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Sesamum indicum, a highly esteemed oil crop, has exhibited remarkable value

and potential in diverse areas encompassing the economy, food industry, and

health. We have observed that there are small protrusions on the leaves of the

indehiscent capsule material G1358. No obvious difference was detected on

overall auxin content between the leaves of G1358 and LZ1 from metabolomic

analysis. However, auxin levels at the base of G1358 leaves were notably higher

than in LZ1, suggesting a correlation between the small protrusions at the base

and polar auxin transport (PAT). PAT is essential for regulating growth and

development across different plant tissues. PAT primarily relies on three

families of transporter proteins: ABCB, PIN, and AUX/LAX. However, the ABCB,

PIN, and AUX/LAX protein families in Sesamum indicum have not been

systematically characterized. Herein, we identified 21 SiABCBs, 11 SiPINs, and 5

SiLAXs in S. indicum. Our analysis indicated that tandem duplications have

facilitated the expansion of SiLAX, SiPIN, and SiABCB gene families, which have

undergone purifying selection throughout their evolutionary history.

Transcriptome screening and RT-qPCR analysis revealed that SiABCB3,

SiABCB6, and SiPIN10 positively regulate PAT, whereas SiABCB7 and SiABCB9

negatively regulate PAT in G1358. These regulatory interactions contribute to the

formation of small protrusions in G1358 leaves and enhance the rate of

photosynthesis. Our findings provide a theoretical foundation for

understanding PAT genes and their roles in the environmental adaptation

of sesame.
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1 Introduction

Sesamum indicum, a crucial oilseed crop, is valued not only for

its nutritional benefits but also for its applications in traditional

medicine due to its potential therapeutic properties. However, its

cultivation is limited by low yields, necessitating efforts to select

varieties with high quality and enhanced photosynthetic efficiency

(Pathak et al., 2017; Wei et al., 2022).

Auxin, a crucial plant hormone, is responsible for diverse

physiological processes such as organogenesis, morphogenesis,

gravitropism, apical dominance, and tissue differentiation

(Goldsmith, 1993; Bohn-Courseau, 2010; Zhao, 2010). The

process of polar auxin transport (PAT) is particularly important,

as it involves the directional movement of auxin from the shoot tip

toward the base of the stem. This directional transport is crucial for

maintaining growth and developmental balance across different

plant tissues (Jensen et al., 1998). PAT relies on three main

transporter families: ABCB, PIN, and AUX/LAX proteins, which

establish auxin concentration gradients essential for these

developmental processes (Peret et al., 2012; Geisler et al., 2017;

Zhou and Luo, 2018). However, the ABCB, PIN, and AUX/LAX

gene families in S. indicum have yet to be characterized.

ABCB proteins, which are part of the ATP-binding cassette

(ABC) transporter superfamily, play a significant role in mediating

PAT. Evidence suggests that ABCB19, a member of this family,

influences auxin distribution within plants, affecting processes such

as hypocotyl growth during seedling establishment (Wu et al.,

2010), phototropic and gravitropic responses (Nagashima et al.,

2008), hypocotyl elongation (Wu et al., 2016), cotyledon

development (Lewis et al., 2009), and anisotropic cell expansion

(Zhang et al., 2024a). ABCB proteins are typically located uniformly

localized at the plasma membrane and are crucial for the directional

movement of auxin through tissues (Cho and Cho, 2013). The

synergistic effect of ABCB4 and PIN2 on auxin transport selectivity

highlights the importance of these proteins in PAT (Ep and Sd,

2021). PIN proteins, localized specifically at the plasma membrane,

are primary drivers of PAT. They use an elevator mechanism to

transport auxin anions out of the cell (Joshi and Napier, 2023).

Mutations in the PIN-FORMED (PIN1) gene resulted in reduced

PAT in Arabidopsis thaliana inflorescence axes, indicating the

critical role of PIN proteins during this process (Galweiler et al.,

1998). This interaction between PIN and ABCB proteins is crucial

for efficient auxin transport. Previous research has shown that co-

expression of PIN2 and ABCB4 markedly enhances the selectivity

for IAA, suggesting a synergistic effect necessary for effective PAT

(Ep and Sd, 2021). While ABCBs can mediate auxin efflux

independently of PINs, PIN-regulated auxin efflux occurs

predominantly in conjunction with ABCBs (Mellor et al., 2022).

Evidence suggests that the development of leaf veins, which are

critical for water and nutrient transport within leaves, is closely

related to PAT. This indicates that auxin’s role in leaf development

extends beyond its general functions in plant growth and

development. Additionally, PAT appears to influence early leaf

flattening (Wang et al., 2022), indicating its importance not only

for overall plant architecture but also for specific leaf morphological
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features. Leaf morphology, including shape, size, venation patterns,

and chloroplast arrangement within leaves, significantly affects how

light is absorbed, distributed, and utilized for photosynthesis. Broad

or broadly lobed leaves may be more effective in capturing light due

to their larger surface area and potentially stronger water potential

gradients across the leaf tissue, which can enhance photosynthetic

efficiency (Leigh et al., 2014). This is supported by observations that

broad-lobed leaves of Lomatia tinctoria exhibit higher and less

spatially variable heterogeneous photosynthetic efficiency compared

to narrow-lobed leaves under stress conditions. However, it remains

unclear whether small protrusions on leaves are related to PAT or if

they influence the plant’s photosynthetic rate.

