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pathogen interactions
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1Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK),
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Uppsala, Sweden
The increasing availability of genetic and genomic resources has underscored

the need for automated microscopic phenotyping in plant-pathogen

interactions to identify genes involved in disease resistance. Building on

accumulated experience and leveraging automated microscopy and software,

we developed BluVision Micro, a modular, machine learning-aided system

designed for high-throughput microscopic phenotyping. This system is

adaptable to various image data types and extendable with modules for

additional phenotypes and pathogens. BluVision Micro was applied to screen

196 genetically diverse barley genotypes for interactions with powdery mildew

fungi, delivering accurate, sensitive, and reproducible results. This enabled the

identification of novel genetic loci and marker-trait associations in the barley

genome. The system also facilitated high-throughput studies of labor-intensive

phenotypes, such as precise colony area measurement. Additionally, BluVision’s

open-source software supports the development of specific modules for various

microscopic phenotypes, including high-throughput transfection assays for

disease resistance-related genes.
KEYWORDS

BluVision, automated microscopy, barley, deep learning, microphenomics, neuronal
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1 Introduction

One of the most sustainable and environmentally friendly alternatives to chemical

pesticides is harnessing the natural disease resistance of plants. This approach has a long

history of success in crop breeding. However, to address new challenges, plant breeders

need to discover new sources of disease resistance by exploring the genetic diversity stored

in gene banks and germplasm collections worldwide. This requires more sensitive

phenotyping tools capable of identifying quantitative trait loci (QTLs) with minimal

effects and low allele frequency.

Recognizing this need, the scientific community has developed precise and high-

throughput phenotyping tools, establishing a new scientific discipline called phenomics.
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Most of these efforts have focused on phenotyping at the level of

whole plants and canopies, lacking the spatial resolution necessary

for detailed studies of microscopic plant-pathogen interactions. To

address this gap, we have developed a highly automated

phenotyping platform that covers the subcellular, tissue, and

organ levels. Our system for organ-level phenotyping on a

macroscopic scale, called Macrobot, and the corresponding

software framework (BluVision Macro), were previously published

(Lück et al., 2020; Lueck et al., 2020).

The first software implementation to detect and quantify

microcolonies of B. graminis on barley and wheat was HyphArea

(Seiffert and Schweizer, 2005; Baum et al., 2011). The tool pioneered

establishing a high-throughput platform for plant-pathogen

interaction phenotyping on a microscopic level and allowed access

to novel phenotypes, such as quantifying the area of fungal secondary

hyphae. However, the high sensitivity and specificity levels of the

HyphArea Tool demonstrated in (Seiffert and Schweizer, 2005; Baum

et al., 2011) were often difficult to reach due to the variability of the

sample properties and quality. Besides the image analysis, the

extended use of the HyphArea revealed issues with the handling

and processing of the raw data. The acquired image data were

exported as individual camera frames (tiles) and stored in separate

TIFF files. This step simplifies image data processing and avoids using

proprietary file formats, but it results in a massive expansion of the

file number (>106 files for a large screen), thus approaching the limits

of the commonly used hardware and software. Finally, the long run

time of theHyphArea renders it less appropriate for high-throughput

phenotyping screenings.

Despite its limitations, HyphArea demonstrated the

transformative potential of automated microscopy and image

analysis in plant-pathogen phenotyping, paving the way for the

development of a new software system, BluVision, which is

presented in this study.

The primary aim of the BluVision framework is to phenotype

plant-pathogen interactions on both microscopic and macroscopic

levels. We selected the well-established system of the powdery

mildew fungus Blumeria graminis f.sp. hordei (Bgh), a pathogen

of barley, as our model (Panstruga and Dodds, 2009; Spanu and

Kamper, 2010; Douchkov et al., 2014a, b). B. graminis is a species of

the Ascomycete genus Blumeria in the order Erysiphales, causing

powdery mildew diseases on various grass species. Blumeria

graminis are obligate parasites with highly specific host-

specialization forms, such as B. graminis f. sp. tritici (Bgt; wheat

powdery mildew) and B. graminis f. sp. hordei (Bgh; barley powdery

mildew) (Wyand and Brown, 2003) (Figures 1A–D).

The barley powdery mildew model offers several advantages: (i)

the fungus proliferates rapidly and in a highly synchronized

manner, (ii) the majority of its biomass is located on the leaf

surface, and (iii) it interacts only with the uppermost layer of plant

leaf cells, (i.e., the epidermis) via a specialized intracellular feeding

organ called a haustorium (Huckelhoven and Panstruga, 2011).

This system’s reduced complexity provides an excellent

environment for studying plant-pathogen interactions on a

microscopic scale. Full-size and multilevel microscopy images of

large objects, such as leaf segments, generate complex data sets that
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have been challenging to analyze with automated image analysis

methods until recently. The advent of machine learning (ML) has

significantly improved this situation. ML methods use analytical

models to identify patterns and make decisions with minimal

human intervention (Mitchell, 1997; Voulodimos et al., 2018).

There are two main ML approaches: supervised learning from

pre-labeled data (Norving and Russell, 2010) and unsupervised

learning from unlabeled data (Hinton and Sejnowski, 1999). Image

analysis typically involves classification and segmentation steps.

Here, features (variables) from images are used to classify objects,

while image segmentation assigns labels to individual pixels,

grouping them into subgroups (image objects) and separating

them from the background (Stockman and Shapiro, 2001). The

success of image analysis often depends on choosing meaningful

classification features (Zheng and Casari, 2018). This work

compares two main methods: manually selecting features

(handcrafted) and automatically extracting features using a

convolutional neural network (CNN). CNNs can automatically

select many features, leading to more robust prediction models,

but they require large training datasets. In contrast, predictive

models like Random Forest (RF) with carefully selected

handcrafted features can perform well even on small training sets

(Lin et al., 2020). Thus, the optimal approach depends on the

specific application and typically requires preliminary testing of

different methods.

