channels. In the first two

branches, a permutation operation is used to capture the long-

range correlation between the channel dimension and any one of

the spatial dimensions. Finally, the outputs of all three branches

are aggregated through simple averaging during the

Integration phase.

Therefore, the design of MCA enables the model to

adaptively aggregate feature responses across dimensions and

effectively capture local feature interactions, enhancing the

model’s recognition accuracy. Moreover, as a module, MCA

introduces minimal computational overhead, allowing it to be

in tegra ted in to var ious CNN archi t ec ture s wi thout

compromising inference speed. Consequently, MCA improves

the quality of feature representation and computational efficiency

of the model, resulting in an increase in mAP for image

recognition tasks.
Frontiers in Plant Science 07
3.4 Evaluation index of neural
network model

The detection process of Xinhui citrus maturity needs to

consider both the detection accuracy and the computational

complexity of the model. To evaluate model detection accuracy,

we use Precision (P) and Recall (R) are shown in Equations 4, 5.

Average Precision (AP) as evaluation indicators. For assessing

model detection performance, Mean Average Precision (mAP) is

used. The formulas for Precision (P) and Recall (R) are shown

below, where true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) are used:

P = TP
TP+FP   (4)

R = TP
TP+FN (5)

AP (Average Precision) is an indicator used to measure the

detection accuracy of the model. It reflects the average performance

accuracy across different categories by calculating the area under the

Precision-Recall (P-R) curve. The calculation formula for Average

Precision (AP) is shown in Equation 6:

AP =
Z 1

0
(pre� rec)drec (6)

The mAP (mean Average Precision) is the average of all

categories of AP, obtained by summing and averaging each AP

value, The calculation formula is shown in Equation 7:

mAP = sum(AP)
n (7)
4 Experimental results and analysis

4.1 Experimental
environment configuration

The operating system runs on Linux, with a Core i9-9900k CPU

and an NVIDIA GeForce RTX 3090 GPU. It has 24 GB of RAM and
FIGURE 6

Shows the overall architecture of the MCA module, which includes three branches. The symbol ⊗ represents the element wise multiplication of
broadcasting, and ⊕ represents the element wise sum of broadcasting.
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a 1 TB mechanical hard disk. The programming language used is

Python 3.6, and the deep learning framework is PyTorch version

1.13.1 with CUDA version 11.7. To optimize training efficiency and

achieve the best training weights, Patience was set to 30, the batch

size was set to 16, the epoch was set to 150, the optimizer were set to

AdamW and the number of workers was set to 4.
4.2 Xinhui citrus maturity
detection experiment

To validate the performance of the improved YOLOv8 model,

this study evaluated a test set of Xinhui citrus samples at different

maturity stages. Table 1 presents the detection results of the

improved YOLOv8 model on these samples. According to the

data in Table 1, the improved YOLOv8 model achieved an

average precision (mAP) of 93.4%, with a precision (P) of 88.6%

and a recall (R) of 93.1%.

The improved YOLOv8 model detected 100% of the immature

Xinhui citrus, demonstrating its effectiveness in distinguishing the

fruit from the background. However, for the semi-mature and fully

mature Xinhui citrus, the model exhibited a tendency to misjudge

the colors of semi-mature and fully mature citrus in the datasets. To

address this issue, a multi-dimensional collaborative attention

(MCA) module was introduced in the YOLOv8 model. This

module captures feature interdependencies in the spatial

dimension from three branches, enhancing the model’s feature

extraction capability for semi-mature Xinhui citrus. Consequently,

the detection performance of the improved YOLOv8 model has

significantly increased compared to the original YOLOv8 model.

The specific improvement in detection results can be seen in the

ablation experiment data.