In this study, we examined the phylogeny of the ABCB, PIN,

and LAX families in S. indicum. We identified 21 SiABCB family

members, 11 SiPIN family members, and 5 SiLAX family members,

in S. indicum. Transcriptome and metabolome analysis revealed

that, compared to S. indicum LZ1, the G1358 variety exhibited

enhanced PAT mediated by ABCB and PIN proteins. This

enhancement was associated with the formation of small

protrusions on G1358 leaves and increased photosynthetic rates.
2 Materials and methods

2.1 Materials

The indehiscent capsule material G1358 was obtained from the

Oil Crops Research Institute of the Chinese Academy of

Agricultural Sciences. Luzhi No.1 (LZ1) is a broadly adaptable

sesame cultivar developed by our institute.
2.2 Sectioning of the samples and
paraffin sides

After fixing in formalin-acetic acid-alcohol (FAA) for over 24

hours, the fresh leaves were removed, and the target tissue was

carefully trimmed using a scalpel under a fume hood. The trimmed

tissues and their corresponding labels were transferred into an

embedding frame. The tissue was then dehydrated in a dehydration

box using a graded alcohol series: 75% alcohol for 4 hours, 85%

alcohol for 2 hours, 90% alcohol for 2 hours, 95% alcohol for 1 hour,

followed by absolute-ethanol-I for 30minutes, absolute-ethanol-II for

30 minutes, alcohol-benzene for 5–10 minutes, xylene-II for 5–10

minutes, and melted paraffin at 65°C for three sequential stages of 1

hour each. The wax-impregnated tissue was then embedded using an

embedding device. Molten wax was first poured into the embedding

frame, and before it solidified, the tissues were transferred from the

dehydration box to the frame, aligned as required for sectioning, and

labeled. The frame was chilled on a -20°C freezing platform until the

wax solidified. After removing the solidified wax block from the

frame, it was trimmed and then sectioned into 4 mm slices using a

paraffin microtome. The sections underwent floating on 40°C water

in a spreading machine to flatten the tissue, then transferred onto

glass slides and heated at 60°C in an oven. Once the wax had dried
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and melted , the s l ides were taken out and kept at

ambient temperature.
2.3 Toluidine blue staining

The paraffin sections were sequentially immersed in dewaxing-

solution-I (Servicebio) for 20 minutes, followed by dewaxing-

solution-II (Servicebio) for another 20 minutes. They were

subsequently treated with absolute-ethanol-I for 5 minutes,

absolute-ethanol-II for 5 minutes, and rinsed with distilled water.

The sections underwent staining with toluidine blue for 2 minutes,

rinsing with distilled water, and microscopical examination to

assess tissue coloration for appropriate differentiation. After

washing with tap water, they were dried in an oven, made

transparent with xylene for 5 minutes, followed by sealing with

neutral gum. The sections were subsequently inspected under a

microscope, and images were captured and analyzed.
2.4 Auxin metabolite profiling sample
preparation and extraction

The processes of preparing, extracting, identifying, and

quantifying samples for the targeted metabolome analysis were

carried out by Wuhan Metware Biotechnology. The experiment

utilized three biological replicates, with samples labeled as follows:

LZ1-Leaf-1, LZ1-Leaf-2, LZ1-Leaf-3, G1358-Leaf-1, G1358-Leaf-2,

and G1358-Leaf-3. Fresh leaves were collected, snap-frozen in

liquid-nitrogen, crushed into powder (30 Hz, 1 minute), and kept

at -80°C until further use. For extraction, plant samples (50 mg)

were weighed, frozen in liquid nitrogen, and dissolved in 1 mL

formic acid/water/methanol solution (1:4:15). Then, 10 mL internal

standard mixture (100 ng/mL) was added to the extract for

quantification. After vortexing for 10 minutes and centrifugation

for 5 minutes (12,000 rpm, 4°C), the supernatants placed in a sterile

plastic microtube. After evaporating the solvent to dryness, the

residue was dissolved in 100 mL 80% methanol. The solution was

then passed through a 0.22-mm membrane filter and prepared for

LC-MS/MS assessment (Flokova et al., 2014; Li et al., 2016).
2.5 UPLC conditions

The samples were subjected to analysis using a UPLC-ESI-MS/

MS system (UPLC: ExionLC™ AD; MS: QTRAP® 6500+). The

parameters included LC-column, Waters-ACQUITY-UPLC-HSS-

T3-C18 (2.1 mm × 100 mm, 1.8 µm); solvent-system, water

containing 0.04% acetic acid (A) and acetonitrile containing

0.04% acetic acid (B); gradient-program: initiated at 5% B (0–1

minutes), elevated to 95% B (1–8 minutes), held at 95% B (8–9

minutes), and then decreased to 5% B (9.1–12 minutes); column-

temperature, 40°C; flow-rate, 0.35 mL/min; injection-volume, 2 mL
(Cai et al., 2014; Xiao et al., 2018).
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2.6 ESI-MS/MS conditions