Here, we present the BluVision Micro system, a novel platform

dedicated to phenotyping the initial stages of plant-pathogen

interactions using high-throughput automated microscopy and

computer vision methods. The aims of this study are threefold: (i)

to develop an improved phenotyping tool for detecting and

quantifying fungal colonies during early infection stages, building

upon and addressing the limitations of the HyphArea tool; (ii) to

validate the performance and accuracy of the BluVision Micro

system; and (iii) to demonstrate the utility of the system by

applying it in a genome-wide association study (GWAS) on

barley powdery mildew. This comprehensive approach

underscores the potential of BluVision Micro to advance high-

throughput phenotyping for plant-pathogen interactions.
2 Material, methods and equipment

2.1 Plant and fungal material

Barley cv. Golden Promise and cv. Morex, and wheat cv.

Kanzler were grown in 12 cm pots with nursery soil substrate.

The plants were incubated in a plant growth cabinet (Panasonic

MLR-352H-PE Versatile Environmental Test Chamber, white LED

upgrade; Panasonic Healthcare Co., Ltd.) at controlled conditions

(dark period of 8h, light period of 16h, 20°C and 60 RH%) for 7 days

or 14 days. The first or the second leaves were harvested and

mounted on 1% water agar (Phyto agar, Duchefa, the Netherlands)

plates supplemented by 20 mg/L benzimidazole (Sigma-Aldrich, the

USA) as a senescence inhibitor. The barley leaf segments were

inoculated with the Bgh isolate CH4.8, and the wheat leaf segments
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were inoculated with the Bgt isolate FAL92315 at approximately five

spores/mm2 in an inoculation tower. The infection was stopped at

36-96 hours after inoculation (hai) by incubating the leaf segments

in a clearing solution (7 mL 96% ethanol and 1 mL acetic acid) for

48 hours at room temperature. After that, the fungal colonies were

stained with Coomassie staining solution (0.3% Coomassie R250,

7.5% (w/v) trichloroacetic acid, and 50% (v/v) methanol) for 5

minutes and then washed several times with water. The prepared

samples were mounted on microscope slides with 50% glycerol to

avoid drying the leaves during image acquisition.
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A diversity set of 200 barley accessions (BRIDGE Core 200

collection) from the Federal ex-situ Genebank in Gatersleben, selected

for maximized genetic diversity, were genotyped by using whole-

genome sequencing (WGS) data from Illumina short-read sequencing

with 3x genome coverage (Milner et al., 2019), and aligned to the barley

MorexV2 reference genome (König et al., 2020; Mascher, 2020). A

quality filter on 223 387 147 variants was applied with the PLINK 2.0

software, limiting the missing values to ≤ 0.02 and minor allele

frequency (MAF) to ≥0.05. After filtering, 949 174 high-quality

variants remained and were used in GWAS analysis. Four genotypes
FIGURE 1

(A-D) Visible and microscopic infection phenotypes of powdery mildew on barley. (A) Barley leaf with powdery mildew approximately 7 days after
infection (dai). (B) Barley powdery mildew at higher magnification (6-7 dai). (C) Barley powdery mildew on barley 96 hours after infection (hai).
(D) Barley powdery mildew on barley, 48 hai. (E-G) Experimental design. (E) Leaf segments are cut from the second leaf of 14-day-old plants.
(F) The leaf segments are inoculated with fungal spores. (G) The samples are collected at different time points after inoculation (e.g., 48, 72, 96 hai)
and stained for microscopic analysis.
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were eliminated from the set for technical reasons (e.g., poor

germination), so the final genotype set consisted of 196 accessions.

The material of the barley core collection of genotypes was

grown, collected, and inoculated as described in (Lück et al., 2020).

In brief, the plants were grown in 24-well seedling trays with

nursery soil substrate, ten plants of the same genotype per well, in

a climatized greenhouse (~20°C day/~16°C night) for 14 days. Leaf

fragments from the second leaf were harvested and mounted on

standard 4-well microtiter plates filled with 1% water agar

supplemented by 20 mg/L benzimidazole. The leaf fragments were

inoculated, incubated, and stained as described above.

The experiment was conducted in three independent biological

repetitions, where plants were grown in three separate batches, and

each batch was infected with spores produced at different time

points. Within each biological repetition, up to eight technical

replicates were included to ensure the robustness and

reproducibility of the results.
2.2 Image acquisition and
analysis hardware

The microscopy image data was acquired on a commercial Zeiss

AxioScan.Z1 high-performance microscopy slide scanner, and ZEN

3.0 (blue edition) software (Carl Zeiss AG). The imaging was done

in a bright field configuration with a Hitachi HV-F202SCL camera

(3 CCD 1/1.8” progressive scan color sensor with 1600x1200

effective pixels and 24-bit color depth), 1x camera adapter. The

scanning objective typically used an EC Plan-Neofluar 5x/0.16 M27

with 0.16 NA (numerical aperture) that provides a large depth of

field (DoF), which was particularly advantageous for scanning very

thick and uneven objects as whole-leaf fragments. The acquired

image data was stored in a CZI file container that combines all

relevant image and meta information in one file. The image data

were analyzed on a Windows 10 Enterprise server with a dual Intel

Xeon™ E5-2695 processor with 36 physical cores and 512 GB RAM,

allowing near real-time analysis.
2.3 Software implementation

The software BluVision Micro and all experiments were

implemented in Python 3.6 under Windows 10 operating system.

The following free Python libraries were used for development:

OpenCV-Python, NumPy, Pandas, Keras, Tensorflow, czifile,

skimage, mahotas, joblib and Scikit-learn. Training of the CNN

model was done on an NVIDIA TITAN X GPU with Keras 2.3.1 and

Tensorflow 2.1.0 backend, and training time of about 20,000 images

per hour on an Intel® Core™ i7-9700 CPU 3.00 GHz with 64-Bit

Windows 10 operation system.

The software is implemented as a two-step command-line tool

with separated image processing and data analysis, allowing

curation of the intermediate results without rerunning the entire

analysis. In addition, the image processing can be parallelized,

depending on the installed computer memory.
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2.4 Downstream analysis

2.4.1 Genome-wide association scan
GWAS for all traits was conducted using the software tool

GWAStic (Lück et al., 2024). Briefly, the tool uses the Factored

Spectrally Transformed Linear Mixed Model with a kinship (K)

matrix provided by the FaST-LMM program (fastlmm 0.6.7)

(Lippert et al., 2011; Listgarten et al., 2012). A suggestive

threshold (−log10 P ≥ 6.0) was calculated based on the formula

-log10 (1/number of independent SNPs) (Yang et al., 2014), and a

significance threshold (−log10 P ≥ 8.0) for the identification of

QTLs was calculated by using the Bonferroni correction method

(Hommel, 1988).

