
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Plant Sci.
Sec. Plant Breeding
Volume 16 - 2025 | doi: 10.3389/fpls.2025.1430141
This article is part of the Research Topic Utilizing Machine Learning with Phenotypic and Genotypic Data to enhance Effective Breeding in Agricultural and Horticultural Crops View all 14 articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
A whole plant can be regenerated through tissue culture from an embryogenic callus in a process referred to as plant regeneration. Regeneration ability of embryogenic callus is a quantitative trait and the main limiting factor for genetic studies in sorghum.Wevaluated 236 sorghum mini core varieties for callus induction rate, embryogenic callus rate, callus browning rate and differentiation rate and performed a multi-locus genome-wide association study (GWAS) of the four traits with 6,094,317 SNPs. We found five mini core varieties most amenable to tissue culture manipulations: IS5667, IS24503, IS8348, IS4698, and IS5295. Furthermore, we mapped 34 quantitative trait loci (QTLs) to the four traits and identified 47 candidate genes. Previous studies provided evidence for the orthologs of 14 of these genes for their role in cellular function and embryogenesis and that the ortholog of WIND1 (WOUND INDUCED DEDIFFERENTIATION 1) identified in this study promotes callus formation and increases de novo shoot regeneration. These candidate genes will help to further understand the genetic basis of plant embryonic callus regeneration.
Keywords: tissue culture, Regeneration, GWAS, HDG5, WIND1
Received: 09 May 2024; Accepted: 31 Mar 2025.
Copyright: © 2025 Xu, Wang, Liang, Shen, Tu, Cheng, Hu, Wang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Yi-Hong Wang, Department of Biology, University of Louisiana at Lafayette, Lafayette, 70503, Louisiana, United States
Jieqin Li, Anhui Province International Joint Research Center of Forage Bio-breeding, Chuzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.