The linear-ion-trap (LIT) and triple-quadrupole-scans were

performed on a triple-quadrupole-linear-ion-trap-mass-

spectrometer (QTRAP), specifically the QTRAP®6500+LC-MS/MS-

system, equipped with an ESI-Turbo-Ion-Spray-interface. The system

operated in both positive and negative ion modes and was managed

using Analyst v1.6.3 software (Sciex). The ESI-source parameters

included ion-source, ESI+/-; source-temperature, 550°C; ion-spray-

voltage (IS), 5500 V for positive-mode and -4500 V for negative-

mode; and curtain-gas (CUR) set at 35 psi. Phytohormones were

assessed using scheduled multiple-reaction-monitoring (MRM). Data

acquisition was carried out using Analyst v1.6.3 software (Sciex),

while all metabolites underwent quantification using Multiquant

v3.0.3 software (Sciex). MS parameters, such as collision-energies

(CE) and declustering-potentials (DP) for eachMRM transition, were

further optimized. During each time period, a set of MRM transitions

was monitored according to the metabolites eluting at that interval

(Pan et al., 2010; Simura et al., 2018).
2.7 Identification of ABCB, PIN, and AUX/
LAX genes in S. indicum

To identify potential SiABCB, SiPIN, and SiLAX genes in S.

indicum, the auxin transporter family members from Arabidopsis

thaliana and Oryza sativa were acquired (Yang et al., 2021) and

BLAST searches were conducted against the S. indicum genome

using an e-value threshold of < 1e-10. All candidate proteins were

then validated using the NCBI CDD database (http://

www.ncbi.nlm.nih.gov/cdd), InterPro (https://www.ebi.ac.uk/

interpro/), and SMART (http://smart.emblheidelberg.de/). The

molecular weight (MW) and theoretical-isoelectric-point (pI) of

each PAT protein were predicted using the ExPASy webtool

(https://www.expasy.org/) (Artimo et al., 2012). Additionally,

Wolf-PSORT (https://wolfpsort.hgc.jp/) was used to predict the

subcellular localizations of SiABCB, SiPIN, and SiLAX proteins

(Horton et al., 2007).
2.8 Phylogenetic, conserved motif, gene
structure, chromosomal mapping, gene
duplication, and protein
interaction analyses

The SiLAX, SiPIN, and SiABCB proteins were aligned using

MEGA11 (http://www.megasoftware.net/). Phylogenetic trees were

established using the Neighbor-Joining (NJ) method with 1,000

bootstrap replications (Tamura et al., 2021), followed by

visualization with iTOL v6 (http://itol.embl.de/) (Letunic and

Bork, 2021). MEME Suite (http://meme-suite.org/) was employed

to identify conserved motifs within the proteins. The gene structure

and conserved motif analysis were illustrated with the TBtools

software v.1.098 (https://github.com/CJ-Chen/TBtools) (Chen
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et al., 2020). A chromosomal location map of the SiLAX, SiPIN, and

SiABCB genes was created using MapChart software (Voorrips,

2002), and then enhanced for clarity with Adobe Illustrator CS6.

BLAST analysis was performed to investigate the duplication

patterns of PAT genes. The collinearity between chromosomes

was analyzed with McscanX software (Wang et al., 2012), and the

syntenic relationships of duplicated genes were illustrated using the

Advanced Circos program in TBtools. Additionally, a protein-

protein interaction network for SiABCB, SiPIN, and SiLAX was

established using STRING (https://string-db.org/) (Szklarczyk et al.,

2017) and visualized using Cytoscape.
2.9 Cis-acting element analysis of SiLAX,
SiPIN, and SiABCB

To identify the potential cis-acting elements in SiABCB, SiPIN,

and SiLAX gene promoter regions, 1.5 kb genomic sequences

upstream of the start codon (ATG) were acquired from the

PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/

plantcare/html/) (Lescot et al., 2002). The identified elements were

visualized using the GSDS2.0 program (http://gsds.gaolab.org/) (Hu

et al., 2015). Ten key cis-elements were selected for analysis,

including AuxRR-core (auxin responsiveness), ARE (anaerobic

induction), ABRE (abscisic acid responsiveness), CGTCA-motif

(MeJA responsiveness), G-box (light responsiveness), GCN4-

motif (endosperm expression), LTR (low-temperature

responsiveness), Myb-binding site (CAACAG), TGA-element

(auxin-responsive cis-acting element), and TCA-element (salicylic

acid responsiveness).
2.10 RT-qPCR assays

Total RNA extraction was performed using TRIzol reagent

(Tiangen Biotech, China), and cDNA synthesis was performed

using a reverse-transcription-kit (R323-01, Vazyme Biotech,

China). RT-qPCR assays were conducted with ChamQ-Universal-

SYBR-qPCR-Master-Mix (Q711-02, Vazyme Biotech) on a

LightCycler-480 instrument (Roche). The primer sequences are

listed in Supplementary Table S1. b-Actin was used as an internal

control, and relative mRNA levels were calculated using the 2–DDCt

method (Liu et al., 2011).
2.11 Hormonal induction

The NAA storage solution (PH1011-100 mL, Coolaber,

Beijing, China) was diluted to a concentration of 10 mg/L. At

the seedling stage, NAA was uniformly sprayed onto the leaves of

G1358 and LZ1, with water used as a control. Leaf specimens were

harvested at 0, 6, 12, and 24 hours post-application and

immediately placed in liquid nitrogen for rapid RNA extraction.

RNA quality was assessed using a NanoDrop2000 ultra-

microspectrophotometer (ThermoFisher), and total RNA was

quantitatively analyzed by RT-qPCR.
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2.12 RNA-seq analysis

Approximately 1.0 g of leaves from G1358 and LZ1 were rapidly

frozen in liquid nitrogen and ground into a powder. Total RNA

extraction was conducted using TRIzol reagent (Tiangen Biotech).