2.4.2 Haplotype blocks and linkage
disequilibrium analysis

The PLINK ‘clumping’ algorithm was employed to choose the

most significant SNPs (−log10 P ≥ 5.0, clump-p1 parameter) and

locate all SNPs in linkage disequilibrium (LD) (using a clump-r2

parameter set to 0.6). To perform the clumping process, we set the

physical distance threshold to 10,000 (clump-kb parameter). In

cases where these regions overlapped, we consolidated them into a

unified and expanded locus.

2.4.3 Protein domain overrepresentation analysis
Protein domain enrichment analysis was performed using the

ShinyGO 0.80 online tool (Ge et al., 2020), using theMorex V2 gene

ID against the hvtritex_eg_gene gene database (Morex V2 TRITEX

assembly) and GO Molecular Functions pathway database.
3 Software development

3.1 Image processing

3.1.1 Focus stacking
The first step addresses the problem of capturing all image

details of samples whose thickness exceeds the depth of focus of a

single image frame. This issue is commonly known as ‘focus

stacking’, which is particularly challenging when the target object

can be located at different depths (different Z positions) on the

samples. In the case of mildew microcolonies, this is typically due to

the three-dimensional structure resulting from irregular/interlaced

hyphae combined with the leaf surface topology. We tested five

different Z-projection methods included in the Fiji distribution

package of ImageJ v1.53 (Schindelin et al., 2012) based on the values

of the pixels along a single Z-axis point, namely Average intensity

(Khamfongkhruea et al., 2017), Maximum intensity (Sato et al.,

1998), Minimum intensity (Hayabuchi et al., 2011), Sum slices,

Standard deviation and Median (Figure 2A).

Furthermore, for each stacked image, the image Quality

Measure (FM) has been computed and compared (Supplementary

Table S19) (De and Masilamani, 2013). The minimum intensity

projection method achieved the best FM score in all tested cases and

was selected for the image processing pipeline.
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3.1.2 Colony segmentation
The second step in the image processing pipeline focuses on

defining the optimal image segmentation strategy to accurately

distinguish colony boundaries from the background, referred to

as ‘colony segmentation’. A major challenge was designing a reliable

pipeline that could tolerate variations in staining quality and

background without missing positive objects, such as

genuine colonies.

First, Z-stacked images from the initial step were segmented

using the scikit-image library in Python. The raw RGB images were

converted to the more informative YQ1Q2 color space, and

automatic multilevel thresholding (Yen) was applied to identify

the putative regions of interest (ROIs). These ROIs were extracted

as bounding boxes. Using the OpenCV Python library and the

border-following algorithm, contours (the lines connecting all

contiguous points sharing the same color or intensity) were

identified, and a virtual rectangle delineating each object was

drawn. The bounding boxes were then classified as either positive

or negative, indicating the presence or absence of a colony

‘object’, respectively.

The use of ‘color space’, a normalized organization of colors

supported by various image capture devices, proved valuable for

providing reproducible scoring of color across variable staining

intensities and qualities within and between ROIs. Different

common color spaces were tested: HSV, L*a*b, YCbCr, XYZ,

AC1C2, YUV, I1I2I3 and YQ1Q2, in combination with varying

algorithms of thresholding: Yen’s maximum correlation (Yen et al.,

1995), Li’s minimum cross-entropymethod (Li and Lee, 1993; Li and

Tam, 1998; Sezgin and Sankur, 2004), Otsu (Otsu, 1979), Isodata
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(Ridler and Calvard, 1978), Mean (Glasbey, 1993), Minimum

(Prewitt and Mendelsohn, 1966; Glasbey, 1993), Triangle (Zack

et al., 1977), Canny edge detector (Canny, 1986) (Supplementary

Table S20). Combining the Q2 channel from the YQ1Q2 color space

with Yen’s thresholding generated the most reliable results. Using

only a single-color channel, we achieved a robust and reliable

segmentation method that is insensitive to staining variations and

performs well on different sizes of the hyphae (36 to 96 hai).

A morphological closing operation was applied to the

segmented binary images to close the gaps that may lead to

partial object extraction. Finally, a Moore-Neighbour tracing

algorithm (Weisstein, 2021) was used to extract the contours of

the binary image for colony classification.
3.2 Machine learning

3.2.1 Training data set
The next challenge was to extract colony features that could be

used for phenotyping. Due to the morphological variability in

fungal micro-colonies and colony ROIs, each image is unique,

making ‘one-size-fits-all’ strategies like thresholding or

background subtraction ineffective. We argue that this is a typical

problem suited for machine learning (ML).

Developing effective ML models requires generating a high-

quality, precise training dataset to help artificial intelligence (AI)

algorithms recognize, score, and analyze objects and patterns.

In this study, the ML model classifies ROIs as either positive

(e.g., fungal colonies) or negative (e.g., artifacts or non-colony
FIGURE 2

Image processing and model development. (A) Comparing stacking algorithms. Five stacking algorithms were compared: Average intensity,
Maximum intensity, Median, Minimum intensity, Sum slices. The Minimum intensity method achieved the highest quality measure (FM). (B) The
structure of a convolutional neural network consists of convolutional, pooling, and fully connected layers. (C) Heatmap visualization shows the
significance of the selected features in predicting a target variable (fungal structure). The left image represents the raw image data, and on the right
are the regions of interest detected by the software (red border rectangle) with hyphae segmentation. The example clearly shows that the CNN
model localizes the fungal colony with high probability (red colors), as the probability in the background drops significantly (blue colors). (D) Training
and validation accuracy of the CNN model trained with ca. 10,000 positive images.
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regions). Following classification, phenotypic traits are quantified

using image processing techniques. Colony size is calculated using

the cv2.contourArea(cnt) function, which computes the area of the

contour corresponding to each fungal colony. Additionally, colony

width and height are measured using the bounding box dimensions

of the contour.

A robust training dataset must encompass a wide range of ROI

variations, including ‘positive objects’ (mildew microcolonies) and

‘negative objects’ (artifacts or non-fungal structures). To achieve

this, approximately 10,000 ROIs containing fungal colonies and an

additional 8,000 ROIs with artifacts or other non-colony features

were manually curated and selected, resulting in a total dataset of

18,000 images (Lueck, 2022).