Figure 7 shows part of the detection results, illustrating the

model’s ability to perform the maturity detection task even with

slight occlusions in the citrus images. The improved algorithm

incorporates positional and semantic information of occluded

fruits, enabling the model to accurately detect the maturity of

fruits blocked by leaves. In conclusion, the improved YOLOv8

model can reliably and accurately detect fruit maturity.
4.3 Improved YOLOv8 model
ablation experiments

To further validate the performance of the improved YOLOv8

model, this study designed ablation experiments designed to

validate the performance of the 8 sets of models. Based on

YOLOv8, MCA attention module is introduced, GhostConv is

used to replace the standard convolution in YOLOv8, and

CARAFE is used to replace the upsampling of YOLOv8. The

performance of the 8 networks was analyzed from a quantitative

perspective and objectively evaluated by the test set, and the

comparison results are shown in Table 2. Among them,

Experiment 1 is the basic network YOLOv8, while Experiment 2-

8 is the network after adding or replacing various modules on the

basic network.
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Experiment 2 used the MCA attention mechanism, which

enhanced the performance of the YOLOv8 baseline model. This

attention mechanism focuses on capturing local feature interactions

between feature mapping channels, enabling the model to extract

and understand detailed features more precisely and thereby

improving overall performance. By combining global interactions

between channels and local interactions between feature mapping

channels, the MCA attention mechanism comprehensively captures

important information in the image, significantly enhancing the

quality of feature expression. This mechanism further improves the

accuracy of citrus maturity identification by introducing interactive

operations between different channels, allowing each channel to

gather more context information from others. Experiment 3

replaced the convolution of the Head part in YOLOv8 with

GhostConv, which effectively reduced the number of parameters

as a lightweight convolution. Experiment 4 introduced the CARAFE

upsampling operator, and although the number of parameters

increased slightly, the accuracy, recall, and average precision all

improved. The CARAFE upsampling operator, by replacing the

original upsampling operation, retains more detailed features,

reduces the impact of feature loss, lowers the leakage rate, and

verifies the superiority of CARAFE in performance improvement.

Experiments 5 to 7 introduced different combinations of modules to

verify the compatibility of each module combination. In

Experiment 8, three modules were added to YOLOv8

simultaneously, achieving the highest accuracy, recall, and average

precision, with significant performance improvements, indicating

that the overall comprehensive performance of the model was

optimal. Relative to the YOLOv8 baseline model, the introduction

of these three modules improves accuracy, recall, and average

precision with a reduced number of parameters, verifying the

feasibility and effectiveness of these modules on YOLOv8.
4.4 Improve the performance comparison
test between YOLOv8 and other models

In order to further verify the effectiveness of the improved

YOLOv8, this study tested the same datasets. This datasets contains

a total of 1793 images of Xinhui citrus fruits. Through the YOLOv8

original model, YOLOv7 (Wang et al., 2023) and YOLOv9 (Wang

et al., 2025) respectively, and the experimental results are shown in

Table 3. The improved YOLOv8 has the highest mAP value at

93.4%. YOLOv7 has the lowest index. YOLOv9 is the latest

algorithm of YOLO series. YOLOv9 incorporates a deeper

network structure and integrates Transformer modules. As a
TABLE 1 The detection results of improved YOLOv8 model on different
maturity levels of Xinhui citrus.

Maturity stages Precision Recall mAP50 mAP50-95

immature 1 0.943 0.991 0.884

fully mature 0.873 0.87 0.949 0.881

semi-mature 0.786 0.98 0.862 0.737

average value 0.886 0.931 0.934 0.834
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result, the model performs poorly on small datasets or standard

hardware environments, as overly deep or complex networks are

prone to overfitting or reduced inference efficiency. Additionally,

YOLOv9 may require more computational resources to achieve its

accuracy advantages.

Compared with the improved YOLOv8, all evaluation indexes

are lower than the improved YOLOv8. For example, the image

pair in the test set is shown in Figure 8. There is a total of 73

images of Xinhui citrus with different maturity levels in the test

set. A comprehensive comparison of the test set reveals that, in

Figure 8 of the left panel, the detection capability of the improved

YOLOv8 algorithm is significantly stronger. The YOLOv8 and

YOLOv9 algorithms exhibit instances of missed detection, while

YOLOv7 demonstrates misdetection. In the right panel, the

improved YOLOv8 successfully completes the detection of

Xinhui citrus maturity, whereas YOLOv7 and YOLOv9 misjudge

the maturity. In conclusion, the improved YOLOv8 demonstrates

advantages in detecting the maturity of Xinhui citrus, even under

uneven leaf shading, and effectively completes the task of

maturity detection.
5 Discussion

The improved YOLOv8 model, incorporating GhostConv,

CARAFE upsampling, and the MCA attention mechanism,
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enhances the extraction of citrus ripeness color features. These

updates improve detection accuracy, reduce model parameters, and

make it suitable for mobile intelligent agricultural devices.