Three biological replicates were conducted. Library construction and

RNA sequencing were performed by Wuhan-Metware-Biotechnology

(Wuhan, China). Novel transcript sequences were assembled with

StringTie (Pertea et al., 2015). Annotation of these transcripts was

performed by comparing them against the GO, KEGG, NR, SwissProt,

trEMBL, and KOG databases. Principal-component-analysis was used

to assess the correlations among replicates. Clean sequences were then

aligned to the S. indicum reference genome (Song et al., 2023). DEGs

were identified using DESeq2 with a threshold of |log2(Fold-

Change)|≥1 and FDR<0.05 (Love et al., 2014). Gene expression

patterns at various time points were analyzed by clustering genes

using the K-means method.
2.13 Determination of chlorophyll, content
photosynthetic rate and canopy
apparent photosynthesis

To measure chlorophyll content, SPAD values (relative

chlorophyll content) were obtained from the latest fully expanded

leaf of 10 individual plants at the bud stage using a SPAD-502

Chlorophyll Meter (Konica-Minolta-Holdings, Tokyo, Japan). The

photosynthetic rates (Pn) of these same leaves, as well as the canopy

apparent photosynthesis for the entire population, were assessed

using a Li-6800-portable-photosynthesis-system (Li-Cor, Lincoln,

NE, USA). These measurements were conducted under clear,

windless conditions between 9:00 and 11:00 a.m.

3 Results

3.1 Leaf morphology

There was an obvious difference in leaf morphology between

G1358 and LZ1. The leaves of LZ1 had a smooth surface without

protrusions, whereas G1358 leaves exhibited small protrusions. The

field morphology of G1358 is shown in Supplementary Figure S1.

Paraffin sectioning and toluidine blue staining allowed for detailed

observation of these protrusions under a microscope (Figures 1A, B).

Given the potential role of auxin in leaf morphology, we measured

auxin content in both the entire leaves and the leaf bases (where the

protrusions are located) of G1358 and LZ1. The levels of differential

auxin metabolites between G1358 and LZ1 are presented in

Supplementary Figure S2, Supplementary Tables S2, S3. We

particularly focused on indole-3-acetic acid (IAA), which is known

to exert a crucial role (Woodward and Bartel, 2005). There was no

obvious difference in IAA content between the whole leaves of G1358

and LZ1 (Figure 1C). However, auxin content in the leaf base of

G1358 was substantially higher compared to LZ1 (Figure 1D). These

findings suggest that the observed leaf protrusions are not due to

differences in auxin synthesis but rather to PAT, resulting in an

uneven distribution of auxin.
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3.2 Genome-wide assessment of ABCB,
PIN, and AUX/LAX in S. indicum

PAT relies primarily on ABCB, PIN and AUX/LAX. To identify

potential ABCB, PIN, and AUX/LAX genes in S. indicum, we
Frontiers in Plant Science 05
obtained protein sequences for these families from Arabidopsis

thaliana and Oryza sativa available in NCBI. After BLAST

comparison and identification, 21 SiABCB family members, 11

SiPIN family members, and 5 SiLAX family members were

identified in S. indicum. Genes were designated based on their
FIGURE 1

Comparison of leaf morphology and auxin content between G1358 and LZ1. (A) Leaf morphology of LZ1. (B) Leaf morphology of G1358. (a) Toluidine
blue-stained leaves of LZ1. (b) Toluidine blue-stained leaves of G1358. The blue-green color represents the lignified cell wall, while the purple-blue
color represents the cellulose cell wall. (C) Auxin content in the leaves of G1358 and LZ1. (D) Auxin content in the leaf base of G1358 and LZ1. Paired
data were evaluated using Student’s t-test. ‘ns’ denotes no significant difference, while asterisks denote statistically significant differences (**p <
0.01). The bars indicate the mean ± SD from 3 independent biological experiments. .
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chromosomal positions (Supplementary Table S4). SiABCB

proteins are longer, with sequences spanning over 1000 amino

acids, ranging from 1160 amino acids (SiABCB17, with a MW of

126.59 kDa) to 1709 amino acids (SiABCB8, with a MW of 184.14

kDa). Their theoretical pIs vary from 6.15 (SiABCB4) to 8.99

(SiABCB15). SiPIN proteins range from 390 amino acids

(SiPIN11, with a MW of 42.75 kDa) to 651 amino acids (SiPIN5,

with a MW of 70.74 kDa), with pIs varying between 7.4 (SiPIN10)

and 10.35 (SiPIN11). The SiLAX proteins are approximately 500

amino acids long (ranging from 470 to 511). Their molecular

weights (MWs) range from 52.95 kDa (SiLAX1) to 57.34 kDa

(SiLAX3), and their theoretical-isoelectric-points (pIs) vary

between 8.44 (SiLAX5) and 9.27 (SiLAX1). Subcellular

localization prediction, generated using the WoLF PSORT tool,

indicated that all SiABCB proteins, except SiABCB21 (which is

located in the vacuole), were localized to the plasma membrane. For

comprehensive details about gene IDs, chromosomal locations,

gene loci, protein lengths, MWs, pIs, and subcellular locations,

refer to Supplementary Table S5.
3.3 Phylogenetic analysis of ABCB, PIN, and
LAX proteins in S. indicum, A. thaliana and
O. sativa

Substantial advancements have been realized in understanding

the diverse functions and regulatorymechanisms of auxin transporter

gene families in A. thaliana (Mravec et al., 2009; Ding et al., 2012;