For each image, the total number of fungal colonies per leaf was

recorded. To account for variability in leaf size, the leaf area (in

pixels) was also calculated. The final colony count was normalized

by the leaf area, providing a standardized measure of fungal colonies

per unit area. This approach ensures that the ML outputs (positive

classifications) are directly translated into biologically relevant

phenotypic traits, such as colony size, shape, and density,

enabling meaningful comparisons between samples.

To evaluate the performance of the training dataset, a smaller

subset containing 3,200 images per class was extracted. Both the full

dataset and the smaller subset were randomly split, with 75% of the

images used for training the ML models and building the classifier,

and 25% used for validation and evaluation. Since convolutional

neural networks (CNNs) require images of consistent dimensions,

all training images were resized to 150 × 350 pixels, which

represents the mean ROI size of the dataset.

3.2.2 Classification using handcrafted features
Manual feature selection, also known as handcrafted feature

selection, remains a widely used approach for building reliable

classifiers. In some cases, it may even outperform more

sophisticated methods, particularly when the objects to classify

are geometrically complex (Lück et al., 2020). The success of this

approach hinges on selecting ‘invariant features,’ which, in our case,

are the physical and colorimetric attributes of the microcolony that

remain consistent under various staining and imaging conditions.

To achieve this, the ROI boundaries defined after the segmentation

step were first filtered using geometrical features to reduce the

presence of artifacts and non-fungal structures near positive objects

(Supplementary Table S21).

Then, five scale- and color-invariant features Histogram of

oriented Gaussians (Dalal and Triggs, 2005), Local binary pattern

(LB) (Dong-chen and Li, 1990; Wang and He, 1990),Haralick (HA)

(Haralick et al., 1973), Zernike Moments (ZM) (Tahmasbi et al.,

2011), Parameter-free threshold adjacency statistics (PFTAS)

(Coelho et al., 2010); Supplementary Table S22) were extracted

with the mahotas and scikit-image library, and a Random forest

classifier with 80 trees was trained with the two training sets (3,200

and 10,000 images per class).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)
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Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

TP – true positive

TN – true negative

FP – false positive

FN – false negative

Equations 1–3. Accuracy, Precision, and Recall scores calculation

(according to the ground truth; see the Validation chapter).

Finally, the performance of Accuracy, Precision, and Recall

scores were calculated according to Equations 1–3.

3.2.3 Convolutional neural network
We implemented a standard convolutional neural network

(CNN) (Figure 2B) with a dropout of 0.2 and trained two

training sets with different sizes (ca. 3,200 and 10,000 images per

class) over 25 epochs. We used a rectified linear activation function

during training and a final SoftMax activation function to receive

the probability distribution over the classes. In addition, we used the

stochastic gradient descent optimizer with a learning rate of 0.01,

batch size of 32, and momentum of 0.9 to allow one training image

to pass through the neural network at a time and update the weights

for each layer. The final model accuracy was 97.13% (Figure 2D).

The CNN model consists of an input layer that accepts images

resized to 150x350x3 pixels. It includes two convolutional layers,

with the first employing 32 filters and the second 64 filters, both

using 3x3 kernels and ReLU activation. Padding is set to “same” to

preserve the spatial dimensions of the input. Following the second

convolutional layer, a MaxPooling2D layer with a 2x2 pool size is

applied to reduce spatial dimensions. Dropout is incorporated after

each convolutional block and dense layer, with a rate of 0.2, to

mitigate overfitting. The architecture includes two fully connected

dense layers, the first with 1024 neurons and the second with 512

neurons, both using ReLU activation and a max-norm constraint of

3. The output layer is a dense layer with softmax activation,

providing class probabilities for the two categories: positive and

negative fungal structures. The model is compiled using the

stochastic gradient descent (SGD) optimizer, categorical cross-

entropy loss, and accuracy as the evaluation metric.
4 Preprocessing of the
phenotypic data

Three direct phenotypes and one derivative were obtained for

each genotype from detached leaf samples (Table 1; Figures 1E–G).

The microscopic phenotypes include normalized colony counts

at 48 hours after infection (hai) with the pathogen and colony sizes

at 36, 48, 56, and 96 hai. To account for the different sizes of the leaf

segments, the colony counts were normalized to the area of the

corresponding leaf segment. The average colony size per leaf at 48

and 96 hai was extracted from the segmented images using the
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OpenCV contourArea() function. All phenotypic values were filtered

for outliers using the ROUT method with a 1% threshold.

The colony sizes at both time points were used to calculate the

Area Under the growth Curve (AUC), which was also used as a

phenotype in GWAS. The AUC was calculated from the 48_CS and

96_CS phenotypes according to the Equation 4.

AUC0−96 = 1=2*(S0 + S48)*48 + 1=2*(S48 + S96)*48 (4)

Where:

St are the BLUE of the colony size in the corresponding

time points.

Since the colony area at timepoint 0 is 0 (S0 = 0), the simplified

formula is:

AUC0−96 = 24� (2*S48 + S96)

Equation 4. Calculation of Area Under the Curve (AUC).

To obtain robust and unbiased phenotype means for the

individual genotypes from the three independent experiment

repetitions, we used the Best Linear Unbiased Estimator (BLUE)

(Henderson, 1975; Liu et al., 2008). BLUE was calculated with the

help of the lme4 library for R using the experiment repetitions as a

random effect using the model in Equation 5.

colony _ phenotypei = b0 + b1Gj + uGxR(i) + ei (5)
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Where:

colony_phenotypei is the dependent variable for the i-

th observation.

b0 is the intercept.
b1 is the coefficient for the fixed effect Gi.

uGxR(i) is the random effect associated with GxR for the i-

th observation.

ei is the residual error term for the i-th observation.

Equation 5. Statistical model for calculation of the Best Linear

Unbiased Estimator (BLUE).
5 Validation

5.1 Validation of handcrafted
feature models

One validation set of 376 colonies (Validation set I) was labeled

manually as ground truth to evaluate the Random forest models.

