Skip to main content

ORIGINAL RESEARCH article

Front. Plant Sci.
Sec. Plant Biotechnology
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1526941

Knockout of BnaX.SGT.a caused significant sinapine reduction in transgene-free rapeseed mutants generated by protoplast-based CRISPR RNP editing

Provisionally accepted
  • Swedish University of Agricultural Sciences, Lomma, Sweden

The final, formatted version of the article will be published soon.

    Rapeseed (Brassica napus L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability. Attempts to develop rapeseed germplasm with lower sinapine levels through traditional breeding methods have shown limited progress. Genetic transformation methods could create new genotypes with reduced sinapine levels by silencing key genes involved in sinapine biosynthesis, though these methods often result in transgenic or genetically modified (GM) plants. The recent development of CRISPR-Cas technology provides a precise and efficient approach to crop improvement, with the potential to generate transgene-free mutants. In this study, we targeted the BnaX.SGT.a genes for knockout using CRISPR-Cas editing. By utilizing our newly established protoplast regeneration and transfection protocol for rapeseed, we demonstrated that DNA-free CRISPR editing via protoplast-based ribonucleoprotein (RNP) delivery was highly effective. We achieved successful knockout of the BnaX.SGT.a paralogues, with an average mutation efficiency of over 30%. Sequencing results revealed a variety of mutation types, from 1 bp insertion to 10 bp deletions, with most mutants exhibiting frameshift mutations that led to premature stop codons. The mutants displayed no visible phenotypic differences in growth patterns or flowering compared to the wild type. Importantly, sinapine content was significantly reduced in all T2generation mutants analyzed, while seed weight remained comparable between mutants and the wild type.

    Keywords: Rapeseed and canola, genome editing by CRISPR-Cas, Protoplast-based CRISPR RNP, DNA-free, transgene-free mutants, seedcake quality, antinutritional factor or compound

    Received: 12 Nov 2024; Accepted: 09 Dec 2024.

    Copyright: © 2024 Moss, Li, Wang, Kanagarajan, Guan, Ivarson and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Li-Hua Zhu, Swedish University of Agricultural Sciences, Lomma, Sweden

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.