Ung et al., 2022). The evolution and function of members of these

gene family members vary across different plant species (Wang et al.,

2018; Zhou et al., 2021). Investigating the evolutionary relationships

of auxin transporters among closely related species, including S.

indicum, A. thaliana and O. sativa will expand our knowledge of the

biological roles of auxin transporter gene members in S. indicum. To

this end, we constructed a neighbor-joining phylogenetic tree using

21 SiABCB, 11 SiPIN and 5 SiLAX from S. indicum; 21 AtABCB, 8

AtPIN and 4 AtLAX/AUX fromA. thaliana; and 5 OsLAX, 12 OsPIN

and 21 OsABCB from O. sativa. The protein sequences used were

shown in Supplementary Table S6. ABCB genes were divided into

eight groups, with SiABCBs clustering within five of these

(Figure 2A). The PIN genes were grouped into 3 categories, with

SiPINs showing greater homology to AtPINs than to OsPINs

(Figure 2B). Sequence similarity and evolutionary patterns allowed

us to classify the LAX/AUX genes into 2 main groups, with SiLAX1

and AtLAX3, as well as SiLAX4 and AtLAX2, showing relatively high

homology. The other three LAX genes in S. indicum exhibited lower

homology with those in A. thaliana and O. sativa (bootstrap < 50%;

Figure 2C), although the SiLAX genes themselves displayed

relatively high sequence similarity (Supplementary Figure S3).

The sequence similarity of SiPINs and SiABCBs is presented in

Supplementary Figures S4, S5, respectively, revealing partial domain

sequence similarity.
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3.4 Genomic architecture and conserved
sequence patterns

The structural organization and conserved sequence patterns of

genes serve as both the architectural foundation and evolutionary

hallmark, providing valuable perspectives on the evolutionary

changes in the gene family ’s structure. As shown in

Supplementary Figure S6, all SiABCB, SiPIN, and SiLAX genes

display a combination of introns and exons. Except for SiABCB8,

which contains 23 exons, the other genes consist of 4-12 exons

(Supplementary Table S7). Members within the same cluster

typically exhibit similar sequence characteristics, reflecting their

close evolutionary relationships.

To explore the diversity in SiABCB, SiPIN, and SiLAX gene

families, we performed a predictive assessment of conserved

sequence motifs. Ten conserved motifs (Motifs 1 to 10) were

identified, ranging from 8 to 100 amino acids in length

(Supplementary Figures S7-S9). The protein sequences associated

with these motifs are listed in Supplementary Table S8. SiABCB

genes generally harbor more than 10 motifs (Figure 3A), while all

SiPIN genes include Motifs 1 and 3 (Figure 3B). All SiLAX genes

contain Motifs 1, 2, 3, 4, 5, 6, and 8 (Figure 3C). Additionally,

proteins closely related within adjacent clades of the phylogenetic

trees often display similar or identical motif compositions,

indicating a strong association between motif architecture and

evolutionary relationships.
3.5 Chromosome locations and
duplications of SiABCB, SiPIN, and SiLAX

The chromosomal localization of SiABCB, SiPIN, and SiLAX

genes within the S. indicum genome was determined by analyzing

chromosomal information and using MapChart for visualization.

SiABCB genes were absent from chromosomes 1 and 10 but were

found on all other chromosomes (Figure 4A), while the 11 SiPIN

genes were distributed unevenly and non-randomly across five

chromosomes (Figure 4B). The five SiLAX genes were each

mapped to distinct chromosomes (Figure 4C). Notably, SiABCB,

SiPIN and SiLAX genes were all present on chromosomes 2 and 4,

with chromosome 6 exhibiting the greatest number of SiABCB

genes (total = 5).

Considering the critical role of gene duplication in the

expansion of gene families during evolution, we conducted a gene

duplication analysis within the S. indicum genome. No segmental

duplications of SiABCB, SiPIN, and SiLAX genes were detected

(Figure 5), suggesting that tandem duplications primarily facilitated

the expansion of these gene families.

We also explored the collinearity between S. indicum and A.

thaliana, identifying 27 collinear pairs of homologous genes

between SiABCB/SiPIN/SiLAX and their AtABCB/AtPIN/AtLAX

counterparts. In a similar analysis between S. indicum and O. sativa,
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only five pairs of homologous genes arranged in a collinear

fashion were found between SiLAX/SiABCB and OsLAX/OsABCB.

Notably, no homologous PIN genes were found between S. indicum

and O. sativa (Supplementary Figure S10 and Supplementary

Table S9, S10).

The selection pressure on the duplication of SiABCB, SiPIN, and

SiLAX genes was assessed using the Ka/Ks ratio (Supplementary

Table S11). A Ka/Ks value less than 1 typically indicates purifying

selection, a ratio of 1 denotes neutral evolution, and a value greater

than 1 represents positive selection (Hu and Banzhaf, 2008). All Ka/

Ks values were found to be < 1, suggesting that SiABCB, SiPIN, and

SiLAX have undergone purifying selection throughout their

evolutionary history.
3.6 Interaction network of SiABCB, SiPIN,
and SiLAX proteins

A protein-protein interaction network was constructed to

investigate the relationships among SiABCB, SiPIN, and SiLAX,

and other proteins in S. indicum (Supplementary Figure S11 and

Supplementary Table S12). This network included 39 proteins, 29 of

which belonged to the SiABCB, SiPIN, and SiLAX families, while the
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remaining 10 were from other protein families. This suggests that the

functions of SiABCB, SiPIN, and SiLAX proteins may depend on

their interactions with other proteins. Additionally, some SiABCB

proteins were found to directly interact with each other.
3.7 Cis-element analysis of SiABCB, SiPIN,
and SiLAX gene promoter regions in
S. indicum