With the handcrafted feature (HF) Random forest models trained

on 3,200 images per class, the local binary pattern feature reached

the highest accuracy (>0.93, Table 2). However, the models failed

colony detection on Validation set I with a false negative rate of

>90% (Table 3). Increasing the training dataset size to 10,000

images did not improve the theoretical model accuracy of the

handcrafted feature-based model, indicating that the learning

curve reached a plateau (Table 2).

This is usually an indication of model overfitting, resulting in a

too stringent prediction or a poor capability to deal with new data.

This example demonstrates how misleading the theoretical

performance metrics can be if used solely without validating the

model with new experimental data. Re-testing all previously built

models with a new validation data set revealed the Parameter-free

threshold adjacency statistics (PFTAS) and Haralick (HA) as best

performing (True positives > 88%, False positives < 10%) (Table 3).

Thus, a newmodel using Random forest combined with PFTAS and
TABLE 2 Performance of the Random Forest model for image features trained with 3,200 or 10,000 objects per class.

Method Training size Precision SD Recall SD Accuracy SD

HOG 3,200 0.8493 0.0097 0.8895 0.0110 0.8634 0.0053

LB 3,200 0.9288 0.0082 0.9421 0.0073 0.9325 0.0051

HA 3,200 0.9075 0.0100 0.9216 0.0071 0.9109 0.0056

ZM 3,200 0.7816 0.0144 0.8239 0.0075 0.7919 0.0066

PFTAS 3,200 0.8821 0.0070 0.9288 0.0082 0.9000 0.0042

HOG 10,000 0.8472 0.0081 0.8893 0.0080 0.8641 0.0059

LB 10,000 0.9346 0.0076 0.9547 0.0077 0.9429 0.0048

HA 10,000 0.9088 0.0057 0.9311 0.0059 0.9186 0.0046

ZM 10,000 0.6841 0.0116 0.7419 0.0120 0.7018 0.0064

PFTAS 10,000 0.8516 0.0082 0.8830 0.0055 0.8653 0.0056
Results represent the average of 10 independent training runs. The following edge, texture, and shape descriptors were used: Histogram of Oriented Gradients (HOG, edge), Local Binary Patterns
(LB, texture), Haralick features (HA, texture), Zernike Moments (ZM, shape), and Parameter-Free Threshold Adjacency Statistics (PFTAS, texture). SD represents the standard deviation of
the data.
TABLE 1 Analyzed phenotypes.

Phenotype_ID Phenotyping
module

Phenotype Time
(hai)

48_CC BluVision Micro Normalized
colony counts

48

48_CS BluVision Micro Colony area at 48 hai 48

96_CS BluVision Micro Colony area at 96 hai 96

0-96_AUC BluVision Micro The area under the
growth curve 0-96 hai.

0-96
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HA features (RF/PFTAS/HA) has significantly improved accuracy

to 91% true positives and 9% false negatives, and only 1% false

positives objects on the Validation set I (Table 3).
5.2 Validation of HF & CNN & HyphArea

For a direct comparison between the CNN, the handcrafted

feature model, and the HyphArea software, we built a new

Validation Set II using historical data, as the HyphArea system is

no longer functional because of obsolete software and hardware.

Although we used data generated with the HyphArea system, its

model’s performance was significantly inferior, achieving only

25.8% true positive and 12.5% false positive rates (Table 4).

In contrast, the CNN and RF/PFTAS/HA models trained with

the smaller training dataset (3,200 images) performed significantly

better, with true positive rates of 75-85% and false positive rates of

9-10%. Training the models with the larger dataset of 10,000 images

improved the true positive rate of the RF/PFTAS/HA model by

13.3%, though it decreased the true positive rate in the CNN model

by 4.2%. This decrease in the CNN model may be due to chance,

given the relatively small size of the validation set. However, the

false positive rate for both models improved by 9%.

The CNN model offers additional flexibility by allowing

adjustment of the detection threshold to meet experimental

requirements. For instance, setting a threshold level of 90%

significantly improved the true positive rate to 98.3% while

reducing the false positive rate to only 2.5%. These results

demonstrate that the CNN, supported by comprehensive
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validation data, provides high confidence in the phenotypic data

generated by this strategy.
5.3 Run-time and parallel
processing benchmarks

Considering the aim of a high-throughput microscopy image

analysis, we optimized the algorithm for run-time per image.

Besides other improvements, using numerical Python libraries,

which allow efficient numerical calculations on multi-dimensional

arrays, and parallelizing the processes with the joblib library

(Python) led to a significant speed gain. As a result, BluVision

Micro performed up to 30 times faster than the previous HyphArea

software in analyzing pyramid images of average size 30,000 x

25,000 pixels. On an Intel® Core™ i7-9700 CPU 3.00 GHz with 64-

bit Windows 10 operating system and NVIDIA TITAN X GPU

support, the software run time takes about 60 seconds per slide

containing two images of size 30,000 x 25,000 pixels, which is 3-5

faster than the image acquisition time, thus allowing real-

time analysis.
5.4 Feature visualization

Visualizing the CNN predictions becomes crucial because of the

increasing demand for transparency of the artificial intelligence

prediction models. However, the availability of visualization options

was limited until recently, when several such tools were developed.

To examine the BluVision Micro CNN model’s prediction and

facilitate debugging, we used Keras Visualization Toolkit (Zhou

et al., 2015) to generate heatmap images to visualize the Class

activatio n maps for the fungal structures. The resulting heatmaps

correctly represented the Area covered by the fungal microcolonies

(Figure 2C). Examples using further visualization tools are present

in the Supplementary Data.
6 Image analysis pipeline description

After selecting and tuning the separate components of the

system, they were assembled into an image analysis pipeline. The

image data from the CZI files is loaded into memory for processing.

This step is essential to accelerate accessing and manipulating the

image content, but it requires high installed memory. The meta-

information about all object dimensions, resolution, and other

specific characteristics is retrieved from the CZI files. Notably, the

CZI format often contains multiple regions requiring separate

processing. Next, a stacked image is generated from the z-stack

using the Minimum-intensity projection method. The Minimum-

intensity projection method involves creating a single image from

multiple layers (z-stack) by taking the minimum intensity

projection, which helps in reducing noise and enhancing the

features of interest. A binary image is then created by converting

the RGB image into YQ1Q2 color space and utilizing only the Q2

channel. This conversion helps in isolating specific features of the
TABLE 4 Validation set II. A comparison of the sensitivity and accuracy
of handcrafted and CNN models built on different training data sizes and
HyphArea historical data (120 colonies).