Deep learning methods (Xu et al., 2024) for fruit ripeness

detection are widely studied and prove the importance of ripeness

evaluation (Chen et al., 2023). While this study advances citrus

ripeness detection, some limitations remain. Considering hardware

cost constraints, real-time ripeness detection must be optimized for

broader use in harvesting robot systems.
6 Conclusions

This paper proposes an improved YOLOv8 model for detecting

the maturity of Xinhui citrus, addressing the issue of insufficient

accuracy in detecting citrus ripening colors using detection

algorithms. By replacing ordinary convolutions with GhostConv

in the Head and using transpose convolution for upsampling, the

model reduces parameters and computation complexity while

enhancing detection accuracy. The MCA mechanism improves

local feature interaction, further boosting accuracy. After

extensive training and validation on a large dataset, the results

demonstrate that the improved model achieves 88.6% precision,

93.1% recall, and 93.4% average accuracy, representing

improvements of 16.5%, 20.2%, and 14.7%, respectively, along

with a 0.57% reduction in error.
TABLE 2 Results of ablation experiments for improving the model based on YOLOv8.

Experiment
number

MCA Ghost CARAFE Precision Recall mAP50 Parameter GFLOPs

1 – – – 0.721 0.729 0.787 3006233 8.2

2 √ – – 0.780 0.882 0.865 3006263 8.1

3 – √ – 0.801 0.921 0.927 1714661 5.0

4 – – √ 0.841 0.826 0.826 3078657 8.3

5 √ √ – 0.848 0.901 0.925 2916503 8.0

6 √ – √ 0.701 0.829 0.876 3078687 8.3

7 – √ √ 0.780 0.882 0.865 3006263 8.2

8 √ √ √ 0.886 0.931 0.934 2988927 8.3
Use “√” to indicate improvement, use “-” to indicate no improvement used.
A B C

FIGURE 7

Maturity detection result chart. (A) Mature XinHui citrus. (B) Semi-mature XinHui citrus. (C) Immature Xinhui citrus.
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FIGURE 8

Comparison of detection results in the test set. (A) Improved YOLOv8; (B) YOLOv8; (C) YOLOv7; (D) YOLOv9.
TABLE 3 Detection results of the different models.

Model Precision Recall mAP50 mAP50-95 Parameters GFLOPs

Improved YOLOv8 0.886 0.931 0.934 0.868 2988927 8.3

YOLOv8 0.721 0.729 0.787 0.656 3006233 8.2

YOLOv7 0.742 0.883 0.877 0.779 36492560 103.2

YOLOv9 0.831 0.914 0.927 0.851 60801810 266.1
F
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To verify performance, eight sets of networks were established

for ablation experiments, incorporating GhostConv, MCA, and

CARAFE modules into YOLOv8 in different combinations.

Results show the improved YOLOv8 surpasses other models in

detection accuracy, recall, and average accuracy while reducing

computational load. Under the same conditions, the improved

YOLOv8 outperformed YOLOv7 and YOLOv9 on Xinhui citrus

datasets, with 5.5%, 1.7%, and 0.7% higher precision, recall, and

average accuracy than YOLOv9, and having about 5% and 1.2% of

YOLOv9’s parameters. The algorithm presented in this paper has

not yet seen widespread practical deployment. Our future plans

include integrating it into mobile harvesting robots to enable precise

detection of citrus maturity, ensuring that only citrus meeting the

desired maturity criteria are harvested. This study supports

intelligent picking in smart agriculture and offers reference

suggestions for future work in target detection, visual positioning,

and classification in smart agriculture.
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