The diversity of gene expression under different conditions may

be associated with the promoter region. To explore potential cis-

regulatory elements in SiABCB, SiPIN, and SiLAX gene promoter

regions, we assessed and compared the 1.5 kb upstream of the start

codon (ATG) for each gene. Various cis-elements associated with

light response, abiotic stress, plant hormone response, MYB

binding and tissue-specific expression were determined (Figure 6

and Supplementary Table S13). Specifically, the promoter region of

SiLAX lacks auxin-responsive elements. However, elements

responsive to hormones (auxin, abscisic acid, and salicylic acid),

light, and low temperatures were the most abundant. This implies

that PAT proteins may play significant roles in hormonal regulation

and the response to diverse abiotic stresses in S. indicum.
FIGURE 2

Phylogenetic analysis of the ABCB, PIN, and LAX protein families in S. indicum, A. thaliana and O. sativa. (A) Phylogenetic tree of 21 SiABCB, 21
AtABCB, and 21 OsABCB, with SiABCB marked by a dot. (B) Phylogenetic tree of 11 SiPIN, 8 AtPIN, and 12 OsPIN, with SiPIN represented by a
triangle. (C) Phylogenetic tree of 5 SiLAX, 4 AtLAX/AUX and 5 OsLAX, with SiLAX indicated by a five-pointed star. Multiple-sequence-alignment was
performed using ClustalW. The NJ tree was established in MEGA11 with 1000 bootstrap replicates. Distinct colors represent various groups of ABCB,
PIN, and LAX proteins. .
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3.8 Expression analysis of SiLAX, SiPIN
and SiABCB

A total of 4095 DEGs (differential expressed genes) were

identified between the leaves of LZ1 and G1358, with 1,707 genes

upregulated and 2,388 downregulated (Supplementary Figure S12).

Among these, eight SiABCB, SiPIN, and SiLAX genes showed

differential expression: SiABCB6, SiABCB9, SiABCB11, SiABCB20
Frontiers in Plant Science 08
were upregulated in G1358 leaves, while SiABCB3, SiABCB7,

SiABCB19, SiPIN10 were downregulated. A heatmap depicting the

expression of these eight genes in G1358 and LZ1 leaves was

generated following RNA-seq analysis (Figure 7). To examine the

regulatory effects of auxin on these DEGs, 10 mg/L of

naphthylacetic acid (NAA) was applied to the leaves during the

seedling stage, and mRNA expression analysis was conducted. The

results indicated that, without NAA (0 h), the mRNA levels of
FIGURE 3

Analysis of conserved motifs in SiABCB, SiPIN, and SiLAX proteins. (A) Conserved motif analysis of SiABCB proteins. (B) Conserved motif analysis of
SiPIN proteins. (C) Conserved motif analysis of SiLAX proteins. The SiABCB, SiPIN, and SiLAX genes are grouped according to phylogenetic analysis
shown on the left. Ten distinct conserved motifs were estimated using MEME software, with the scale bar displayed at the bottom.
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SiABCB9, SiABCB11 and SiABCB20 were upregulated in G1358

compared to LZ1, while those of SiABCB3, SiABCB7, SiABCB19 and

SiPIN10 were downregulated in G1358 compared to LZ1. The

expression profiles aligned with the RNA-seq data, confirming its

accuracy and reliability. In G1358, NAA treatment significantly

upregulated the expression of SiABCB3, SiABCB6 and SiPIN10.

Conversely, SiABCB7 and SiABCB9 may play inhibitory roles in

PAT in G1358 compared with LZ1 (Figures 8A–H).
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The GARP-type transcription factor (GLK) gene family plays a

crucial role in plant development, particularly in the regulation of

chloroplast biogenesis and photosynthesis (Fitter et al., 2002). GLK

genes encode transcription factors that are essential for the proper

development and function of chloroplasts (Zhang et al., 2024b). We

found that there was only one GLK gene in S. indicum. Phylogenetic

analysis revealed that SiGLK, the sole GLK gene in S. indicum, is

closely related to AhGLK (Supplementary Figure S13 and
FIGURE 4

Chromosomal distribution of SiABCB, SiPIN, and SiLAX genes. Genes are annotated on the left side of the chromosomes, while position markers are
displayed on the right. The scale bar on the left denotes chromosome lengths (Mb). (A) Chromosomal distribution of SiLAX genes. (B) Chromosomal
distribution of SiPIN genes. (C) Chromosomal distribution of SiABCB genes.
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Supplementary Table S14). We can further understand the

regulation mechanism of G1358 sesame leaf protrusions

formation and photosynthetic efficiency enhancement by

analyzing the expression of GLK gene through RT-qPCR. We

found that SiGLK expression was much higher in G1358 than in

LZ1, and NAA application significantly increased SiGLK

expression (Figure 8I).

KEGG analysis of the DEGs identified 133 enriched pathways in

the G1358-Leaf vs. LZ1-Leaf comparison (Supplementary Table S15).