Method Training size TP FP

BluVision HC 3,200 75.89 10.01

BluVision HC 10,000 89.11 1.62

BluVision CNN 100% 3,200 85.81 9.10

BluVision CNN 100% 10,000 81.70 0.00

BluVision CNN 90% 10,000 98.31 2.53

HyphArea NA 25.83 12.52
TABLE 3 Validation set I. Handcrafted features comparison (number of
colonies = 376) sensitivity and specificity in %.

Method TP FP FN

HOG 25.0 3.5 75.0

LB 5.6 0.5 94.0

HA 92.0 5.0 8.0

PFTAS 88.8 10.1 11.2

PFTAS+HA 91.0 1.0 9.0
TP, True positive; FP, False positive; FN, False negative; HOG, Histogram of Oriented
Gradients; LB, Local Binary Patterns; HA, Haralick features; ZM, Zernike Moments; PFTAS,
Parameter-Free Threshold Adjacency Statistics.
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image, making it easier to identify regions of interest and reducing

the background noise. The process continues with extracting all

contour objects as potential regions of interest (ROIs) using

OpenCV. OpenCV’s contour detection algorithms are employed to

identify the boundaries of objects within the binary image. Simple

geometric filters are applied to remove unwanted objects that are

too small or too large. These filters help refine the set of potential

ROIs by eliminating irrelevant or extraneous objects based on their

size and shape. Finally, the objects are classified using a CNN

model. This comprehensive pipeline ensures that the images are

processed efficiently in parallel, with the relevant regions identified

and classified accurately. The results, which include features of each

detected colony, leaf size, and summary statistics (mean, median

colony size and count per leaf, standard deviation, normalized

colony counts, etc.), are exported as standard comma-separated

values (CSV) files.
7 Software installation and usage

The BluVision Micro software installation was performed using

Anaconda to create a virtual environment with Python version 3.6

or higher. Anaconda was downloaded and installed from its official

website (https://www.anaconda.com/). The BluVision Micro

GitHub repository was cloned to the local machine, and all

necessary dependencies were installed. Comprehensive installation

and usage instructions are available in the GitHub repository (refer

to Data Availability).
8 Transferability to the wheat
powdery mildew system

The robustness of the developed software is demonstrated by its

successful application to the wheat-powdery mildew system without

the need for major adjustments. The segmentation algorithm,

designed to distinguish PM hyphae from leaf background, proved

to be effective for wheat leaves as well. Adaptive thresholding and

morphological operations used for barley images were directly

applicable to wheat, indicating the algorithm’s versatility in

handling different leaf structures and textures. Feature extraction

for wheat leaves involved the same shape and texture features used

for barley. To evaluate the transferability of the model to a wheat

powdery mildew system, we generated a wheat dataset comprising

ten Kanzler wheat leaves with 1,123 hyphal colonies. This dataset

posed a particular challenge due to the presence of large trichomes

—leaf structures that are either absent or significantly less

pronounced in barley—and suboptimal staining. Despite these

complexities, the model, originally trained on barley, achieved a

true positive rate of 92% and a false positive rate of just 1%

(Supplementary Table S24). These results suggest that while the

model may miss some colonies in this more complex dataset from a

different species, its ability to maintain a very low false positive rate

underscores its robustness.
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9 Morphometric traits

In addition to directly measuring the number and size of the

colonies, several morphometric traits can be automatically derived

from the image data. These traits provide a more comprehensive

understanding of the hyphal growth patterns and their interactions

with the host. Some of the key morphometric traits are shown

in Figure 3.

These morphometric traits offer a detailed characterization of

the fungal growth dynamics. Depending on the purpose of the

analysis, integrating several of these phenotypes can provide a more

nuanced and complete picture of plant-fungal interactions. This

comprehensive approach enhances the ability to study fungal

pathogenicity, host resistance mechanisms, and the overall impact

of fungal colonization on plant health.
10 Limitations

While the software application for detecting and classifying

powdery mildew on barley and wheat leaves demonstrates high

accuracy and robustness, it faces challenges in detecting hyphae

older than 72 hours post-inoculation due to the intertwining growth

of hyphae. The limit can be extended to 96 hours by using lower

inoculation spore density, but the segmentation of individual

colonies remains challenging at later time points.
11 Downstream applications
and results

11.1 Genome-wide association scans using
microscopic infection phenotypes

To showcase the system’s utility in phenotyping microscopic

infection traits, we conducted a genome-wide association study

(GWAS) on barley powdery mildew.

The experiment design (Figures 1E–G) allowed the quantification

of multiple phenotypes (Table 1) from a single leaf. The precise

phenotypic data was combined with the dense SNP data (949 174

quality SNPs) for GWAS for resistance-associated markers.

Since the study aims to provide proof of concept and

application examples, the number of tested genotypes was limited

to 196. This number is on the lower end for detecting significant

marker-trait associations (MTAs) in genetically diverse materials.

To provide a broader view of the genetic landscape and increase the

chances of discovering causative genes, proximal MTAs were

aggregated into MTA blocks (MTAB) with a minimum size of 0.5

Mb or larger if the MTAs were in linkage disequilibrium.

As expected, the 48 hai colony counts delivered the most

significant MTAs (Figure 4A) since the penetration resistance

against powdery mildew fungus, which effectively reduces the

number of successful infection events, is widespread in barley.

However, the MTAs reached only the suggestive threshold of
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-log10 P value of 6, not the significance threshold of -log10 P >8,

which was relatively high because of the multiple test correction for

the large number of SNPs included in the analysis (~1,000,000).

Significant associations were detected on both ends of chromosome

3H and at the beginning of chromosome 7H (Figure 4A). The three

MTABs contained a total of 53 gene annotations (see the

Supplementary Table S5). Some genes with a clear link to the

plant pathogen defense are listed in Table 5. The complete list is

available in the Supplementary Material (Supplementary Table S6).

The protein domain overrepresentation analysis of the genes in

these MTABs revealed significant enrichment of exonucleases,

phosphatases, protein kinases, and transferases (Figure 5A).

Notably, at least seven RLKs are located in the MTABs. The

relatively high number of RLKs is striking, considering that they

are a prominent class of plant immune receptors commonly

implicated in disease resistance.