The top 10 pathways included plant hormone signal transduction

and ABC transporters (Figure 9). SiABCB20, a gene associated with

the ABC transporter signaling pathway, was highly enriched in

G1358 (Supplementary Figure S14). These findings suggest that in

G1358, auxin may positively regulate PAT through the actions of

SiABCB3, SiABCB6, and SiPIN10, while SiABCB7 and SiABCB9 may

play a negative regulatory role in this process.
3.9 SPAD, Pn and CAP values

To assess the impact of leaf shape, specifically the leaf

protrusions observed in G1358, on plant photosynthesis, we

measured the SPAD, Pn, and CAP values in both G1358 and LZ1

plants. The results indicated that G1358 exhibited higher SPAD, Pn,

and CAP values compared to LZ1 (Figure 10), suggesting that the
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small protrusions on the leaves may significantly enhance the

photosynthetic efficiency of the plants.
4 Discussion

PAT is a vital process in plant growth and development,

impacting various aspects such as cell division, differentiation,

and organ formation. PAT primarily involves the directional

movement of auxins from their synthesis sites to other parts of

the plant. This movement is essential for regulating growth patterns

and organ formation (Goldsworthy and Rathore, 1985). The overall

control of growth in plant tissues, including leaves, relies heavily on

the balance and distribution of growth regulators like auxins. We

identified a total of 21 SiABCBs, 11 SiPINs, and 5 SiLAXs in S.

indicum. Notably, the expression levels of SiABCB3, SiABCB6, and

SiPIN10 were significantly upregulated under NAA treatment in the

leaves of G1358, whereas SiABCB7 and SiABCB9 exhibited

downregulation. These findings suggest that SiABCB3, SiABCB6,

and SiPIN10 play positive regulatory roles in PAT, thereby

promoting the formation of leaf protrusions in G1358. This

observation aligns with established theories regarding the

involvement of PAT in plant morphogenesis (Wang et al., 2011).

The elevated expression of SiABCB3 and SiABCB6 may have

enhanced the polar transport of auxin, resulting in increased
FIGURE 5

Distribution of SiABCB, SiPIN, and SiLAX gene pairs across chromosomes in the S. indicum genome. Chromosomes are represented by boxes, and
homologous gene pairs by red lines.
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FIGURE 7

Enrichment of differentially expressed SiABCB, SiPIN, and SiLAX genes in the leaves of G1358 and LZ1. Heatmap blocks indicate gene expression
levels, with red representing upregulation and blue representing downregulation, based on RNA-seq data.
FIGURE 6

Cis-elements analysis in SiABCB, SiPIN, and SiLAX promoter regions. Different colored boxes at the bottom symbolize various cis-acting elements.
(A) Cis-elements analysis in the promoter regions of SiABCB genes. (B) Cis-elements analysis in the promoter regions of SiPIN genes. (C) Cis-elements
analysis in the promoter regions of SiLAX genes.
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auxin concentrations at the leaf base. This accumulation could

stimulate cell proliferation and contribute to the development of

protrusions. Furthermore, these structural changes may improve

photosynthetic efficiency by expanding the leaf surface area and

enhancing light capture capacity (Traas, 2018). Our research aimed

to elucidate the functions of the ABCB, PIN, and AUX/LAX gene

families in regulating leaf protrusion formation and photosynthetic

performance in sesame. By providing insights into these

mechanisms, this study offers a theoretical foundation for

strategies aimed at improving crop yield through targeted

genetic modifications.
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4.1 The evolution and function of ABCB
gene family

ABCB genes are responsible for diverse biological processes,

including the transport of phytohormones such as auxin, which is

crucial for plant growth and development (Dhaliwal et al., 2014;

Okamoto et al., 2016). Studies across different plant species reveal

both structural conservation and notable variations among ABCB

genes. For example, the genomic copies of ABCB1 differ between

monocots and dicots, with variations in intron size and number

that may affect gene expression and function (Dhaliwal et al.,
FIGURE 8

RT-qPCR results for the relative mRNA levels of DEGs in response to NAA treatment in the leaves of LZ1 and G1358. (A–I) Relative mRNA levels of
SiABCB3, SiABCB6, SiABCB7, SiABCB9, SiABCB11, SiABCB19, SiABCB20, SiPIN10, and SiGLK were measured after treatment with 10 mg/L NAA for 0,
6, 12, and 24 h. Actb was utilized as the internal control. Paired data were evaluated using Student’s t-test. ‘ns’ denotes no significant difference,
while asterisks denote statistically significant differences (*p < 0.05, **p < 0.01). The bars indicate the mean ± SD from 3 independent
biological experiments.
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2014). Similarly, the structure of ABCB19 in Arabidopsis thaliana

suggests its involvement in processes such as cytoplasmic

streaming and gravitropism, reflecting specific adaptations of

this transporter to environmental stimuli (Okamoto et al.,

2016). In our research, we identified that SiABCB genes

generally contain more than 10 motifs, with SiABCB8 having 23

exons, indicating potentially complex functions that warrant

further investigation. Despite their classification as ABCBs,

these genes exhibit functional differences: SiABCB3 and

SiABCB6 were found to positively regulate PAT, whereas
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SiABCB7 and SiABCB9 negatively regulate PAT. Previous

studies in rice and Arabidopsis have shown that tandem and

segmental duplications are involved in the expansion of the ABC

gene family (Xing et al., 2012). In our study, we identified 21

SiABCB genes, which matches the number found in both A.

thaliana and O. sativa. Tandem duplications were implicated in

the expansion of the SiABCB gene family in S. indicum. These

findings suggest that ABCB genes have undergone significant

evolutionary changes, potentially driven by environmental

pressures or adaptation to new ecological niches.
FIGURE 9

KEGG pathway classification analysis of DEGs in G1358 and LZ1.
FIGURE 10

Comparison of relative chlorophyll content and photosynthetic rate between LZ1 and G1358. (A) SPAD values of LZ1 and G1358. (B) Net
photosynthetic rates (Pn) of LZ1 and G1358. (C) Canopy photosynthetic rate (CAP) of LZ1 and G1358. Experiments were performed in triplicate, and
statistical differences were detected with Student’s t-test (**p < 0.01). Bars represent mean ± SD.
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4.2 The evolution and function of PIN
gene family

PIN genes are essential for regulating PAT, a process essential for

plant growth, development, and response to environmental stresses.

The PIN gene family has experienced considerable evolution across

various plant lineages. In common wheat (Triticum aestivum L.), a

genome-wide analysis identified 44 TaPIN genes, which were classified

into seven groups based on phylogenetic analysis (Kumar et al., 2021).

Similarly, in Solanum tuberosum, PIN proteins were categorized into

14 distinct clades, tracing lineage to the common ancestor of green

algae (Yang et al., 2019), indicating a rapid expansion of the PIN gene

family in angiosperms compared with algae. In Glycine max, 23

GmPIN genes were identified, with evidence of segmental duplication

events contributing to their diversity (Liu andWei, 2017). In our study,

we identified 11 SiPIN genes, which were classified into three groups.

Notably, SiPIN genes show higher homology with AtPIN genes than

with OsPIN genes. Tandem duplication events were found to drive the

expansion of the SiPIN gene family. These findings collectively imply

that the PIN gene family has undergone significant evolutionary

changes, particularly in more complex plant lineages such

as angiosperms.
4.3 The evolution and function of AUX/LAX
gene family

The AUX/LAX family is crucial for mediating auxin entry into

cells, which is fundamental for establishing the auxin gradients

required for various developmental processes (Swarup and Peret,

2012; Swarup and Bhosale, 2019). The distinct expression patterns

and functional diversification within the AUX/LAX family suggest

that each member may contribute uniquely to processes such as

root gravitropism, lateral root development, and leaf phyllotaxis

(Swarup and Peret, 2012). Evolutionary analysis of the AUX/LAX

gene family indicates subfunctionalization based on distinct spatial

expression patterns and the inability of LAX sequences to rescue

aux1 mutant phenotypes (Péret et al., 2012). This evolutionary

process has resulted in the development of unique regulatory

mechanisms for each gene within the family. Furthermore,

evolutionary studies of the Aux/IAA family in plants reveal dual

origins and variable nuclear localization signals, reflecting a

complex evolutionary history of auxin signaling pathways (Wu

et al., 2017). In S. indicum, five LAX genes with high sequence

similarity were identified. Notably, SiLAX1 and AtLAX3, as well as

SiLAX4 and AtLAX2, exhibit high homology, suggesting potential

functional similarities. However, SiLAX was not identified among

the differentially expressed genes in the G1358 and LZ1

transcriptomes, and no auxin-responsive elements were observed

in the SiLAX promoter region. This suggests that SiLAX may not be

involved in leaf protrusion formation in S. indicum.
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4.4 Relationship between leaf morphology
and photosynthetic rate

Evidence indicates that the geometric arrangement of the leaf

lamina relative to light rays significantly impacts the photosynthetic

rate (An) under oblique illumination conditions (Nikolopoulos

et al., 2024). This suggests that the physical structure of the leaf,

including its orientation with respect to light, plays a crucial role in

optimizing photosynthesis. Our research demonstrated that small

leaf protrusions can significantly enhance photosynthetic rates. The

high expression of SiGLK increased the chlorophyll content and

photosynthetic rate in S. indicum. The mechanisms underlying this

increase are complex and warrant further investigation. In

summary, leaf morphology, including its structural features, has a

substantial effect on photosynthetic efficiency. These findings

highlight the importance of considering leaf morphology in

strategies aimed at improving photosynthesis in agricultural and

environmental contexts.

Our comprehensive study of the SiABCB, SiPIN, and SiLAX

gene families in S. indicum has provided detailed insights into

their basic characterist ics , chromosomal distribution,

phylogeny, co-expression networks, gene structures, and

subcellular localizations. The genome-wide investigation of

ABCB, PIN, and AUX/LAX gene families in S. indicum reveals

a complex interplay of auxin transport mechanisms that likely

contribute to the development of leaf protrusions. Through

auxin metabolite analysis and transcriptomic studies of sesame

varieties G1358 and LZ1, we found evidence suggesting that PAT

family genes are responsible for the formation of leaf protrusions

in G1358. Expression pattern analysis revealed that SiABCB3,

SiABCB6, and SiPIN10 positively regulate PAT, whereas

SiABCB7 and SiABCB9 negatively regulate PAT. By integrating

findings from various plant species and focusing on the specific

roles of these transporter families, this study enhances our

understanding of auxin-mediated developmental processes in

S. indicum. Our research has unveiled the significant roles of

ABCB, PIN, and AUX/LAX genes in shaping sesame leaf

morphology and influencing photosynthesis. However, the

exact molecular mechanisms through which these genes

modulate auxin transport remain to be further explored.

Future research should aim to elucidate the specific genetic

interactions and regulatory networks involving these auxin

transporters in leaf protrusion formation, potentially providing

insights into broader developmental principles applicable across

the plant kingdom.
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