The BluVision Micro platform provides the possibility to

measure precisely, and in high-throughput, the area of the

secondary hyphae of the powdery mildew colonies. This opens

new phenotyping options, which are hardly possible with manual

microscopy. For instance, measuring the colony size at a specific

time point after inoculation may reveal plant defense mechanisms

that rely on retarding the pathogen growth, e.g., cutting the nutrient

support for the fungus or late activation of cell death mechanisms.

The colony size-based phenotypes (48_CS and 96_CS) (Figure 4B,

respectively Figure 4C) did not deliver significant MTAs in this

genotype population. This is not unexpected because a natural

resistance in barley based on microscopically-measurable colony

growth retardation, to our best knowledge, is not yet described in the
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literature, not at last because of the lack of screening methods. However,

such valuable phenotype likely exists, and a systematic screen of diverse

plant genotypes may help discover it. The domain enrichment analysis

for the genes located in MTABs with -log10 P values >5 did not reveal a

significant overrepresentation of specific classes of genes.

We utilized the BLUEs for colony sizes at 48 and 96 hai across

196 barley genotypes to construct genotype-specific growth curves,

using the Area Under the Curve (AUC) as the phenotype for GWAS

(Figure 4D). While none of the MTAs for colony size phenotypes

reached the suggestive threshold, this novel phenotyping method

holds promise for identifying plant resistance mechanisms that

influence pathogen growth rates. Additionally, it serves as a valuable

tool for comparing the fitness of different pathogen races or

pathogens through growth curve analysis (Figure 6).

To estimate the diversity of genes located in MTABs associated

with various phenotypes, we performed an intersection analysis,

illustrated by the Venn diagram in Figure 5B. Interestingly, aside

from the related 96_CS and 0-96_AUC phenotypes, which share

eight common genes, no overlapping genes were found to be

associated with the different phenotypes.

As already mentioned, the high number of SNPs increases the

levels of statistical significance due to multiple test corrections.

However, several other MTABs contain markers with significance

approaching the thresholds, which may still harbor valuable genes.

Therefore, we provide a comprehensive list of all genes in MTABs

with markers associated with the phenotype at a significance level of

-log10 P value >4, as well as all individual MTAs with a -log10 P

value >4. These details are included in the Supplementary Material

(Supplementary Tables S6-S17).
FIGURE 3

Examples of possible morphometric traits. (A) Aspect ratio - the ratio of the length to the width of the hyphae. (B) Bounding box area. (C) Circularity
- quantifies how close the shape of the hyphae is to a perfect circle. (D) Extent - is the ratio of the Area occupied by the hyphae to the Area of the
bounding box that encloses them. (E) Convex area - refers to the Area of the smallest convex shape that can enclose the hyphae. (F) Solidity -
measures the proportion of the convex area that is actually occupied by the hyphae. (G) Hyphal density - refers to the amount of hyphal material
present within a given area or volume. (H) Radial growth rate - measures the speed at which the hyphae expand outward from the point of origin.
(I) Number of branch points - indicates the frequency of hyphal branching.
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12 Discussion

The need for automated microscopic phenotyping of plant-

pathogen interactions became apparent with increasing the number

of available genetic and genomics resources and the pursuit of

finding novel genes putatively involved in the complex

phenomenon of disease resistance.

The HyphArea tool has been instrumental in advancing plant-

pathogen interaction phenotyping by enabling the detection and

quantification of secondary hyphae of B. graminis. While its

pioneering approach has opened avenues for exploring novel

phenotypes, such as fungal hyphal area, its application has

revealed certain limitations in the context of large-scale
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phenotyping. Variability in sample quality has often hindered the

reproducibility of its high sensitivity and specificity levels reported

in earlier studies. Moreover, the practical challenges associated with

high-throughput use, particularly the inefficiencies in data handling

due to the large number of TIFF files generated and the considerable

processing time required. These constraints underline the need for

further advancements in phenotyping tools to better accommodate

the demands of large-scale, high-throughput workflows.

Benefiting from the accumulated experience and using newer

high-throughput automated microscopy and software techniques, we

have developed a new system for microscopy-based phenotyping. We

decided to opt for a modular, machine learning-based software that

works directly with different image data types, including complex
FIGURE 4

Manhattan plot of the [-log10] transformed p-values for statistical significance of the marker-trait associations in Genome-Wide Association Scan
(GWAS). (A) Genomic regions associated with the normalized Bgh colony counts at 48 hai (48_CC). (B-D) No genomic region was significantly
associated with the mean Bgh colony size at 48 hours (B) and 96 hours (C) after inoculation, as well as with the Area under the growth curve
(0-96AUC) (D) phenotype. Red dashed line – suggestive threshold after corrections for multiple testing. Red triangles indicate the locations of
statistically significant associated markers.
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FIGURE 5

(A) Protein domain overrepresentation analysis for the genes located in the MTABs with -log10 P values >6 on chromosome 3H and 7H (52 genes)
using the Morex V2 gene ID against the hvtritex_eg_gene gene database (Morex V2 TRITEX assembly) and GO Molecular Functions pathway
database [ShinyGO online tool (Ge et al., 2020)]. (B) A Venn diagram for the intersections of the gene annotations in MTABs associated with the
different phenotypes. The statistical significance was relaxed to -log P value >5 to broaden the range of included genes.
TABLE 5 A list of genes in MTABs contains markers significantly associated with the colony count at 48 hai phenotype (48_CC) from protein families
well-known to be involved in plant-pathogen interactions.

MTA_Block Chr. Gene ID Gene description Putative function References

48_CC_MTAB_13 chr3H HORVU.MOREX.r3.3HG0321190 F-box protein Protein degradation (Marino et al., 2012)

48_CC_MTAB_13 chr3H HORVU.MOREX.r3.3HG0321210 Receptor kinase-like protein Pathogen sensing (Yang et al., 2012)

48_CC_MTAB_13 chr3H HORVU.MOREX.r3.3HG0321270 Arf GTPase activating protein Membrane trafficking (Rivero et al., 2019)

48_CC_MTAB_29 chr7H HORVU.MOREX.r3.7HG0642520 Peroxidase Defense (Dos Santos and Franco, 2023)

48_CC_MTAB_29 chr7H HORVU.MOREX.r3.7HG0642550 Peroxisomal membrane protein Peroxisome targeting (Pan et al., 2020)

48_CC_MTAB_29 chr7H HORVU.MOREX.r3.7HG0642600 Receptor-like protein kinase Pathogen sensing (Yang et al., 2012)

48_CC_MTAB_29 chr7H HORVU.MOREX.r3.7HG0642690 ABA-responsive binding factor ABA signaling (Fan et al., 2009)

48_CC_MTAB_29 chr7H HORVU.MOREX.r3.7HG0642810 RNase P Rpr2/Rpp21 subunit RNA processing (Woloshen et al., 2011)

48_CC_MTAB_29 chr7H HORVU.MOREX.r3.7HG0642820 RNase P Rpr2/Rpp21 subunit RNA processing (Woloshen et al., 2011)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229300 Germin-like protein Disease resistance (Govindan et al., 2024)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229310 Receptor-like protein kinase Pathogen sensing (Yang et al., 2012)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229320 Receptor-like protein kinase Pathogen sensing (Yang et al., 2012)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229400 Receptor-like protein kinase Pathogen sensing (Yang et al., 2012)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229360 F-box family protein Protein degradation (Marino et al., 2012)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229400 Receptor-like protein kinase Pathogen sensing (Yang et al., 2012)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229420 Receptor-like protein kinase Pathogen sensing (Yang et al., 2012)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229450 RNA exonuclease 4 RNA processing (Maksimov et al., 2021)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229460 RNA exonuclease 4 RNA processing (Maksimov et al., 2021)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229470 RNA exonuclease 4 RNA processing (Maksimov et al., 2021)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229480 Actin/actin-like family protein Cytoskeleton (Li and Day, 2018)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229520 E3 ubiquitin-protein ligase Protein degradation (Marino et al., 2012)

48_CC_MTAB_10 chr3H HORVU.MOREX.r3.3HG0229610 Actin cross-linking protein Cytoskeleton (Li and Day, 2018)
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The Morex V2 gene identifiers were remapped to the latest Morex V3 assembly using nucleotide BLAST.
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pyramid files and multimodal images, and it is easily adaptable and

extendable with modules for additional phenotypes.

Different machine learning (ML) approaches were tested and

evaluated. Handcrafted features-based ML models, if chosen

correctly, can provide acceptable performance in cases where only

small (< 5,000 images per class) training sets are available. Using

more training data for the handcrafted features approach does not

further increase the performance, showing that we have reached the

methods’ limits in this case. For higher accuracy and more extensive

training sets (> 5,000 images per class), we recommend using a

CNN, whose significant advantage is extracting the probability for

each class and using it as a parameter for predictions.

The newly developed BluVision Micro system provides precise

microscopic phenotyping information for various large-scale studies,

including screening Genebank material, crossing populations, mutant

collections, andbreedingmaterial for bothhost andpathogen sides. This

study used the system to screen genetically diverse barley collection for

interaction phenotypes with powdery mildew fungi. The system

demonstrated accurate, sensitive, and reproducible results, which we

used to scan for marker-trait associations in the barley genome,

identifying several loci potentially associated with the traits of interest.

Additionally, the system enables high-throughput studies of previously

laborious phenotypes, such as precise colony areameasurement and the

scoring of pre- and post-haustorial defense reactions. With the use of

other dedicated modules, the BluVision platform can be employed for

fluorescence microscopy or to detect fungal haustoria in reporter gene

(GUS) expressing cells. This capability facilitates high-throughput

transfection assays for disease resistance-related genes, significantly

enhancing research efficiency and accuracy.

The open-source software system supports the development of

specific modules for various microscopic phenotypes. Developed

using object-oriented principles, the software framework allows for

easy extension to accommodate additional pathogens and new

modules. It is designed to be adaptable to various file formats,
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including DICOM standards and single images, enhancing its

versatility beyond its initial application.

The BluVision Micro system was used for phenotyping 196

barley genotypes infected with barley powdery mildew. Three direct

phenotypes and one derivative phenotype were quantified, with the

number of developed microcolonies providing the most informative

results. Three major marker-trait association blocks (MTABs) were

localized on chromosomes 3H (2 MTABs) and 7H. A total of 53

genes were annotated in these regions. Protein domain

overrepresentation analysis revealed significant enrichment of

exonucleases, phosphatases, protein kinases (including seven

receptor-like kinases), and transferases (Figure 5A). Many of

these genes belong to protein families, which are well known to

be involved in plant defense reactions. Exonucleases play a crucial

role in plant disease resistance by participating in key processes

such as DNA repair and maintenance (Britt, 1999), RNA silencing,

programmed cell death (PCD) (Coll et al., 2011), and generation of

signaling molecules (Voinnet, 2009). Phosphatases also play a

significant role in plant defense, contributing to signal

transduction (Schweighofer et al., 2004) and PCD (Coll et al., 2011).

However, probably the most interesting was a significant

enrichment of receptor-like kinases (RLKs), which are major

players in plant immunity. Besides functioning as canonical

receptors for pathogen-associated molecular patterns (PAMPs)

(Zipfel, 2008; Boller and Felix, 2009), RLKs are involved in signal

transduction, production of reactive oxygen species (ROS) (Li et al.,

2014), PCD (Coll et al., 2011), and pathogen-induced endocytosis

(Mbengue et al., 2016).

These findings provide indications that these genomic regions

may be associated with disease-resistance phenotypes. Furthermore,

they suggest that the BluVision Micro system has the potential to

capture meaningful phenotypic data, which could support the

discovery of novel genes involved in disease resistance. The

observed enrichment of genes related to key defense mechanisms
FIGURE 6

Growth curve of two adapted powdery mildew species on wheat and barley, respectively. The mean colony sizes were estimated on samples
collected 36, 48, and 56 hours after inoculation with Bgh or Bgt. SD, Standard deviation of the data.
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underscores the potential significance of these MTABs as regions of

interest for breeding disease-resistant barley varieties.

In conclusion, we have developed an open-source, extendable,

high-throughput automated system for the analysis of microscopic

phenotypes. We validated the system’s performance in disease

resistance screens of genetically diverse barley material and

demonstrated that the phenotypic data could be used for

Genome-Wide Association Scans (GWAS), discovering several

resistance-associated loci.
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